Search results for: earth observation data cube
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26885

Search results for: earth observation data cube

24245 Partial Least Square Regression for High-Dimentional and High-Correlated Data

Authors: Mohammed Abdullah Alshahrani

Abstract:

The research focuses on investigating the use of partial least squares (PLS) methodology for addressing challenges associated with high-dimensional correlated data. Recent technological advancements have led to experiments producing data characterized by a large number of variables compared to observations, with substantial inter-variable correlations. Such data patterns are common in chemometrics, where near-infrared (NIR) spectrometer calibrations record chemical absorbance levels across hundreds of wavelengths, and in genomics, where thousands of genomic regions' copy number alterations (CNA) are recorded from cancer patients. PLS serves as a widely used method for analyzing high-dimensional data, functioning as a regression tool in chemometrics and a classification method in genomics. It handles data complexity by creating latent variables (components) from original variables. However, applying PLS can present challenges. The study investigates key areas to address these challenges, including unifying interpretations across three main PLS algorithms and exploring unusual negative shrinkage factors encountered during model fitting. The research presents an alternative approach to addressing the interpretation challenge of predictor weights associated with PLS. Sparse estimation of predictor weights is employed using a penalty function combining a lasso penalty for sparsity and a Cauchy distribution-based penalty to account for variable dependencies. The results demonstrate sparse and grouped weight estimates, aiding interpretation and prediction tasks in genomic data analysis. High-dimensional data scenarios, where predictors outnumber observations, are common in regression analysis applications. Ordinary least squares regression (OLS), the standard method, performs inadequately with high-dimensional and highly correlated data. Copy number alterations (CNA) in key genes have been linked to disease phenotypes, highlighting the importance of accurate classification of gene expression data in bioinformatics and biology using regularized methods like PLS for regression and classification.

Keywords: partial least square regression, genetics data, negative filter factors, high dimensional data, high correlated data

Procedia PDF Downloads 49
24244 The Use of Voice in Online Public Access Catalog as Faster Searching Device

Authors: Maisyatus Suadaa Irfana, Nove Eka Variant Anna, Dyah Puspitasari Sri Rahayu

Abstract:

Technological developments provide convenience to all the people. Nowadays, the communication of human with the computer is done via text. With the development of technology, human and computer communications have been conducted with a voice like communication between human beings. It provides an easy facility for many people, especially those who have special needs. Voice search technology is applied in the search of book collections in the OPAC (Online Public Access Catalog), so library visitors will find it faster and easier to find books that they need. Integration with Google is needed to convert the voice into text. To optimize the time and the results of searching, Server will download all the book data that is available in the server database. Then, the data will be converted into JSON format. In addition, the incorporation of some algorithms is conducted including Decomposition (parse) in the form of array of JSON format, the index making, analyzer to the result. It aims to make the process of searching much faster than the usual searching in OPAC because the data are directly taken to the database for every search warrant. Data Update Menu is provided with the purpose to enable users perform their own data updates and get the latest data information.

Keywords: OPAC, voice, searching, faster

Procedia PDF Downloads 344
24243 Investigation of the Historical Background of Monumental Mosques in Kocaeli, Turkey by IRT Techniques

Authors: Emre Kishalı, Neslihan TürkmenoğLu Bayraktar

Abstract:

Historical buildings may face various impacts throughout their life cycle. There have been environmental, structural, public works actions on old monuments influencing sustainability and maintenance issues. As a result, ancient monuments can have been undergone various changes in the context of restoration and repair. Currently, these buildings face integrated conditions including city planning macro solutions, old intervention methods, modifications in building envelope and artefacts in terms of conservation. Moreover, documentation of phases is an essential for assessing the historical building, yet it can result in highly complicated and interwoven issues. Herein, two monuments constructed in the 16th century are selected as case studies in Kocaeli, Turkey which are located in different micro climatic conditions and/or exposed to different interventions and which are important for the city as cultural property. Pertev Paşa Mosque (also known as Yenicuma Mosque) -constructed by Architect Sinan-; Gebze Çoban Mustafa Paşa Mosque -constructed in 1523 and known as the work of Architect Sinan but various names asserted as the architect of building according to resources. Active water infiltration and damages, recent material interventions, hidden niches, and foundation techniques of the mosque are investigated via Infrared Thermography under the project of 114K284, “Non-Destructive Test Applications, in the Context of Planned Conservation, through Historical Mosques of Kocaeli: Coban Mustafa Pasa Mosque, Fevziye Mosque and Pertev Pasa Mosque” funded by TUBITAK. It is aimed to reveal active deteriorations on building elements generated by unwanted effects of structural and climatic conditions, historical interventions, and modifications by monitoring the variation of surface temperature and humidity by IRT visualization method which is an important non- destructive process for investigation of monuments in the conservation field in the context of planned conservation. It is also concluded that in-situ monitoring process via IRT through different climatic conditions give substantial information on the behaviour of the envelope to the physical environmental conditions by observation of thermal performance, degradations. However, it is obvious that monitoring of historical buildings cannot be pursued by implementing a single non-destructive technique to have complete data of the structure.

Keywords: IRT, non-destructive test, planned conservation, mosque

Procedia PDF Downloads 352
24242 Exploring Influence Range of Tainan City Using Electronic Toll Collection Big Data

Authors: Chen Chou, Feng-Tyan Lin

Abstract:

Big Data has been attracted a lot of attentions in many fields for analyzing research issues based on a large number of maternal data. Electronic Toll Collection (ETC) is one of Intelligent Transportation System (ITS) applications in Taiwan, used to record starting point, end point, distance and travel time of vehicle on the national freeway. This study, taking advantage of ETC big data, combined with urban planning theory, attempts to explore various phenomena of inter-city transportation activities. ETC, one of government's open data, is numerous, complete and quick-update. One may recall that living area has been delimited with location, population, area and subjective consciousness. However, these factors cannot appropriately reflect what people’s movement path is in daily life. In this study, the concept of "Living Area" is replaced by "Influence Range" to show dynamic and variation with time and purposes of activities. This study uses data mining with Python and Excel, and visualizes the number of trips with GIS to explore influence range of Tainan city and the purpose of trips, and discuss living area delimited in current. It dialogues between the concepts of "Central Place Theory" and "Living Area", presents the new point of view, integrates the application of big data, urban planning and transportation. The finding will be valuable for resource allocation and land apportionment of spatial planning.

Keywords: Big Data, ITS, influence range, living area, central place theory, visualization

Procedia PDF Downloads 279
24241 Performance Analysis of Hierarchical Agglomerative Clustering in a Wireless Sensor Network Using Quantitative Data

Authors: Tapan Jain, Davender Singh Saini

Abstract:

Clustering is a useful mechanism in wireless sensor networks which helps to cope with scalability and data transmission problems. The basic aim of our research work is to provide efficient clustering using Hierarchical agglomerative clustering (HAC). If the distance between the sensing nodes is calculated using their location then it’s quantitative HAC. This paper compares the various agglomerative clustering techniques applied in a wireless sensor network using the quantitative data. The simulations are done in MATLAB and the comparisons are made between the different protocols using dendrograms.

Keywords: routing, hierarchical clustering, agglomerative, quantitative, wireless sensor network

Procedia PDF Downloads 615
24240 A Novel Hybrid Deep Learning Architecture for Predicting Acute Kidney Injury Using Patient Record Data and Ultrasound Kidney Images

Authors: Sophia Shi

Abstract:

Acute kidney injury (AKI) is the sudden onset of kidney damage in which the kidneys cannot filter waste from the blood, requiring emergency hospitalization. AKI patient mortality rate is high in the ICU and is virtually impossible for doctors to predict because it is so unexpected. Currently, there is no hybrid model predicting AKI that takes advantage of two types of data. De-identified patient data from the MIMIC-III database and de-identified kidney images and corresponding patient records from the Beijing Hospital of the Ministry of Health were collected. Using data features including serum creatinine among others, two numeric models using MIMIC and Beijing Hospital data were built, and with the hospital ultrasounds, an image-only model was built. Convolutional neural networks (CNN) were used, VGG and Resnet for numeric data and Resnet for image data, and they were combined into a hybrid model by concatenating feature maps of both types of models to create a new input. This input enters another CNN block and then two fully connected layers, ending in a binary output after running through Softmax and additional code. The hybrid model successfully predicted AKI and the highest AUROC of the model was 0.953, achieving an accuracy of 90% and F1-score of 0.91. This model can be implemented into urgent clinical settings such as the ICU and aid doctors by assessing the risk of AKI shortly after the patient’s admission to the ICU, so that doctors can take preventative measures and diminish mortality risks and severe kidney damage.

Keywords: Acute kidney injury, Convolutional neural network, Hybrid deep learning, Patient record data, ResNet, Ultrasound kidney images, VGG

Procedia PDF Downloads 131
24239 Pupils´ Questions at School Attendance Beginning and Teachers´ Teaching Strategy

Authors: Marie Pavelková, Hana Lukášová

Abstract:

Pupils´ inquisitiveness at the beginning of their school attendance is reflected by characteristics of the questions they ask. Clearly most of the classroom communication sequences are initiated by the teacher. But the teaching process also includes questions initiated by pupils in the need to satisfy their need for knowledge. The purpose of our research is to present the results of our pre-research strategy of occurrence of pupil-initiated questions in math lessons at the lower elementary school level, and to reveal the extent to which they are influenced by the teacher´s teaching strategy. We used the research methods of direct and indirect observations of fifth year classes in primary school. We focused on questions asked by the pupils in their math lessons. Our research sample for the pre-research observation method was a collection of video recordings available online. We used them for analysing the nature of pupils´ questions identified there. On the basis of the analysis, we hereby present the results concerning the nature of pupils´ questions asked in math lessons on the lower elementary school level. The interpretation of the collected results will be the starting point for the selection of research strategies in the next research stages concerning pupils’ questions in the future.

Keywords: beginning of schooling, pre-research, questions of pupils, teaching strategy

Procedia PDF Downloads 370
24238 Qualitative Data Analysis for Health Care Services

Authors: Taner Ersoz, Filiz Ersoz

Abstract:

This study was designed enable application of multivariate technique in the interpretation of categorical data for measuring health care services satisfaction in Turkey. The data was collected from a total of 17726 respondents. The establishment of the sample group and collection of the data were carried out by a joint team from The Ministry of Health and Turkish Statistical Institute (Turk Stat) of Turkey. The multiple correspondence analysis (MCA) was used on the data of 2882 respondents who answered the questionnaire in full. The multiple correspondence analysis indicated that, in the evaluation of health services females, public employees, younger and more highly educated individuals were more concerned and complainant than males, private sector employees, older and less educated individuals. Overall 53 % of the respondents were pleased with the improvements in health care services in the past three years. This study demonstrates the public consciousness in health services and health care satisfaction in Turkey. It was found that most the respondents were pleased with the improvements in health care services over the past three years. Awareness of health service quality increases with education levels. Older individuals and males would appear to have lower expectancies in health services.

Keywords: multiple correspondence analysis, multivariate categorical data, health care services, health satisfaction survey

Procedia PDF Downloads 242
24237 Bridging Minds and Nature: Revolutionizing Elementary Environmental Education Through Artificial Intelligence

Authors: Hoora Beheshti Haradasht, Abooali Golzary

Abstract:

Environmental education plays a pivotal role in shaping the future stewards of our planet. Leveraging the power of artificial intelligence (AI) in this endeavor presents an innovative approach to captivate and educate elementary school children about environmental sustainability. This paper explores the application of AI technologies in designing interactive and personalized learning experiences that foster curiosity, critical thinking, and a deep connection to nature. By harnessing AI-driven tools, virtual simulations, and personalized content delivery, educators can create engaging platforms that empower children to comprehend complex environmental concepts while nurturing a lifelong commitment to protecting the Earth. With the pressing challenges of climate change and biodiversity loss, cultivating an environmentally conscious generation is imperative. Integrating AI in environmental education revolutionizes traditional teaching methods by tailoring content, adapting to individual learning styles, and immersing students in interactive scenarios. This paper delves into the potential of AI technologies to enhance engagement, comprehension, and pro-environmental behaviors among elementary school children. Modern AI technologies, including natural language processing, machine learning, and virtual reality, offer unique tools to craft immersive learning experiences. Adaptive platforms can analyze individual learning patterns and preferences, enabling real-time adjustments in content delivery. Virtual simulations, powered by AI, transport students into dynamic ecosystems, fostering experiential learning that goes beyond textbooks. AI-driven educational platforms provide tailored content, ensuring that environmental lessons resonate with each child's interests and cognitive level. By recognizing patterns in students' interactions, AI algorithms curate customized learning pathways, enhancing comprehension and knowledge retention. Utilizing AI, educators can develop virtual field trips and interactive nature explorations. Children can navigate virtual ecosystems, analyze real-time data, and make informed decisions, cultivating an understanding of the delicate balance between human actions and the environment. While AI offers promising educational opportunities, ethical concerns must be addressed. Safeguarding children's data privacy, ensuring content accuracy, and avoiding biases in AI algorithms are paramount to building a trustworthy learning environment. By merging AI with environmental education, educators can empower children not only with knowledge but also with the tools to become advocates for sustainable practices. As children engage in AI-enhanced learning, they develop a sense of agency and responsibility to address environmental challenges. The application of artificial intelligence in elementary environmental education presents a groundbreaking avenue to cultivate environmentally conscious citizens. By embracing AI-driven tools, educators can create transformative learning experiences that empower children to grasp intricate ecological concepts, forge an intimate connection with nature, and develop a strong commitment to safeguarding our planet for generations to come.

Keywords: artificial intelligence, environmental education, elementary children, personalized learning, sustainability

Procedia PDF Downloads 83
24236 SNP g.1007A>G within the Porcine DNAL4 Gene Affects Sperm Motility Traits

Authors: I. Wiedemann, A. R. Sharifi, A. Mählmeyer, C. Knorr

Abstract:

A requirement for sperm motility is a morphologically intact flagellum with a central axoneme. The flagellar beating is caused by the varying activation and inactivation of dynein molecules which are located in the axoneme. DNAL4 (dynein, axonemal, light chain 4) is regarded as a possible functional candidate gene encoding a small subunit of the dyneins. In the present study, 5814bp of the porcine DNAL4 (GenBank Acc. No. AM284696.1, 6097 bp, 4 exons) were comparatively sequenced using three boars with a high motility (>68%) and three with a low motility (<60%). Primers were self-designed except for those covering exons 1, 2 and 3. Prior to sequencing, the PCR products were purified. Sequencing was performed with an ABI PRISM 3100 Genetic Analyzer using the BigDyeTM Terminator v3.1 Cycle Sequencing Reaction Kit. Finally, 23 SNPs were described and genotyped for 82 AI boars representing the breeds Piétrain, German Large White and German Landrace. The genotypes were used to assess possible associations with standard spermatological parameters (ejaculate volume, density, and sperm motility (undiluted (Motud), 24h (Mot1) and 48h (Mot2) after semen collection) that were regularly recorded on the AI station. The analysis included a total of 8,833 spermatological data sets which ranged from 2 to 295 sets per boar in five years. Only SNP g.1007A>G had a significant effect. Finally, the gene substitution effect using the following statistical model was calculated: Yijk= µ+αi+βj+αβij+b1Sijk+b2Aijk+b3T ijk + b4Vijk+b5(α*A)ijk +b6(β*A)ijk+b7(A*T)ijk+Uijk+eijk where Yijk is the semen characteristics, µ is the general mean, α is the main effect of breed, β is the main effect of season, S is the effect of SNP (g.1007A > G), A is the effect of age at semen collection, V is the effect of diluter, αβ, α*A, β*A, A*T are interactions between the fixed effects, b1-b7 are regression coefficients between y and the respective covariate, U is the random effect of repeated observation on animal and e is the random error. The results from the single marker regression analysis revealed highly significant effects (p < 0.0001) of SNP g.1007A > G on Mot1 resp. on Mot2, resulting in a marked reduction by 11.4% resp. 15.4%. Furthermore a loss of Motud by 4.6% was detected (p < 0.0178). Considering the SNP g.1007A > G as a main factor (dominant-recessive model), significant differences between genotypes AA and AG as well as AA and GG for Mot1 and Mot2 exist. For Motud there was a significant difference between AA and GG.

Keywords: association, DNAL4, porcine, sperm traits

Procedia PDF Downloads 460
24235 Development of a Numerical Model to Predict Wear in Grouted Connections for Offshore Wind Turbine Generators

Authors: Paul Dallyn, Ashraf El-Hamalawi, Alessandro Palmeri, Bob Knight

Abstract:

In order to better understand the long term implications of the grout wear failure mode in large-diameter plain-sided grouted connections, a numerical model has been developed and calibrated that can take advantage of existing operational plant data to predict the wear accumulation for the actual load conditions experienced over a given period, thus limiting the need for expensive monitoring systems. This model has been derived and calibrated based on site structural condition monitoring (SCM) data and supervisory control and data acquisition systems (SCADA) data for two operational wind turbine generator substructures afflicted with this challenge, along with experimentally derived wear rates.

Keywords: grouted connection, numerical model, offshore structure, wear, wind energy

Procedia PDF Downloads 453
24234 Evaluation of Hand Arm Vibrations of Low Profile Dump Truck Operators in an Underground Metal Mine According to Job Component Analysis of a Work Cycle

Authors: Sridhar S, Govinda Raj Mandela, Aruna Mangalpady

Abstract:

In the present day scenario, Indian underground mines are moving towards full scale mechanisation for improvement of production and productivity levels. These mines are employing a wide variety of earth moving machines for the transportation of ore and overburden (waste). Low Profile Dump Trucks (LPDTs) have proven more advantageous towards improvement of production levels in underground mines through quick transportation. During the operation of LPDT, different kinds of vibrations are generated which can affect the health condition of the operator. Keeping this in view, the present research work focuses on measurement and evaluation of Hand Arm Vibrations (HAVs) from the steering system of LPDTs. The study also aims to evaluate the HAVs of different job components of a work cycle in operating LPDTs. The HAVs were measured and evaluated according to ISO 5349-2: 2001 standards, and the daily vibration exposures A(8) were calculated. The evaluated A(8) results show that LPDTs of 60 and 50 tons capacity have vibration levels more than that of the Exposure Action Value (EAV) of 2.5 m/s2 in every job component of the work cycle. Further, the results show that the vibration levels were more during empty haulage especially during descending journey when compared to other job components in all LPDTs considered for the study.

Keywords: low profile dump trucks, hand arm vibrations, exposure action value, underground mines

Procedia PDF Downloads 131
24233 Multimodal Deep Learning for Human Activity Recognition

Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja

Abstract:

In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.

Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness

Procedia PDF Downloads 101
24232 The Influence of a Vertical Rotation on the Fluid Dynamics of Compositional Plumes

Authors: Khaled Suleiman Mohammed Al-Mashrafi

Abstract:

A compositional plume is a fluid flow in a directional channel of finite width in another fluid of different material composition. The study of the dynamics of compositional plumes plays an essential role in many real-life applications like industrial applications (e.g., iron casting), environmental applications (e.g., salt fingers and sea ice), and geophysical applications (e.g., solidification at the inner core boundary (ICB) of the Earth, and mantle plumes). The dynamics of compositional plumes have been investigated experimentally and theoretically. The experimental works observed that the plume flow seems to be stable, although some experiments showed that it can be unstable. At the same time, the theoretical investigations showed that the plume flow is unstable. This is found to be true even if the plume is subject to rotation or/and in the presence of a magnetic field and even if another plume of different composition is also present. It is noticeable that all the theoretical studies on the dynamics of compositional plumes are conducted in unbounded domains. The present work is to investigate theoretically the influence of vertical walls (boundaries) on the dynamics of compositional plumes in the absence/presence of a rotation field. The mathematical model of the dynamics of compositional plumes used the equations of continuity, motion, heat, concentration of light material, and state. It is found that the presence of boundaries has a strong influence on the basic state solution as well as the stability of the plume, particularly when the plume is close to the boundary, but the compositional plume remains unstable.

Keywords: compositional plumes, stability, bounded domain, vertical boundaries

Procedia PDF Downloads 31
24231 From Vertigo to Verticality: An Example of Phenomenological Design in Architecture

Authors: E. Osorio Schmied

Abstract:

Architects commonly attempt a depiction of organic forms when their works are inspired by nature, regardless of the building site. Nevertheless it is also possible to try matching structures with natural scenery, by applying a phenomenological approach in terms of spatial operations, regarding perceptions from nature through architectural aspects such as protection, views, and orientation. This method acknowledges a relationship between place and space, where intentions towards tangible facts then become design statements. Although spaces resulting from such a process may present an effective response to the environment, they can also offer further outcomes beyond the realm of form. The hypothesis is that, in addition to recognising a bond between architecture and nature, it is also plausible to associate such perceptions with the inner ambient of buildings, by analysing features such as daylight. The case study of a single-family house in a rainforest near Valdivia, Chilean Patagonia is presented, with the intention of addressing the above notions through a discussion of the actual effects of inhabiting a place by way of a series of insights, including a revision of diagrams and photographs that assist in understanding the implications of this design practice. In addition, figures based on post-occupancy behaviour and daylighting performance relate both architectural and environmental issues to a decision-making process motivated by the observation of nature.

Keywords: architecture, design statements, nature, perception

Procedia PDF Downloads 342
24230 Impact of Foreign Trade on Economic Growth: A Panel Data Analysis for OECD Countries

Authors: Burcu Guvenek, Duygu Baysal Kurt

Abstract:

The impact of foreign trade on economic growth has been discussed since the Classical Economists. Today, foreign trade has become more important for the country's economy with the increasing globalization. When it comes to foreign trade, policies which may vary from country to country and from time to time as protectionism or free trade are implemented. In general, the positive effect of foreign trade on economic growth is alleged. However, as studies supporting this general acceptance take place in the economics literature, there are also studies in the opposite direction. In this paper, the impact of foreign trade on economic growth will be investigated with the help of panel data analysis. For this research, 24 OECD countries’ GDP and foreign trade data, including the period of 1990 and 2010, will be used.

Keywords: foreign trade, economic growth, OECD countries, panel data analysis

Procedia PDF Downloads 386
24229 Broad Survey of Fine Root Traits to Investigate the Root Economic Spectrum Hypothesis and Plant-Fire Dynamics Worldwide

Authors: Jacob Lewis Watts, Adam F. A. Pellegrini

Abstract:

Prairies, grasslands, and forests cover an expansive portion of the world’s surface and contribute significantly to Earth’s carbon cycle. The largest driver of carbon dynamics in some of these ecosystems is fire. As the global climate changes, most fire-dominated ecosystems will experience increased fire frequency and intensity, leading to increased carbon flux into the atmosphere and soil nutrient depletion. The plant communities associated with different fire regimes are important for reassimilation of carbon lost during fire and soil recovery. More frequent fires promote conservative plant functional traits aboveground; however, belowground fine root traits are poorly explored and arguably more important drivers of ecosystem function as the primary interface between the soil and plant. The root economic spectrum (RES) hypothesis describes single-dimensional covariation between important fine-root traits along a range of plant strategies from acquisitive to conservative – parallel to the well-established leaf economic spectrum (LES). However, because of the paucity of root trait data, the complex nature of the rhizosphere, and the phylogenetic conservatism of root traits, it is unknown whether the RES hypothesis accurately describes plant nutrient and water acquisition strategies. This project utilizesplants grown in common garden conditions in the Cambridge University Botanic Garden and a meta-analysis of long-term fire manipulation experiments to examine the belowground physiological traits of fire-adapted and non-fire-adapted herbaceous species to 1) test the RES hypothesis and 2) describe the effect of fire regimes on fine root functional traits – which in turn affect carbon and nutrient cycling. A suite of morphological, chemical, and biological root traits (e.g. root diameter, specific root length, percent N, percent mycorrhizal colonization, etc.) of 50 herbaceous species were measuredand tested for phylogenetic conservatism and RES dimensionality. Fire-adapted and non-fire-adapted plants traits were compared using phylogenetic PCA techniques. Preliminary evidence suggests that phylogenetic conservatism may weaken the single-dimensionality of the RES, suggesting that there may not be a single way that plants optimize nutrient and water acquisition and storage in the complex rhizosphere; additionally, fire-adapted species are expected to be more conservative than non-fire-adapted species, which may be indicative of slower carbon cycling with increasing fire frequency and intensity.

Keywords: climate change, fire regimes, root economic spectrum, fine roots

Procedia PDF Downloads 123
24228 Learning to Play in South Africa

Authors: Thelma Mort

Abstract:

Currently, in South African schools, under the fast-paced and content-heavy CAPS curriculum, the notion of play is being lost in the foundation phase. Even in Grade R, aimed at improving the quality of education, there is a focus on mathematical literacy, language, and life skills (DoE, 2001). This is largely due to the dichotomizing of play and learning. And although the play is meant to be the primary means of achieving these skills, it somehow loses its playfulness in the face of early academic pressure. Student teachers similarly have not been trained to use play in the early years of schooling. This action research study shares findings from the “Learn to Play” intervention in teacher training at one university in which student teachers were given substantial training in types of play, the ways they could use and promote play, and the changing roles of teachers in play-based learning. Using observation focus group interviews, reflections, student teacher engagement in learning communities, and Theories of Change, the study measures the changes made by the intervention in student teachers’ approaches and attitudes to play in the classroom. Key findings were that the student teachers learned new skills, had better relationships with pupils, and became more confident in their foundation phase settings.

Keywords: action research, foundation phase, South Africa, student teacher training

Procedia PDF Downloads 179
24227 Data-Driven Decision Making: A Reference Model for Organizational, Educational and Competency-Based Learning Systems

Authors: Emanuel Koseos

Abstract:

Data-Driven Decision Making (DDDM) refers to making decisions that are based on historical data in order to inform practice, develop strategies and implement policies that benefit organizational settings. In educational technology, DDDM facilitates the implementation of differential educational learning approaches such as Educational Data Mining (EDM) and Competency-Based Education (CBE), which commonly target university classrooms. There is a current need for DDDM models applied to middle and secondary schools from a concern for assessing the needs, progress and performance of students and educators with respect to regional standards, policies and evolution of curriculums. To address these concerns, we propose a DDDM reference model developed using educational key process initiatives as inputs to a machine learning framework implemented with statistical software (SAS, R) to provide a best-practices, complex-free and automated approach for educators at their regional level. We assessed the efficiency of the model over a six-year period using data from 45 schools and grades K-12 in the Langley, BC, Canada regional school district. We concluded that the model has wider appeal, such as business learning systems.

Keywords: competency-based learning, data-driven decision making, machine learning, secondary schools

Procedia PDF Downloads 174
24226 Data about Loggerhead Sea Turtle (Caretta caretta) and Green Turtle (Chelonia mydas) in Vlora Bay, Albania

Authors: Enerit Sacdanaku, Idriz Haxhiu

Abstract:

This study was conducted in the area of Vlora Bay, Albania. Data about Sea Turtles Caretta caretta and Chelonia mydas, belonging to two periods of time (1984–1991; 2008–2014) are given. All data gathered were analyzed using recent methodologies. For all turtles captured (as by catch), the Curve Carapace Length (CCL) and Curved Carapace Width (CCW) were measured. These data were statistically analyzed, where the mean was 67.11 cm for CCL and 57.57 cm for CCW of all individuals studied (n=13). All untagged individuals of marine turtles were tagged using metallic tags (Stockbrand’s titanium tag) with an Albanian address. Sex was determined and resulted that 45.4% of individuals were females, 27.3% males and 27.3% juveniles. All turtles were studied for the presence of the epibionts. The area of Vlora Bay is used from marine turtles (Caretta caretta) as a migratory corridor to pass from the Mediterranean to the northern part of the Adriatic Sea.

Keywords: Caretta caretta, Chelonia mydas, CCL, CCW, tagging, Vlora Bay

Procedia PDF Downloads 179
24225 The Impact of Multiple Stressors on the Functioning and Resilience of Model Freshwater Ecosystems

Authors: Sajida Saqira, Anthony Chariton, Grant C. Hose

Abstract:

The Anthropocene has seen dramatic environmental changes which are affecting every ecosystem on earth. Freshwater ecosystems are particularly vulnerable as they are at risk from the many activities that go on and contaminants that are released in catchments. They are thus subject to many stressors simultaneously. Freshwater ecosystems respond to stress at all levels of biological organization, from subcellular to community structure and ecosystem functioning. The aim of this study was to examine the resistance and resilience of freshwater ecosystems to multiple stressors. Here we explored the individual and combined effects of copper as a chemical stressor and common carp (Cyprinus carpio) as a biological stressor on the health, functioning, and recovery of outdoor experimental pond ecosystems in a long-term, controlled, factorial experiment. Primary productivity, decomposition, and water and sediment quality were analysed at regular intervals for one year to understand the health and functioning of the ecosystems. Changes to benthic biota were quantified using DNA-based and traditional microscopy-based counts of invertebrates. Carp were added to the ponds to copper contaminated sediments (with controls) to explore the combined effects of copper and carp and removed after six months to explore the resilience and recovery of the system. The outcomes of this study will advance our understanding of the impacts of multiple stressors on freshwater ecosystems, and the resilience of these systems to copper and C. carpio, which are both globally significant stressors in freshwater systems.

Keywords: carp, copper, ecosystem health, freshwater ecosystem, multiple stressors

Procedia PDF Downloads 122
24224 Computational Modeling of Load Limits of Carbon Fibre Composite Laminates Subjected to Low-Velocity Impact Utilizing Convolution-Based Fast Fourier Data Filtering Algorithms

Authors: Farhat Imtiaz, Umar Farooq

Abstract:

In this work, we developed a computational model to predict ply level failure in impacted composite laminates. Data obtained from physical testing from flat and round nose impacts of 8-, 16-, 24-ply laminates were considered. Routine inspections of the tested laminates were carried out to approximate ply by ply inflicted damage incurred. Plots consisting of load–time, load–deflection, and energy–time history were drawn to approximate the inflicted damages. Impact test generated unwanted data logged due to restrictions on testing and logging systems were also filtered. Conventional filters (built-in, statistical, and numerical) reliably predicted load thresholds for relatively thin laminates such as eight and sixteen ply panels. However, for relatively thick laminates such as twenty-four ply laminates impacted by flat nose impact generated clipped data which can just be de-noised using oscillatory algorithms. The literature search reveals that modern oscillatory data filtering and extrapolation algorithms have scarcely been utilized. This investigation reports applications of filtering and extrapolation of the clipped data utilising fast Fourier Convolution algorithm to predict load thresholds. Some of the results were related to the impact-induced damage areas identified with Ultrasonic C-scans and found to be in acceptable agreement. Based on consistent findings, utilizing of modern data filtering and extrapolation algorithms to data logged by the existing machines has efficiently enhanced data interpretations without resorting to extra resources. The algorithms could be useful for impact-induced damage approximations of similar cases.

Keywords: fibre reinforced laminates, fast Fourier algorithms, mechanical testing, data filtering and extrapolation

Procedia PDF Downloads 135
24223 The Impact Of Environmental Management System ISO 14001 Adoption on Firm Performance

Authors: Raymond Treacy, Paul Humphreys, Ronan McIvor, Trevor Cadden, Alan McKittrick

Abstract:

This study employed event study methodology to examine the role of institutions, resources and dynamic capabilities in the relationship between the Environmental Management System ISO 14001 adoption and firm performance. Utilising financial data from 140 ISO 14001 certified firms and 320 non-certified firms, the results of the study suggested that the UK and Irish manufacturers were not implementing ISO 14001 solely to gain legitimacy. In contrast, the results demonstrated that firms were fully integrating the ISO 14001 standard within their operations as certified firms were able to improve both financial and operating performance when compared to non-certified firms. However, while there were significant and long lasting improvements for employee productivity, manufacturing cost efficiency, return on assets and sales turnover, the sample firms operating cycle and fixed asset efficiency displayed evidence of diminishing returns in the long-run, underlying the observation that no operating advantage based on incremental improvements can be everlasting. Hence, there is an argument for investing in dynamic capabilities which help renew and refresh the resource base and help the firm adapt to changing environments. Indeed, the results of the regression analysis suggest that dynamic capabilities for innovation acted as a moderator in the relationship between ISO 14001 certification and firm performance. This, in turn, will have a significant and symbiotic influence on sustainability practices within the participating organisations. The study not only provides new and original insights, but demonstrates pragmatically how firms can take advantage of environmental management systems as a moderator to significantly enhance firm performance. However, while it was shown that firm innovation aided both short term and long term ROA performance, adaptive market capabilities only aided firms in the short-term at the marketing strategy deployment stage. Finally, the results have important implications for firms operating in an economic recession as the results suggest that firms should scale back investment in R&D while operating in an economic downturn. Conversely, under normal trading conditions, consistent and long term investments in R&D was found to moderate the relationship between ISO 14001 certification and firm performance. Hence, the results of the study have important implications for academics and management alike.

Keywords: supply chain management, environmental management systems, quality management, sustainability, firm performance

Procedia PDF Downloads 308
24222 Additive Carbon Dots Nanocrystals for Enhancement of the Efficiency of Dye-Sensitized Solar Cell in Energy Applications Technology

Authors: Getachew Kuma Watiro

Abstract:

The need for solar energy is constantly increasing and it is widely available on the earth’s surface. Photovoltaic technology is one of the most capable of all viable energy technology and is seen as a promising approach to the control era as it is readily available and has zero carbon emissions. Inexpensive and versatile solar cells have achieved the conversion efficiency and long life of dye-sensitized solar cells, improving the conversion efficiency from the sun to electricity. DSSCs have received a lot of attention for Various potential commercial uses, such as mobile devices and portable electronic devices, as well as integrated solar cell modules. The systematic reviews were used to show the critical impact of additive C-dots in the Dye-Sensitized solar cell for energy application technology. This research focuses on the following methods to synthesize nanoparticles such as facile, polyol, calcination, and hydrothermal technique. In addition to these, there are additives C-dots by the Hydrothermal method. This study deals with the progressive development of DSSC in photovoltaic technology. The applications of single and heterojunction structure technology devices were used (ZnO, NiO, SnO2, and NiO/ZnO/N719) and applied some additives C-dots (ZnO/C-dots /N719, NiO/C-dots /N719, SnO2 /C-dots /N719 and NiO/ZnO/C-dots/N719) and the effects of C-dots were reviewed. More than all, the technology of DSSC with C-dots enhances efficiency. Finally, recommendations have been made for future research on the application of DSSC with the use of these additives.

Keywords: dye-sensitized solar cells, heterojunction’s structure, carbon dot, conversion efficiency

Procedia PDF Downloads 119
24221 Design of Incident Information System in IoT Virtualization Platform

Authors: Amon Olimov, Umarov Jamshid, Dae-Ho Kim, Chol-U Lee, Ryum-Duck Oh

Abstract:

This paper proposes IoT virtualization platform based incident information system. IoT information based environment is the platform that was developed for the purpose of collecting a variety of data by managing regionally scattered IoT devices easily and conveniently in addition to analyzing data collected from roads. Moreover, this paper configured the platform for the purpose of providing incident information based on sensed data. It also provides the same input/output interface as UNIX and Linux by means of matching IoT devices with the directory of file system and also the files. In addition, it has a variety of approaches as to the devices. Thus, it can be applied to not only incident information but also other platforms. This paper proposes the incident information system that identifies and provides various data in real time as to urgent matters on roads based on the existing USN/M2M and IoT visualization platform.

Keywords: incident information system, IoT, virtualization platform, USN, M2M

Procedia PDF Downloads 351
24220 Social Network Analysis as a Research and Pedagogy Tool in Problem-Focused Undergraduate Social Innovation Courses

Authors: Sean McCarthy, Patrice M. Ludwig, Will Watson

Abstract:

This exploratory case study explores the deployment of Social Network Analysis (SNA) in mapping community assets in an interdisciplinary, undergraduate, team-taught course focused on income insecure populations in a rural area in the US. Specifically, it analyzes how students were taught to collect data on community assets and to visualize the connections between those assets using Kumu, an SNA data visualization tool. Further, the case study shows how social network data was also collected about student teams via their written communications in Slack, an enterprise messaging tool, which enabled instructors to manage and guide student research activity throughout the semester. The discussion presents how SNA methods can simultaneously inform both community-based research and social innovation pedagogy through the use of data visualization and collaboration-focused communication technologies.

Keywords: social innovation, social network analysis, pedagogy, problem-based learning, data visualization, information communication technologies

Procedia PDF Downloads 147
24219 An Investigation of Community Radio Broadcasting in Phutthamonthon District, Nakhon Pathom, Thailand

Authors: Anchana Sooksomchitra

Abstract:

This study aims to explore and compare the current condition of community radio stations in Phutthamonthon district, Nakhon Pathom province, Thailand, as well as the challenges they are facing. Qualitative research tools including in-depth interviews; documentary analysis; focus group interviews; and observation, are used to examine the content, programming, and management structure of three community radio stations currently in operation within the district. Research findings indicate that the management and operational approaches adopted by the two non-profit stations included in the study, Salaya Pattana and Voice of Dhamma, are more structured and effective than that of the for-profit Tune Radio. Salaya Pattana – backed by the Faculty of Engineering, Mahidol University, and the charity-funded Voice of Dhamma, are comparatively free from political and commercial influence, and able to provide more relevant and consistent community-oriented content to meet the real demand of the audience. Tune Radio, on the other hand, has to rely solely on financial support from political factions and business groups, which heavily influence its content.

Keywords: radio broadcasting, programming, management, community radio, Thailand

Procedia PDF Downloads 400
24218 Mobile Learning: Toward Better Understanding of Compression Techniques

Authors: Farouk Lawan Gambo

Abstract:

Data compression shrinks files into fewer bits then their original presentation. It has more advantage on internet because the smaller a file, the faster it can be transferred but learning most of the concepts in data compression are abstract in nature therefore making them difficult to digest by some students (Engineers in particular). To determine the best approach toward learning data compression technique, this paper first study the learning preference of engineering students who tend to have strong active, sensing, visual and sequential learning preferences, the paper also study the advantage that mobility of learning have experienced; Learning at the point of interest, efficiency, connection, and many more. A survey is carried out with some reasonable number of students, through random sampling to see whether considering the learning preference and advantages in mobility of learning will give a promising improvement over the traditional way of learning. Evidence from data analysis using Ms-Excel as a point of concern for error-free findings shows that there is significance different in the students after using learning content provided on smart phone, also the result of the findings presented in, bar charts and pie charts interpret that mobile learning has to be promising feature of learning.

Keywords: data analysis, compression techniques, learning content, traditional learning approach

Procedia PDF Downloads 347
24217 Impacts of Commercial Honeybees on Native Butterflies in High-Elevation Meadows in Utah, USA

Authors: Jacqueline Kunzelman, Val Anderson, Robert Johnson, Nicholas Anderson, Rebecca Bates

Abstract:

In an effort to protect honeybees from colony collapse disorder, beekeepers are filing for government permits to use natural lands as summer pasture for honeybees under the multiple-use management regime in the United States. Utilizing natural landscapes in high mountain ranges may help strengthen honeybee colonies, as this natural setting is generally void of chemical pollutants and pesticides that are found in agricultural and urban settings. However, the introduction of a competitive species could greatly impact the native species occupying these natural landscapes. While honeybees and butterflies have different life histories, behavior, and foraging strategies, they compete for the same nectar resources. Few, if any, studies have focused on the potential population effects of commercial honeybees on native butterfly abundance and diversity. This study attempts to observe this impact using a paired before-after control-impact (BACI) design. Over the course of two years, malaise trap samples were collected every week during the months of the flowering season in two similar areas separated by 11 kilometers. Each area contained nine malaise trap sites for replication. In the first year, samples were taken to analyze and establish trends within the pollinating communities. In the second year, honeybees were introduced to only one of the two areas, and a change in trends between the two areas was assessed. Contrary to the original hypothesis, the resulting observation was an overall significant increase in the mean butterfly abundance in the impact areas after honeybees were introduced, while control areas remained relatively stable. This overall increase in abundance over the season can be attributed to an increase in butterflies during the first and second periods of the data collection when populations were near their peak. Several potential theories are 1) Honeybees are deterring a natural predator/competitor of butterflies that previously limited population growth. 2) Honeybees are consuming resources regularly used by butterflies, which may extend the foraging time and consequent capture rates of butterflies. 3) Environmental factors such as number of rainy days were inconsistent between control and impact areas, biasing capture rates. This ongoing research will help determine the suitability of high mountain ranges for the summer pasturing of honeybees and the population impacts on many different pollinators.

Keywords: butterfly, competition, honeybee, pollinator

Procedia PDF Downloads 146
24216 Human Immunodeficiency Virus (HIV) Test Predictive Modeling and Identify Determinants of HIV Testing for People with Age above Fourteen Years in Ethiopia Using Data Mining Techniques: EDHS 2011

Authors: S. Abera, T. Gidey, W. Terefe

Abstract:

Introduction: Testing for HIV is the key entry point to HIV prevention, treatment, and care and support services. Hence, predictive data mining techniques can greatly benefit to analyze and discover new patterns from huge datasets like that of EDHS 2011 data. Objectives: The objective of this study is to build a predictive modeling for HIV testing and identify determinants of HIV testing for adults with age above fourteen years using data mining techniques. Methods: Cross-Industry Standard Process for Data Mining (CRISP-DM) was used to predict the model for HIV testing and explore association rules between HIV testing and the selected attributes among adult Ethiopians. Decision tree, Naïve-Bayes, logistic regression and artificial neural networks of data mining techniques were used to build the predictive models. Results: The target dataset contained 30,625 study participants; of which 16, 515 (53.9%) were women. Nearly two-fifth; 17,719 (58%), have never been tested for HIV while the rest 12,906 (42%) had been tested. Ethiopians with higher wealth index, higher educational level, belonging 20 to 29 years old, having no stigmatizing attitude towards HIV positive person, urban residents, having HIV related knowledge, information about family planning on mass media and knowing a place where to get testing for HIV showed an increased patterns with respect to HIV testing. Conclusion and Recommendation: Public health interventions should consider the identified determinants to promote people to get testing for HIV.

Keywords: data mining, HIV, testing, ethiopia

Procedia PDF Downloads 496