Search results for: health system services
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26645

Search results for: health system services

95 Drug Reaction with Eosinophilia and Systemic Symptoms (Dress) Syndrome Presenting as Multi-Organ Failure

Authors: Keshari Shrestha, Philip Vatterott

Abstract:

Introduction: Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome is a rare and potentially fatal drug-related syndrome. DRESS classically presents with a diffuse maculopapular rash, fevers, and eosinophilia more than three weeks after drug exposure. DRESS can present with multi-organ involvement, with liver damage being the most common and severe. Pulmonary involvement is a less common manifestation and is associated with poor clinical outcomes. Chest imaging is often nonspecific, and symptoms can range from mild cough to acute respiratory distress syndrome (ARDS) . This is a case of a 49-year-old female with a history of recent clostridium difficile colitis status post treatment with oral vancomycin who presented with rash, acute liver and kidney failure, as well as diffuse nodular alveolar lung opacities concerning for DRESS syndrome with multi-organ involvement. Clinical Course: This patient initially presented to an outside hospital with clostridium difficile colitis, acute liver injury, and acute kidney injury. She developed a desquamating maculopapular rash in the setting of recent oral vancomycin, meloxicam, and furosemide initiation. She was hospitalized on two additional occasions with worsening altered mental status, liver injury, and acute kidney injury and was initiated on intermittent hemodialysis. Notably, she was found to have systemic eosinophilia (4100 cells/microliter) several weeks prior. She was transferred to this institution for further management where she was found to have encephalopathy, jaundice, lower extremity edema, and diffuse bilateral rhonchorous breath sounds on pulmonary examination. The patient was started on methylprednisolone for suspected DRESS syndrome. She underwent an evaluation for alternative causes of her organ failure. Her workup included a negative infectious, autoimmune, metabolic, toxic, and malignant work-up. Abdominal computed tomography (CT) and ultrasound were remarkable for evidence of hepatic steatosis and possible cirrhotic morphology. Additionally, a chest CT demonstrated diffuse and symmetric nodular alveolar lung opacities with peripheral sparing not consistent with acute respiratory distress syndrome or edema. Ultimately, her condition continued to decline, and she required intubation on several occasions. On hospital day 25 she succumbed to distributive shock in the setting of probable sepsis and multi-organ failure. Discussion: DRESS syndrome occurs in 1 in 1,000 to 10,000 patients with a mortality rate of around 10%. Anti-convulsant, anti-bacterial, anti-viral, and sulfonamide drugs are the most common drugs implicated in the development of DRESS syndrome; however, the list of offending agents is extensive . The diagnosis of DRESS syndrome is made after excluding other causes of disease such as infectious and autoimmune etiologies. The RegiSCAR scoring system is used to diagnose DRESS syndrome with 2-3 points indicating possible disease, 4-5 probable disease, and >5 definite disease. This patient scored a 7 on the RegiSCAR scale for eosinophilia, rash, organ involvement, and exclusion of other causes (infectious and autoimmune). While the pharmacologic trigger in this case is unknown, it is speculated to be caused by vancomycin, meloxicam, or furosemide due to the favorable timeline of initiation. Despite aggressive treatment, DRESS syndrome can often be fatal. Because of this, early diagnosis and treatment of patients with suspected DRESS syndrome is imperative.

Keywords: drug reaction with eosinophilia and systemic symptoms, multi-organ failure, pulmonary involvement, renal failure

Procedia PDF Downloads 166
94 Simulation and Analysis of Mems-Based Flexible Capacitive Pressure Sensors with COMSOL

Authors: Ding Liangxiao

Abstract:

The technological advancements in Micro-Electro-Mechanical Systems (MEMS) have significantly contributed to the development of new, flexible capacitive pressure sensors,which are pivotal in transforming wearable and medical device technologies. This study employs the sophisticated simulation tools available in COMSOL Multiphysics® to develop and analyze a MEMS-based sensor with a tri-layered design. This sensor comprises top and bottom electrodes made from gold (Au), noted for their excellent conductivity, a middle dielectric layer made from a composite of Silver Nanowires (AgNWs) embedded in Thermoplastic Polyurethane (TPU), and a flexible, durable substrate of Polydimethylsiloxane (PDMS). This research was directed towards understanding how changes in the physical characteristics of the AgNWs/TPU dielectric layer—specifically, its thickness and surface area—impact the sensor's operational efficacy. We assessed several key electrical properties: capacitance, electric potential, and membrane displacement under varied pressure conditions. These investigations are crucial for enhancing the sensor's sensitivity and ensuring its adaptability across diverse applications, including health monitoring systems and dynamic user interface technologies. To ensure the reliability of our simulations, we applied the Effective Medium Theory to calculate the dielectric constant of the AgNWs/TPU composite accurately. This approach is essential for predicting how the composite material will perform under different environmental and operational stresses, thus facilitating the optimization of the sensor design for enhanced performance and longevity. Moreover, we explored the potential benefits of innovative three-dimensional structures for the dielectric layer compared to traditional flat designs. Our hypothesis was that 3D configurations might improve the stress distribution and optimize the electrical field interactions within the sensor, thereby boosting its sensitivity and accuracy. Our simulation protocol includes comprehensive performance testing under simulated environmental conditions, such as temperature fluctuations and mechanical pressures, which mirror the actual operational conditions. These tests are crucial for assessing the sensor's robustness and its ability to function reliably over extended periods, ensuring high reliability and accuracy in complex real-world environments. In our current research, although a full dynamic simulation analysis of the three-dimensional structures has not yet been conducted, preliminary explorations through three-dimensional modeling have indicated the potential for mechanical and electrical performance improvements over traditional planar designs. These initial observations emphasize the potential advantages and importance of incorporating advanced three-dimensional modeling techniques in the development of Micro-Electro-Mechanical Systems (MEMS)sensors, offering new directions for the design and functional optimization of future sensors. Overall, this study not only highlights the powerful capabilities of COMSOL Multiphysics® for modeling sophisticated electronic devices but also underscores the potential of innovative MEMS technology in advancing the development of more effective, reliable, and adaptable sensor solutions for a broad spectrum of technological applications.

Keywords: MEMS, flexible sensors, COMSOL Multiphysics, AgNWs/TPU, PDMS, 3D modeling, sensor durability

Procedia PDF Downloads 36
93 Sustainable and Responsible Mining - Lundin Mining’s Subsidiary in Portugal, Sociedade Mineira de Neves-Corvo Case

Authors: Jose Daniel Braga Alves, Joaquim Gois, Alexandre Leite

Abstract:

This abstract presents the responsible and sustainable mining case study of a Portuguese mine operation, highlighting how mine exploitation can sustainably exist in balance with the environment, aligned with all stakeholders. The mining operation is remotely located in a United Nations (UN) biodiversity reserve, away from major industrial centers or logistical ports, and presents an interesting investigation to assess the balanced mine operation in alignment with all key stakeholders, which presents unique opportunities as well as challenges. Based on the sustainable mining framework, it is intended to detail examples of best practices from Sociedade Mineira de Neves-Corvo (SOMINCOR), demonstrating social acceptance by the local community, health, and safety at work, reduction of environmental impacts and management of mining waste, which directly influence the acceptance and recognition of a sustainable operation. The case study aims to present the SOMINCOR approach to sustainable mining, focusing on social responsibility, considering materials provided by Lundin Mining Corporation (LMC) and SOMINCOR and the socially responsible approach of the mining operations., referencing related international guidelines, UN Sustainable Development Goals. The researchers reviewed LMC's annual Sustainability Reports (2019, 2020 and 2021) and updated information regarding material topics of the most significant interest to internal and external stakeholders. These material topics formed the basis of the corporation-wide sustainability strategy. LMC's Responsible Mining Policy (RMP) was reviewed, focusing on the commitment that guides the approach to responsible operation and management of the Company's business. Social performance, compliance, environmental management, governance, human rights, and economic contribution are principles of the RMP. The Human Rights Risk Impact Assessment (HRRIA), based on frameworks including UN Guiding Principles (UNGP), Voluntary Principles on Security and Human Rights, and a community engagement program implemented (SLO index), was part of this research. The program consists of ongoing surveys and perceptions studies using behavioural science insights, data from which was not available within the timeframe of completing this research. LMC stakeholder engagement standards and grievance mechanisms were also reviewed. Stakeholder engagement and the community's perception are key to this operation to ensure social license to operate (SLO). Preliminary surveys with local communities provided input data for the local development strategy. After the implementation of several initiatives, subsequent surveys were performed to assess acceptance and trust from the local communities and changes to the SLO index. SOMINCOR's operation contributes to 12 out of 17 sustainable development goals. From the assessed and available data, local communities and social engagement are priorities to SOMINCOR. Experience to date shows that the continual engagement with local communities and the grievance mechanisms in place are respected and followed for all concerns presented by any stakeholder. It can be concluded that this underground mine in Portugal complies with applicable regulations and goes beyond them with regard to sustainable development and engagement with key stakeholders.

Keywords: sustainable mining, development goals, portuguese mining, zinc copper

Procedia PDF Downloads 73
92 Integrating Radar Sensors with an Autonomous Vehicle Simulator for an Enhanced Smart Parking Management System

Authors: Mohamed Gazzeh, Bradley Null, Fethi Tlili, Hichem Besbes

Abstract:

The burgeoning global ownership of personal vehicles has posed a significant strain on urban infrastructure, notably parking facilities, leading to traffic congestion and environmental concerns. Effective parking management systems (PMS) are indispensable for optimizing urban traffic flow and reducing emissions. The most commonly deployed systems nowadays rely on computer vision technology. This paper explores the integration of radar sensors and simulation in the context of smart parking management. We concentrate on radar sensors due to their versatility and utility in automotive applications, which extends to PMS. Additionally, radar sensors play a crucial role in driver assistance systems and autonomous vehicle development. However, the resource-intensive nature of radar data collection for algorithm development and testing necessitates innovative solutions. Simulation, particularly the monoDrive simulator, an internal development tool used by NI the Test and Measurement division of Emerson, offers a practical means to overcome this challenge. The primary objectives of this study encompass simulating radar sensors to generate a substantial dataset for algorithm development, testing, and, critically, assessing the transferability of models between simulated and real radar data. We focus on occupancy detection in parking as a practical use case, categorizing each parking space as vacant or occupied. The simulation approach using monoDrive enables algorithm validation and reliability assessment for virtual radar sensors. It meticulously designed various parking scenarios, involving manual measurements of parking spot coordinates, orientations, and the utilization of TI AWR1843 radar. To create a diverse dataset, we generated 4950 scenarios, comprising a total of 455,400 parking spots. This extensive dataset encompasses radar configuration details, ground truth occupancy information, radar detections, and associated object attributes such as range, azimuth, elevation, radar cross-section, and velocity data. The paper also addresses the intricacies and challenges of real-world radar data collection, highlighting the advantages of simulation in producing radar data for parking lot applications. We developed classification models based on Support Vector Machines (SVM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), exclusively trained and evaluated on simulated data. Subsequently, we applied these models to real-world data, comparing their performance against the monoDrive dataset. The study demonstrates the feasibility of transferring models from a simulated environment to real-world applications, achieving an impressive accuracy score of 92% using only one radar sensor. This finding underscores the potential of radar sensors and simulation in the development of smart parking management systems, offering significant benefits for improving urban mobility and reducing environmental impact. The integration of radar sensors and simulation represents a promising avenue for enhancing smart parking management systems, addressing the challenges posed by the exponential growth in personal vehicle ownership. This research contributes valuable insights into the practicality of using simulated radar data in real-world applications and underscores the role of radar technology in advancing urban sustainability.

Keywords: autonomous vehicle simulator, FMCW radar sensors, occupancy detection, smart parking management, transferability of models

Procedia PDF Downloads 76
91 Potential of Hyperion (EO-1) Hyperspectral Remote Sensing for Detection and Mapping Mine-Iron Oxide Pollution

Authors: Abderrazak Bannari

Abstract:

Acid Mine Drainage (AMD) from mine wastes and contaminations of soils and water with metals are considered as a major environmental problem in mining areas. It is produced by interactions of water, air, and sulphidic mine wastes. This environment problem results from a series of chemical and biochemical oxidation reactions of sulfide minerals e.g. pyrite and pyrrhotite. These reactions lead to acidity as well as the dissolution of toxic and heavy metals (Fe, Mn, Cu, etc.) from tailings waste rock piles, and open pits. Soil and aquatic ecosystems could be contaminated and, consequently, human health and wildlife will be affected. Furthermore, secondary minerals, typically formed during weathering of mine waste storage areas when the concentration of soluble constituents exceeds the corresponding solubility product, are also important. The most common secondary mineral compositions are hydrous iron oxide (goethite, etc.) and hydrated iron sulfate (jarosite, etc.). The objectives of this study focus on the detection and mapping of MIOP in the soil using Hyperion EO-1 (Earth Observing - 1) hyperspectral data and constrained linear spectral mixture analysis (CLSMA) algorithm. The abandoned Kettara mine, located approximately 35 km northwest of Marrakech city (Morocco) was chosen as study area. During 44 years (from 1938 to 1981) this mine was exploited for iron oxide and iron sulphide minerals. Previous studies have shown that Kettara surrounding soils are contaminated by heavy metals (Fe, Cu, etc.) as well as by secondary minerals. To achieve our objectives, several soil samples representing different MIOP classes have been resampled and located using accurate GPS ( ≤ ± 30 cm). Then, endmembers spectra were acquired over each sample using an Analytical Spectral Device (ASD) covering the spectral domain from 350 to 2500 nm. Considering each soil sample separately, the average of forty spectra was resampled and convolved using Gaussian response profiles to match the bandwidths and the band centers of the Hyperion sensor. Moreover, the MIOP content in each sample was estimated by geochemical analyses in the laboratory, and a ground truth map was generated using simple Kriging in GIS environment for validation purposes. The acquired and used Hyperion data were corrected for a spatial shift between the VNIR and SWIR detectors, striping, dead column, noise, and gain and offset errors. Then, atmospherically corrected using the MODTRAN 4.2 radiative transfer code, and transformed to surface reflectance, corrected for sensor smile (1-3 nm shift in VNIR and SWIR), and post-processed to remove residual errors. Finally, geometric distortions and relief displacement effects were corrected using a digital elevation model. The MIOP fraction map was extracted using CLSMA considering the entire spectral range (427-2355 nm), and validated by reference to the ground truth map generated by Kriging. The obtained results show the promising potential of the proposed methodology for the detection and mapping of mine iron oxide pollution in the soil.

Keywords: hyperion eo-1, hyperspectral, mine iron oxide pollution, environmental impact, unmixing

Procedia PDF Downloads 224
90 A Multi-Scale Approach to Space Use: Habitat Disturbance Alters Behavior, Movement and Energy Budgets in Sloths (Bradypus variegatus)

Authors: Heather E. Ewart, Keith Jensen, Rebecca N. Cliffe

Abstract:

Fragmentation and changes in the structural composition of tropical forests – as a result of intensifying anthropogenic disturbance – are increasing pressures on local biodiversity. Species with low dispersal abilities have some of the highest extinction risks in response to environmental change, as even small-scale environmental variation can substantially impact their space use and energetic balance. Understanding the implications of forest disturbance is therefore essential, ultimately allowing for more effective and targeted conservation initiatives. Here, the impact of different levels of forest disturbance on the space use, energetics, movement and behavior of 18 brown-throated sloths (Bradypus variegatus) were assessed in the South Caribbean of Costa Rica. A multi-scale framework was used to measure forest disturbance, including large-scale (landscape-level classifications) and fine-scale (within and surrounding individual home ranges) forest composition. Three landscape-level classifications were identified: primary forests (undisturbed), secondary forests (some disturbance, regenerating) and urban forests (high levels of disturbance and fragmentation). Finer-scale forest composition was determined using measurements of habitat structure and quality within and surrounding individual home ranges for each sloth (home range estimates were calculated using autocorrelated kernel density estimation [AKDE]). Measurements of forest quality included tree connectivity, density, diameter and height, species richness, and percentage of canopy cover. To determine space use, energetics, movement and behavior, six sloths in urban forests, seven sloths in secondary forests and five sloths in primary forests were tracked using a combination of Very High Frequency (VHF) radio transmitters and Global Positioning System (GPS) technology over an average period of 120 days. All sloths were also fitted with micro data-loggers (containing tri-axial accelerometers and pressure loggers) for an average of 30 days to allow for behavior-specific movement analyses (data analysis ongoing for data-loggers and primary forest sloths). Data-loggers included determination of activity budgets, circadian rhythms of activity and energy expenditure (using the vector of the dynamic body acceleration [VeDBA] as a proxy). Analyses to date indicate that home range size significantly increased with the level of forest disturbance. Female sloths inhabiting secondary forests averaged 0.67-hectare home ranges, while female sloths inhabiting urban forests averaged 1.93-hectare home ranges (estimates are represented by median values to account for the individual variation in home range size in sloths). Likewise, home range estimates for male sloths were 2.35 hectares in secondary forests and 4.83 in urban forests. Sloths in urban forests also used nearly double (median = 22.5) the number of trees as sloths in the secondary forest (median = 12). These preliminary data indicate that forest disturbance likely heightens the energetic requirements of sloths, a species already critically limited by low dispersal ability and rates of energy acquisition. Energetic and behavioral analyses from the data-loggers will be considered in the context of fine-scale forest composition measurements (i.e., habitat quality and structure) and are expected to reflect the observed home range and movement constraints. The implications of these results are far-reaching, presenting an opportunity to define a critical index of habitat connectivity for low dispersal species such as sloths.

Keywords: biodiversity conservation, forest disturbance, movement ecology, sloths

Procedia PDF Downloads 103
89 Applying Concept Mapping to Explore Temperature Abuse Factors in the Processes of Cold Chain Logistics Centers

Authors: Marco F. Benaglia, Mei H. Chen, Kune M. Tsai, Chia H. Hung

Abstract:

As societal and family structures, consumer dietary habits, and awareness about food safety and quality continue to evolve in most developed countries, the demand for refrigerated and frozen foods has been growing, and the issues related to their preservation have gained increasing attention. A well-established cold chain logistics system is essential to avoid any temperature abuse; therefore, assessing potential disruptions in the operational processes of cold chain logistics centers becomes pivotal. This study preliminarily employs HACCP to find disruption factors in cold chain logistics centers that may cause temperature abuse. Then, concept mapping is applied: selected experts engage in brainstorming sessions to identify any further factors. The panel consists of ten experts, including four from logistics and home delivery, two from retail distribution, one from the food industry, two from low-temperature logistics centers, and one from the freight industry. Disruptions include equipment-related aspects, human factors, management aspects, and process-related considerations. The areas of observation encompass freezer rooms, refrigerated storage areas, loading docks, sorting areas, and vehicle parking zones. The experts also categorize the disruption factors based on perceived similarities and build a similarity matrix. Each factor is evaluated for its impact, frequency, and investment importance. Next, multiple scale analysis, cluster analysis, and other methods are used to analyze these factors. Simultaneously, key disruption factors are identified based on their impact and frequency, and, subsequently, the factors that companies prioritize and are willing to invest in are determined by assessing investors’ risk aversion behavior. Finally, Cumulative Prospect Theory (CPT) is applied to verify the risk patterns. 66 disruption factors are found and categorized into six clusters: (1) "Inappropriate Use and Maintenance of Hardware and Software Facilities", (2) "Inadequate Management and Operational Negligence", (3) "Product Characteristics Affecting Quality and Inappropriate Packaging", (4) "Poor Control of Operation Timing and Missing Distribution Processing", (5) "Inadequate Planning for Peak Periods and Poor Process Planning", and (6) "Insufficient Cold Chain Awareness and Inadequate Training of Personnel". This study also identifies five critical factors in the operational processes of cold chain logistics centers: "Lack of Personnel’s Awareness Regarding Cold Chain Quality", "Personnel Not Following Standard Operating Procedures", "Personnel’s Operational Negligence", "Management’s Inadequacy", and "Lack of Personnel’s Knowledge About Cold Chain". The findings show that cold chain operators prioritize prevention and improvement efforts in the "Inappropriate Use and Maintenance of Hardware and Software Facilities" cluster, particularly focusing on the factors of "Temperature Setting Errors" and "Management’s Inadequacy". However, through the application of CPT theory, this study reveals that companies are not usually willing to invest in the improvement of factors related to the "Inappropriate Use and Maintenance of Hardware and Software Facilities" cluster due to its low occurrence likelihood, but they acknowledge the severity of the consequences if it does occur. Hence, the main implication is that the key disruption factors in cold chain logistics centers’ processes are associated with personnel issues; therefore, comprehensive training, periodic audits, and the establishment of reasonable incentives and penalties for both new employees and managers may significantly reduce disruption issues.

Keywords: concept mapping, cold chain, HACCP, cumulative prospect theory

Procedia PDF Downloads 65
88 Encapsulated Bioflavonoids: Nanotechnology Driven Food Waste Utilization

Authors: Niharika Kaushal, Minni Singh

Abstract:

Citrus fruits fall into the category of those commercially grown fruits that constitute an excellent repository of phytochemicals with health-promoting properties. Fruits belonging to the citrus family, when processed by industries, produce tons of agriculture by-products in the form of peels, pulp, and seeds, which normally have no further usage and are commonly discarded. In spite of this, such residues are of paramount importance due to their richness in valuable compounds; therefore, agro-waste is considered a valuable bioresource for various purposes in the food sector. A range of biological properties, including anti-oxidative, anti-cancerous, anti-inflammatory, anti-allergenicity, and anti-aging activity, have been reported for these bioactive compounds. Taking advantage of these inexpensive residual sources requires special attention to extract bioactive compounds. Mandarin (Citrus nobilis X Citrus deliciosa) is a potential source of bioflavonoids with antioxidant properties, and it is increasingly regarded as a functional food. Despite these benefits, flavonoids suffer from a barrier of pre-systemic metabolism in gastric fluid, which impedes their effectiveness. Therefore, colloidal delivery systems can completely overcome the barrier in question. This study involved the extraction and identification of key flavonoids from mandarin biomass. Using a green chemistry approach, supercritical fluid extraction at 330 bar, temperature 40C, and co-solvent 10% ethanol was employed for extraction, and the identification of flavonoids was made by mass spectrometry. As flavonoids are concerned with a limitation, the obtained extract was encapsulated in polylactic-co-glycolic acid (PLGA) matrix using a solvent evaporation method. Additionally, the antioxidant potential was evaluated by the 2,2-diphenylpicrylhydrazyl (DPPH) assay. A release pattern of flavonoids was observed over time using simulated gastrointestinal fluids. From the results, it was observed that the total flavonoids extracted from the mandarin biomass were estimated to be 47.3 ±1.06 mg/ml rutin equivalents as total flavonoids. In the extract, significantly, polymethoxyflavones (PMFs), tangeretin and nobiletin were identified, followed by hesperetin and naringin. The designed flavonoid-PLGA nanoparticles exhibited a particle size between 200-250nm. In addition, the bioengineered nanoparticles had a high entrapment efficiency of nearly 80.0% and maintained stability for more than a year. Flavonoid nanoparticles showed excellent antioxidant activity with an IC50 of 0.55μg/ml. Morphological studies revealed the smooth and spherical shape of nanoparticles as visualized by Field emission scanning electron microscopy (FE-SEM). Simulated gastrointestinal studies of free extract and nanoencapsulation revealed the degradation of nearly half of the flavonoids under harsh acidic conditions in the case of free extract. After encapsulation, flavonoids exhibited sustained release properties, suggesting that polymeric encapsulates are efficient carriers of flavonoids. Thus, such technology-driven and biomass-derived products form the basis for their use in the development of functional foods with improved therapeutic potential and antioxidant properties. As a result, citrus processing waste can be considered a new resource that has high value and can be used for promoting its utilization.

Keywords: citrus, agrowaste, flavonoids, nanoparticles

Procedia PDF Downloads 122
87 'Sextually' Active: Teens, 'Sexting' and Gendered Double Standards in the Digital Age

Authors: Annalise Weckesser, Alex Wade, Clara Joergensen, Jerome Turner

Abstract:

Introduction: Digital mobile technologies afford Generation M a number of opportunities in terms of communication, creativity and connectivity in their social interactions. Yet these young people’s use of such technologies is often the source of moral panic with accordant social anxiety especially prevalent in media representations of teen ‘sexting,’ or the sending of sexually explicit images via smartphones. Thus far, most responses to youth sexting have largely been ineffective or unjust with adult authorities sometimes blaming victims of non-consensual sexting, using child pornography laws to paradoxically criminalise those they are designed to protect, and/or advising teenagers to simply abstain from the practice. Prevention strategies are further skewed, with sex education initiatives often targeted at girls, implying that they shoulder the responsibility of minimising the risks associated with sexting (e.g. revenge porn and sexual predation). Purpose of Study: Despite increasing public interest and concern about ‘teen sexting,’ there remains a dearth of research with young people regarding their experiences of navigating sex and relationships in the current digital media landscape. Furthermore, young people's views on sexting are rarely solicited in the policy and educational strategies aimed at them. To address this research-policy-education gap, an interdisciplinary team of four researchers (from anthropology, media, sociology and education) have undertaken a peer-to-peer research project to co-create a sexual health intervention. Methods: In the winter of 2015-2016, the research team conducted serial group interviews with four cohorts of students (aged 13 to 15) from a secondary school in the West Midlands, UK. To facilitate open dialogue, girls and boys were interviewed separately, and each group consisted of no more than four pupils. The team employed a range of participatory techniques to elicit young people’s views on sexting, its consequences, and its interventions. A final focus group session was conducted with all 14 male and female participants to explore developing a peer-to-peer ‘safe sexting’ education intervention. Findings: This presentation will highlight the ongoing, ‘old school’ sexual double standards at work within this new digital frontier. In the sharing of ‘nudes’ (teens’ preferred term to ‘sexting’) via social media apps (e.g. Snapchat and WhatsApp), girls felt sharing images was inherently risky and feared being blamed and ‘slut-shamed.’ In contrast, boys were seen to gain in social status if they accumulated nudes of female peers. Further, if boys had nudes of themselves shared without consent, they felt they were expected to simply ‘tough it out.’ The presentation will also explore what forms of supports teens desire to help them in their day-to-day navigation of these digitally mediated, heteronormative performances of teen femininity and masculinity expected of them. Conclusion: This is the first research project, within UK, conducted with rather than about teens and the phenomenon of sexting. It marks a timely and important contribution to the nascent, but growing body of knowledge on gender, sexual politics and the digital mobility of sexual images created by and circulated amongst young people.

Keywords: teens, sexting, gender, sexual politics

Procedia PDF Downloads 235
86 Effects of Heart Rate Variability Biofeedback to Improve Autonomic Nerve Function, Inflammatory Response and Symptom Distress in Patients with Chronic Kidney Disease: A Randomized Control Trial

Authors: Chia-Pei Chen, Yu-Ju Chen, Yu-Juei Hsu

Abstract:

The prevalence and incidence of end-stage renal disease in Taiwan ranks the highest in the world. According to the statistical survey of the Ministry of Health and Welfare in 2019, kidney disease is the ninth leading cause of death in Taiwan. It leads to autonomic dysfunction, inflammatory response and symptom distress, and further increases the damage to the structure and function of the kidneys, leading to increased demand for renal replacement therapy and risks of cardiovascular disease, which also has medical costs for the society. If we can intervene in a feasible manual to effectively regulate the autonomic nerve function of CKD patients, reduce the inflammatory response and symptom distress. To prolong the progression of the disease, it will be the main goal of caring for CKD patients. This study aims to test the effect of heart rate variability biofeedback (HRVBF) on improving autonomic nerve function (Heart Rate Variability, HRV), inflammatory response (Interleukin-6 [IL-6], C reaction protein [CRP] ), symptom distress (Piper fatigue scale, Pittsburgh Sleep Quality Index [PSQI], and Beck Depression Inventory-II [BDI-II] ) in patients with chronic kidney disease. This study was experimental research, with a convenience sampling. Participants were recruited from the nephrology clinic at a medical center in northern Taiwan. With signed informed consent, participants were randomly assigned to the HRVBF or control group by using the Excel BINOMDIST function. The HRVBF group received four weekly hospital-based HRVBF training, and 8 weeks of home-based self-practice was done with StressEraser. The control group received usual care. We followed all participants for 3 months, in which we repeatedly measured their autonomic nerve function (HRV), inflammatory response (IL-6, CRP), and symptom distress (Piper fatigue scale, PSQI, and BDI-II) on their first day of study participation (baselines), 1 month, and 3 months after the intervention to test the effects of HRVBF. The results were analyzed by SPSS version 23.0 statistical software. The data of demographics, HRV, IL-6, CRP, Piper fatigue scale, PSQI, and BDI-II were analyzed by descriptive statistics. To test for differences between and within groups in all outcome variables, it was used by paired sample t-test, independent sample t-test, Wilcoxon Signed-Rank test and Mann-Whitney U test. Results: Thirty-four patients with chronic kidney disease were enrolled, but three of them were lost to follow-up. The remaining 31 patients completed the study, including 15 in the HRVBF group and 16 in the control group. The characteristics of the two groups were not significantly different. The four-week hospital-based HRVBF training combined with eight-week home-based self-practice can effectively enhance the parasympathetic nerve performance for patients with chronic kidney disease, which may against the disease-related parasympathetic nerve inhibition. In the inflammatory response, IL-6 and CRP in the HRVBF group could not achieve significant improvement when compared with the control group. Self-reported fatigue and depression significantly decreased in the HRVBF group, but they still failed to achieve a significant difference between the two groups. HRVBF has no significant effect on improving the sleep quality for CKD patients.

Keywords: heart rate variability biofeedback, autonomic nerve function, inflammatory response, symptom distress, chronic kidney disease

Procedia PDF Downloads 179
85 Living in the Edge: Crisis in Indian Tea Industry and Social Deprivation of Tea Garden Workers in Dooars Region of India

Authors: Saraswati Kerketta

Abstract:

Tea industry is one of the oldest organised sector of India. It employs roughly 1.5 million people directly. Since the last decade Indian tea industry, especially in the northern region is experiencing worst crisis in the post-independence period. Due to many reason the prices of tea show steady decline. The workers are paid one of the lowest wage in tea industry in the world (1.5$ a day) below the UN's $2 a day for extreme poverty. The workers rely on addition benefits from plantation which includes food, housing and medical facilities. These have been effective means of enslavement of generations of labourers by the owners. There is hardly any change in the tea estates where the owners determine the fate of workers. When the tea garden is abandoned or is closed all the facilities disappear immediately. The workers are the descendants of tribes from central India also known as 'tea tribes'. Alienated from their native place, the geographical and social isolation compounded their vulnerability of these people. The economy of the region being totally dependent on tea has resulted in absolute unemployment for the workers of these tea gardens. With no other livelihood and no land to grow food, thousands of workers faced hunger and starvation. The Plantation Labour Act which ensures the decent working and living condition is violated continuously. The labours are forced to migrate and are also exposed to the risk of human trafficking. Those who are left behind suffers from starvation, malnutrition and disease. The condition in the sick tea plantation is no better. Wage are not paid regularly, subsidised food, fuel are also not supplied properly. Health care facilities are in very bad shape. Objectives: • To study the socio-cultural and demographic characteristics of the tea garden labourers in the study area. • To examine the social situation of workers in sick estates in dooars region. • To assess the magnitude of deprivation the impact of economic crisis on abandoned and closed tea estates in the region. Data Base: The study is based on data collected from field survey. Methods: Quantative: Cross-Tabulation, Regression analysis. Qualitative: Household Survey, Focussed Group Discussion, In-depth interview of key informants. Findings: Purchasing power parity has declined since in last three decades. There has been many fold increase in migration. Males migrates long distance towards central and west and south India. Females and children migrates both long and short distance. No one has reported to migrate back to the place of origin of their ancestors. Migrant males work mostly as construction labourers and as factory workers whereas females and children work as domestic help and construction labourers. In about 37 cases either they haven't contacted their families in last six months or are not traceable. The families with single earning members are more likely to migrate. Burden of disease and the duration of sickness, abandonment and closure of plantation are closely related. Death tolls are likely to rise 1.5 times in sick tea gardens and three times in closed tea estates. Sixty percent of the people are malnourished in the sick tea gardens and more than eighty five per cent in abandoned and sick tea gardens.

Keywords: migration, trafficking, starvation death, tea garden workers

Procedia PDF Downloads 379
84 Carbon Nanotube-Based Catalyst Modification to Improve Proton Exchange Membrane Fuel Cell Interlayer Interactions

Authors: Ling Ai, Ziyu Zhao, Zeyu Zhou, Xiaochen Yang, Heng Zhai, Stuart Holmes

Abstract:

Optimizing the catalyst layer structure is crucial for enhancing the performance of proton exchange membrane fuel cells (PEMFCs) with low Platinum (Pt) loading. Current works focused on the utilization, durability, and site activity of Pt particles on support, and performance enhancement has been achieved by loading Pt onto porous support with different morphology, such as graphene, carbon fiber, and carbon black. Some schemes have also incorporated cost considerations to achieve lower Pt loading. However, the design of the catalyst layer (CL) structure in the membrane electrode assembly (MEA) must consider the interactions between the layers. Addressing the crucial aspects of water management, low contact resistance, and the establishment of effective three-phase boundary for MEA, multi-walled carbon nanotubes (MWCNTs) are promising CL support due to their intrinsically high hydrophobicity, high axial electrical conductivity, and potential for ordered alignment. However, the drawbacks of MWCNTs, such as strong agglomeration, wall surface chemical inertness, and unopened ends, are unfavorable for Pt nanoparticle loading, which is detrimental to MEA processing and leads to inhomogeneous CL surfaces. This further deteriorates the utilization of Pt and increases the contact resistance. Robust chemical oxidation or nitrogen doping can introduce polar functional groups onto the surface of MWCNTs, facilitating the creation of open tube ends and inducing defects in tube walls. This improves dispersibility and load capacity but reduces length and conductivity. Consequently, a trade-off exists between maintaining the intrinsic properties and the degree of functionalization of MWCNTs. In this work, MWCNTs were modified based on the operational requirements of the MEA from the viewpoint of interlayer interactions, including the search for the optimal degree of oxidation, N-doping, and micro-arrangement. MWCNT were functionalized by oxidizing, N-doping, as well as micro-alignment to achieve lower contact resistance between CL and proton exchange membrane (PEM), better hydrophobicity, and enhanced performance. Furthermore, this work expects to construct a more continuously distributed three-phase boundary by aligning MWCNT to form a locally ordered structure, which is essential for the efficient utilization of Pt active sites. Different from other chemical oxidation schemes that used HNO3:H2SO4 (1:3) mixed acid to strongly oxidize MWCNT, this scheme adopted pure HNO3 to partially oxidize MWCNT at a lower reflux temperature (80 ℃) and a shorter treatment time (0 to 10 h) to preserve the morphology and intrinsic conductivity of MWCNT. The maximum power density of 979.81 mw cm-2 was achieved by Pt loading on 6h MWCNT oxidation time (Pt-MWCNT6h). This represented a 59.53% improvement over the commercial Pt/C catalyst of 614.17 (mw cm-2). In addition, due to the stronger electrical conductivity, the charge transfer resistance of Pt-MWCNT6h in the electrochemical impedance spectroscopy (EIS) test was 0.09 Ohm cm-2, which was 48.86% lower than that of Pt/C. This study will discuss the developed catalysts and their efficacy in a working fuel cell system. This research will validate the impact of low-functionalization modification of MWCNTs on the performance of PEMFC, which simplifies the preparation challenges of CL and contributing for the widespread commercial application of PEMFCs on a larger scale.

Keywords: carbon nanotubes, electrocatalyst, membrane electrode assembly, proton exchange membrane fuel cell

Procedia PDF Downloads 64
83 Multilocus Phylogenetic Approach Reveals Informative DNA Barcodes for Studying Evolution and Taxonomy of Fusarium Fungi

Authors: Alexander A. Stakheev, Larisa V. Samokhvalova, Sergey K. Zavriev

Abstract:

Fusarium fungi are among the most devastating plant pathogens distributed all over the world. Significant reduction of grain yield and quality caused by Fusarium leads to multi-billion dollar annual losses to the world agricultural production. These organisms can also cause infections in immunocompromised persons and produce the wide range of mycotoxins, such as trichothecenes, fumonisins, and zearalenone, which are hazardous to human and animal health. Identification of Fusarium fungi based on the morphology of spores and spore-forming structures, colony color and appearance on specific culture media is often very complicated due to the high similarity of these features for closely related species. Modern Fusarium taxonomy increasingly uses data of crossing experiments (biological species concept) and genetic polymorphism analysis (phylogenetic species concept). A number of novel Fusarium sibling species has been established using DNA barcoding techniques. Species recognition is best made with the combined phylogeny of intron-rich protein coding genes and ribosomal DNA sequences. However, the internal transcribed spacer of (ITS), which is considered to be universal DNA barcode for Fungi, is not suitable for genus Fusarium, because of its insufficient variability between closely related species and the presence of non-orthologous copies in the genome. Nowadays, the translation elongation factor 1 alpha (TEF1α) gene is the “gold standard” of Fusarium taxonomy, but the search for novel informative markers is still needed. In this study, we used two novel DNA markers, frataxin (FXN) and heat shock protein 90 (HSP90) to discover phylogenetic relationships between Fusarium species. Multilocus phylogenetic analysis based on partial sequences of TEF1α, FXN, HSP90, as well as intergenic spacer of ribosomal DNA (IGS), beta-tubulin (β-TUB) and phosphate permease (PHO) genes has been conducted for 120 isolates of 19 Fusarium species from different climatic zones of Russia and neighboring countries using maximum likelihood (ML) and maximum parsimony (MP) algorithms. Our analyses revealed that FXN and HSP90 genes could be considered as informative phylogenetic markers, suitable for evolutionary and taxonomic studies of Fusarium genus. It has been shown that PHO gene possesses more variable (22 %) and parsimony informative (19 %) characters than other markers, including TEF1α (12 % and 9 %, correspondingly) when used for elucidating phylogenetic relationships between F. avenaceum and its closest relatives – F. tricinctum, F. acuminatum, F. torulosum. Application of novel DNA barcodes confirmed the fact that F. arthrosporioides do not represent a separate species but only a subspecies of F. avenaceum. Phylogeny based on partial PHO and FXN sequences revealed the presence of separate cluster of four F. avenaceum strains which were closer to F. torulosum than to major F. avenaceum clade. The strain F-846 from Moldova, morphologically identified as F. poae, formed a separate lineage in all the constructed dendrograms, and could potentially be considered as a separate species, but more information is needed to confirm this conclusion. Variable sites in PHO sequences were used for the first-time development of specific qPCR-based diagnostic assays for F. acuminatum and F. torulosum. This work was supported by Russian Foundation for Basic Research (grant № 15-29-02527).

Keywords: DNA barcode, fusarium, identification, phylogenetics, taxonomy

Procedia PDF Downloads 321
82 Magnesium Nanoparticles for Photothermal Therapy

Authors: E. Locatelli, I. Monaco, R. C. Martin, Y. Li, R. Pini, M. Chiariello, M. Comes Franchini

Abstract:

Despite the many advantages of application of nanomaterials in the field of nanomedicine, increasing concerns have been expressed on their potential adverse effects on human health. There is urgency for novel green strategies toward novel materials with enhanced biocompatibility using safe reagents. Photothermal ablation therapy, which exploits localized heat increase of a few degrees to kill cancer cells, has appeared recently as a non-invasive and highly efficient therapy against various cancer types; anyway new agents able to generate hyperthermia when irradiated are needed and must have precise biocompatibility in order to avoid damage to healthy tissues and prevent toxicity. Recently, there has been increasing interest in magnesium as a biomaterial: it is the fourth most abundant cation in the human body, and it is essential for human metabolism. However magnesium nanoparticles (Mg NPs) have had limited diffusion due to the high reduction potential of magnesium cations, which makes NPs synthesis challenging. Herein, we report the synthesis of Mg NPs and their surface functionalization for the obtainment of a stable and biocompatible nanomaterial suitable for photothermal ablation therapy against cancer. We synthesized the Mg crystals by reducing MgCl2 with metallic lithium and exploiting naphthalene as an electron carrier: the lithium–naphthalene complex acts as the real reducing agent. Firstly, the nanocrystal particles were coated with the ligand 12-ethoxy ester dodecanehydroxamic acid, and then entrapped into water-dispersible polymeric micelles (PMs) made of the FDA-approved PLGA-b-PEG-COOH copolymer using the oil-in-water emulsion technique. Lately, we developed a more straightforward methodology by introducing chitosan, a highly biocompatible natural product, at the beginning of the process, simultaneously using lithium–naphthalene complex, thus having a one-pot procedure for the formation and surface modification of MgNPs. The obtained MgNPs were purified and fully characterized, showing diameters in the range of 50-300 nm. Notably, when coated with chitosan the particles remained stable as dry powder for more than 10 months. We proved the possibility of generating a temperature rise of a few to several degrees once MgNPs were illuminated using a 810 nm diode laser operating in continuous wave mode: the temperature rise resulted significant (0-15 °C) and concentration dependent. We then investigated potential cytotoxicity of the MgNPs: we used HN13 epithelial cells, derived from a head and neck squamous cell carcinoma and the hepa1-6 cell line, derived from hepatocellular carcinoma and very low toxicity was observed for both nanosystems. Finally, in vivo photothermal therapy was performed on xenograft hepa1-6 tumor bearing mice: the animals were treated with MgNPs coated with chitosan and showed no sign of suffering after the injection. After 12 hours the tumor was exposed to near-infrared laser light. The results clearly showed an extensive damage to tumor tissue after only 2 minutes of laser irradiation at 3Wcm-1, while no damage was reported when the tumor was treated with the laser and saline alone in control group. Despite the lower photothermal efficiency of Mg with respect to Au NPs, we consider MgNPs a promising, safe and green candidate for future clinical translations.

Keywords: chitosan, magnesium nanoparticles, nanomedicine, photothermal therapy

Procedia PDF Downloads 266
81 Preliminary Results on Marine Debris Classification in The Island of Mykonos (Greece) via Coastal and Underwater Clean up over 2016-20: A Successful Case of Recycling Plastics into Useful Daily Items

Authors: Eleni Akritopoulou, Katerina Topouzoglou

Abstract:

The last 20 years marine debris has been identified as one of the main marine pollution sources caused by anthropogenic activities. Plastics has reached the farthest marine areas of the planet affecting all marine trophic levels including the, recently discovered, amphipoda Eurythenes plasticus inhabiting Mariana Trench to large cetaceans, marine reptiles and sea birds causing immunodeficiency disorders, deteriorating health and death overtime. For the time period 2016-20, in the framework of the national initiative ‘Keep Aegean Blue”, All for Blue team has been collecting marine debris (coastline and underwater) following a modified in situ MEDSEALITTER monitoring protocol from eight Greek islands. After collection, marine debris was weighted, sorted and categorised according to material; plastic (PL), glass (G), metal (M), wood (W), rubber (R), cloth (CL), paper (P), mixed (MX). The goal of the project included the documentation of marine debris sources, human trends, waste management and public marine environmental awareness. Waste management was focused on plastics recycling and utilisation into daily useful products. This research is focused on the island of Mykonos due to its continuous touristic activity and lack of scientific information. In overall, a field work area of 1.832.856 m2 was cleaned up yielding 5092 kg of marine debris. The preliminary results indicated PL as main source of marine debris (62,8%) followed by M (15,5%), GL (13,2%) and MX (2,8%). Main items found were fishing tools (lines, nets), disposable cutlery, cups and straws, cigarette butts, flip flops and other items like plastic boat compartments. In collaboration with a local company for plastic management and the Circular Economy and Eco Innovation Institute (Sweden), all plastic debris was recycled. Granulation process was applied transforming plastic into building materials used for refugees’ houses, litter bins bought by municipalities and schools and, other items like shower components. In terms of volunteering and attendance in public awareness seminars, there was a raise of interest by 63% from different age ranges and professions. Regardless, the research being fairly new for Mykonos island and logistics issues potentially affected systemic sampling, it appeared that plastic debris is the main littering source attributed, possibly to the intense touristic activity of the island all year around. However, marine environmental awareness activities were pointed out to be an effective tool in forming public perception against marine debris and, alter the daily habits of local society. Since the beginning of this project, three new local environmental teams were formed against marine pollution supported by the local authorities and stakeholders. The continuous need and request for the production of items made by recycled marine debris appeared to be beneficial socio-economically to the local community and actions are taken to expand the project nationally. Finally, as an ongoing project and whilst, new scientific information is collected, further funding and research is needed.

Keywords: Greece, marine debris, marine environmental awareness, Mykonos island, plastics debris, plastic granulation, recycled plastic, tourism, waste management

Procedia PDF Downloads 107
80 Sheep Pox Virus Recombinant Proteins To Develop Subunit Vaccines

Authors: Olga V. Chervyakova, Elmira T. Tailakova, Vitaliy M. Strochkov, Kulyaisan T. Sultankulova, Nurlan T. Sandybayev, Lev G. Nemchinov, Rosemarie W. Hammond

Abstract:

Sheep pox is a highly contagious infection that OIE regards to be one of the most dangerous animal diseases. It causes enormous economic losses because of death and slaughter of infected animals, lower productivity, cost of veterinary and sanitary as well as quarantine measures. To control spread of sheep pox infection the attenuated vaccines are widely used in the Republic of Kazakhstan and other Former Soviet Union countries. In spite of high efficiency of live vaccines, the possible presence of the residual virulence, potential genetic instability restricts their use in disease-free areas that leads to necessity to exploit new approaches in vaccine development involving recombinant DNA technology. Vaccines on the basis of recombinant proteins are the newest generation of prophylactic preparations. The main advantage of these vaccines is their low reactogenicity and this fact makes them widely used in medical and veterinary practice for vaccination of humans and farm animals. The objective of the study is to produce recombinant immunogenic proteins for development of the high-performance means for sheep pox prophylaxis. The SPV proteins were chosen for their homology with the known immunogenic vaccinia virus proteins. Assay of nucleotide and amino acid sequences of the target SPV protein genes. It has been shown that four proteins SPPV060 (ortholog L1), SPPV074 (ortholog H3), SPPV122 (ortholog A33) and SPPV141 (ortholog B5) possess transmembrane domains at N- or C-terminus while in amino acid sequences of SPPV095 (ortholog А 4) and SPPV117 (ortholog А 27) proteins these domains were absent. On the basis of these findings the primers were constructed. Target genes were amplified and subsequently cloned into the expression vector рЕТ26b(+) or рЕТ28b(+). Six constructions (pSPPV060ΔТМ, pSPPV074ΔТМ, pSPPV095, pSPPV117, pSPPV122ΔТМ and pSPPV141ΔТМ) were obtained for expression of the SPV genes under control of T7 promoter in Escherichia coli. To purify and detect recombinant proteins the amino acid sequences were modified by adding six histidine molecules at C-terminus. Induction of gene expression by IPTG was resulted in production of the proteins with molecular weights corresponding to the estimated values for SPPV060, SPPV074, SPPV095, SPPV117, SPPV122 and SPPV141, i.e. 22, 30, 20, 19, 17 and 22 kDa respectively. Optimal protocol of expression for each gene that ensures high yield of the recombinant protein was identified. Assay of cellular lysates by western blotting confirmed expression of the target proteins. Recombinant proteins bind specifically with antibodies to polyhistidine. Moreover all produced proteins are specifically recognized by the serum from experimentally SPV-infected sheep. The recombinant proteins SPPV060, SPPV074, SPPV117, SPPV122 and SPPV141 were also shown to induce formation of antibodies with virus-neutralizing activity. The results of the research will help to develop a new-generation high-performance means for specific sheep pox prophylaxis that is one of key moments in animal health protection. The research was conducted under the International project ISTC # K-1704 “Development of methods to construct recombinant prophylactic means for sheep pox with use of transgenic plants” and under the Grant Project RK MES G.2015/0115RK01983 "Recombinant vaccine for sheep pox prophylaxis".

Keywords: prophylactic preparation, recombinant protein, sheep pox virus, subunit vaccine

Procedia PDF Downloads 237
79 Resveratrol Ameliorates Benzo(a)Pyrene Induced Testicular Dysfunction and Apoptosis: Involvement of p38 MAPK/ATF2/iNOS Signaling

Authors: Kuladip Jana, Bhaswati Banerjee, Parimal C. Sen

Abstract:

Benzo(a)pyrene [B(a)P] is an environmental toxicant present mostly in cigarette smoke and car exhaust, is an aryl hydrocarbon receptor (AhR) ligand that exerts its toxic effects on both male and female reproductive systems along with carcinogenesis in skin, prostate, ovary, lung and mammary glands. Our study was focused on elucidating the molecular mechanism of B(a)P induced male reproductive toxicity and its prevention with phytochemical like resveratrol. In this study, the effect of B(a)P at different doses (0.1, 0.25, 0.5, 1 and 5 mg /kg body weight) was studied on male reproductive system of Wistar rat. A significant decrease in cauda epididymal sperm count and motility along with the presence of sperm head abnormalities and altered epididymal and testicular histology were documented following B(a)P treatment. B(a)P treatment resulted apoptotic sperm cells as observed by TUNEL and Annexin V-PI assay with increased Reactive Oxygen Species (ROS), altered sperm mitochondrial membrane potential (ΔΨm) with a simultaneous decrease in the activity of antioxidant enzymes and GSH status. TUNEL positive apoptotic cells also observed in testis as well as isolated germ and Leydig cells following B(a)P exposure. Western Blot analysis revealed the activation of p38 mitogen activated protein kinase (p38MAPK), cytosolic translocation of cytochrome-c, upregulation of Bax and inducible nitric oxide synthase (iNOS) with cleavage of poly ADP ribose polymerase (PARP) and down regulation of BCl2 in testis upon B(a)P treatment. The protein and mRNA levels of testicular key steroidogenesis regulatory proteins like steroidogenic acute regulatory protein (StAR), cytochrome P450 IIA1 (CYPIIA1), 3β hydroxy steroid dehydrogenase (3β HSD), 17β hydroxy steroid dehydrogenase (17β HSD) showed a significant decrease in a dose dependent manner while an increase in the expression of cytochrome P450 1A1 (CYP1A1), Aryl hydrocarbon Receptor (AhR), active caspase- 9 and caspase- 3 following B(a)P exposure. We conclude that exposure of benzo(a)pyrene caused testicular gamatogenic and steroidogenic disorders by induction of oxidative stress, inhibition of StAR and other steroidogenic enzymes along with activation of p38MAPK and initiated caspase-3 mediated germ and Leydig cell apoptosis. Next we investigated the role of resveratrol on B(a)P induced male reproductive toxicity. Our study highlighted that resveratrol co-treatment with B(a)P maintained testicular redox potential, increased serum testosterone level and prevented steroidogenic dysfunction with enhanced expression of major testicular steroidogenic proteins (CYPIIA1, StAR, 3β HSD,17β HSD) relative to treatment with B(a)P only. Resveratrol suppressed B(a)P-induced testicular activation of p38 MAPK, ATF2, iNOS and ROS production; cytosolic translocation of Cytochome c and Caspase 3 activation thereby prevented oxidative stress of testis and inhibited apoptosis. Resveratrol co-treatment also decreased B(a)P-induced AhR protein level, its nuclear translocation and subsequent CYP1A1 promoter activation, thereby decreased protein and mRNA levels of testicular cytochrome P4501A1 (CYP1A1) and prevented BPDE-DNA adduct formation. Our findings cumulatively suggest that resveratrol prevents activation of B(a)P by modulating the transcriptional regulation of CYP1A1 and acting as an antioxidant thus prevents B(a)P-induced oxidative stress and testicular apoptosis.

Keywords: benzo(a)pyrene, resveratrol, testis, apoptosis, cytochrome P450 1A1 (CYP1A1), aryl hydrocarbon receptor (AhR), p38 MAPK/ATF2/iNOS

Procedia PDF Downloads 228
78 Robust Decision Support Framework for Addressing Uncertainties in Water Resources Management in the Mekong

Authors: Chusit Apirumanekul, Chayanis Krittasudthacheewa, Ratchapat Ratanavaraha, Yanyong Inmuong

Abstract:

Rapid economic development in the Lower Mekong region is leading to changes in water quantity and quality. Changes in land- and forest-use, infrastructure development, increasing urbanization, migration patterns and climate risks are increasing demands for water, within various sectors, placing pressure on scarce water resources. Appropriate policies, strategies, and planning are urgently needed for improved water resource management. Over the last decade, Thailand has experienced more frequent and intense drought situations, affecting the level of water storage in reservoirs along with insufficient water allocation for agriculture during the dry season. The Huay Saibat River Basin, one of the well-known water-scarce areas in the northeastern region of Thailand, is experiencing ongoing water scarcity that affects both farming livelihoods and household consumption. Drought management in Thailand mainly focuses on emergency responses, rather than advance preparation and mitigation for long-term solutions. Despite many efforts from local authorities to mitigate the drought situation, there is yet no long-term comprehensive water management strategy, that integrates climate risks alongside other uncertainties. This paper assesses the application in the Huay Saibat River Basin, of the Robust Decision Support framework, to explore the feasibility of multiple drought management policies; including a shift in cropping season, in crop changes, in infrastructural operations and in the use of groundwater, under a wide range of uncertainties, including climate and land-use change. A series of consultative meetings were organized with relevant agencies and experts at the local level, to understand and explore plausible water resources strategies and identify thresholds to evaluate the performance of those strategies. Three different climate conditions were identified (dry, normal and wet). Other non-climatic factors influencing water allocation were further identified, including changes from sugarcane to rubber, delaying rice planting, increasing natural retention storage and using groundwater to supply demands for household consumption and small-scale gardening. Water allocation and water use in various sectors, such as in agriculture, domestic, industry and the environment, were estimated by utilising the Water Evaluation And Planning (WEAP) system, under various scenarios developed from the combination of climatic and non-climatic factors mentioned earlier. Water coverage (i.e. percentage of water demand being successfully supplied) was defined as a threshold for water resource strategy assessment. Thresholds for different sectors (agriculture, domestic, industry, and environment) were specified during multi-stakeholder engagements. Plausible water strategies (e.g. increasing natural retention storage, change of crop type and use of groundwater as an alternative source) were evaluated based on specified thresholds in 4 sectors (agriculture, domestic, industry, and environment) under 3 climate conditions. 'Business as usual' was evaluated for comparison. The strategies considered robust, emerge when performance is assessed as successful, under a wide range of uncertainties across the river basin. Without adopting any strategy, the water scarcity situation is likely to escalate in the future. Among the strategies identified, the use of groundwater as an alternative source was considered a potential option in combating water scarcity for the basin. Further studies are needed to explore the feasibility for groundwater use as a potential sustainable source.

Keywords: climate change, robust decision support, scenarios, water resources management

Procedia PDF Downloads 162
77 Participatory Action Research for Sustainability with Special Focus on Student Initiatives

Authors: Soni T. L.

Abstract:

Sustainable environmental stress is a major concern which needs immediate attention. This paper is an attempt to present participatory action research for sustainable agriculture. Being first and best culture, agriculture protects and improves the natural environment, the social and economic conditions of people, and safeguards the health and welfare of all groups. During course of time agriculture turned to agribusiness, then the values are not safeguarded. Moreover, in today’s busy life many are not taking efforts to take part in agriculture production. Then children are not getting the opportunity to understand agriculture and farming practices. So student initiatives are vital to make them aware. Here the programmes structured by the researcher come under the auspicious of National Service Scheme, a student-centered educational programme, organized by Ministry of Youth Affairs, Government of India. The twin objectives of the study are to examine the role of student initiatives for sustainable agriculture and the role of participatory action research in student initiatives. SWOT analysis is made to study strengths, weaknesses, threats and opportunities. The Methodology adopted is Participatory Action Research. The method is participatory in a sense there is collaboration through participation. The method is action, there is lab land experiences which is real. The method is research that there is documented lessons and creation of new knowledge. Plan of action cover measures adopted and strategies taken i.e., bhavana – kalpana – yojana – sadhana. Through the team effort, the team was successful in converting more than 10 hectares of barren land into cultivable land within and outside the campus. Team efforts of students saved a huge amount of labour cost and produced a huge quantity of organic output and the team was also successful in creating 1000 rain pits in the premises of College for rainwater harvesting. The findings include conveyance of the Message: Food Production is superior to Food donation. Moreover, the study fostered good work ethic and social responsibility among students. Students undertake innovative programmes underlying social and environmental issues and participants got increased opportunities to interact with local and less privileged and acquired increased awareness about real-life experiences which make them confident to interact with people and it resulted in the strengthening of social capital- cooperation, team spirit, social commitment among students. Participants promoted sustainable domestic efforts and ultimately environmental protection is ensured. Finally, there is recognition to the team, institution and the researcher at the university level, state level and at the national level. The learned lessons are, if the approach is good, the response is good and success generates success. Participatory action research is empowering experience for practitioners, focusing the combined time, energy and creativity of a committed group we should lead so many programmes which makes the institution centre of excellence. Authorities should take necessary steps for the Inclusion of community development activities in the curriculum. Action research is problem, client and action centered. So, we must adapt and adopt, coordinates and correlates measures which preserve and conserve the environment.

Keywords: participatory action research, student initiatives, sustainable development, sustainability

Procedia PDF Downloads 154
76 Colloid-Based Biodetection at Aqueous Electrical Interfaces Using Fluidic Dielectrophoresis

Authors: Francesca Crivellari, Nicholas Mavrogiannis, Zachary Gagnon

Abstract:

Portable diagnostic methods have become increasingly important for a number of different purposes: point-of-care screening in developing nations, environmental contamination studies, bio/chemical warfare agent detection, and end-user use for commercial health monitoring. The cheapest and most portable methods currently available are paper-based – lateral flow and dipstick methods are widely available in drug stores for use in pregnancy detection and blood glucose monitoring. These tests are successful because they are cheap to produce, easy to use, and require minimally invasive sampling. While adequate for their intended uses, in the realm of blood-borne pathogens and numerous cancers, these paper-based methods become unreliable, as they lack the nM/pM sensitivity currently achieved by clinical diagnostic methods. Clinical diagnostics, however, utilize techniques involving surface plasmon resonance (SPR) and enzyme-linked immunosorbent assays (ELISAs), which are expensive and unfeasible in terms of portability. To develop a better, competitive biosensor, we must reduce the cost of one, or increase the sensitivity of the other. Electric fields are commonly utilized in microfluidic devices to manipulate particles, biomolecules, and cells. Applications in this area, however, are primarily limited to interfaces formed between immiscible interfaces. Miscible, liquid-liquid interfaces are common in microfluidic devices, and are easily reproduced with simple geometries. Here, we demonstrate the use of electrical fields at liquid-liquid electrical interfaces, known as fluidic dielectrophoresis, (fDEP) for biodetection in a microfluidic device. In this work, we apply an AC electric field across concurrent laminar streams with differing conductivities and permittivities to polarize the interface and induce a discernible, near-immediate, frequency-dependent interfacial tilt. We design this aqueous electrical interface, which becomes the biosensing “substrate,” to be intelligent – it “moves” only when a target of interest is present. This motion requires neither labels nor expensive electrical equipment, so the biosensor is inexpensive and portable, yet still capable of sensitive detection. Nanoparticles, due to their high surface-area-to-volume ratio, are often incorporated to enhance detection capabilities of schemes like SPR and fluorimetric assays. Most studies currently investigate binding at an immobilized solid-liquid or solid-gas interface, where particles are adsorbed onto a planar surface, functionalized with a receptor to create a reactive substrate, and subsequently flushed with a fluid or gas with the relevant analyte. These typically involve many preparation and rinsing steps, and are susceptible to surface fouling. Our microfluidic device is continuously flowing and renewing the “substrate,” and is thus not subject to fouling. In this work, we demonstrate the ability to electrokinetically detect biomolecules binding to functionalized nanoparticles at liquid-liquid interfaces using fDEP. In biotin-streptavidin experiments, we report binding detection limits on the order of 1-10 pM, without amplifying signals or concentrating samples. We also demonstrate the ability to detect this interfacial motion, and thus the presence of binding, using impedance spectroscopy, allowing this scheme to become non-optical, in addition to being label-free.

Keywords: biodetection, dielectrophoresis, microfluidics, nanoparticles

Procedia PDF Downloads 384
75 Influence of Atmospheric Pollutants on Child Respiratory Disease in Cartagena De Indias, Colombia

Authors: Jose A. Alvarez Aldegunde, Adrian Fernandez Sanchez, Matthew D. Menden, Bernardo Vila Rodriguez

Abstract:

Up to five statistical pre-processings have been carried out considering the pollutant records of the stations present in Cartagena de Indias, Colombia, also taking into account the childhood asthma incidence surveys conducted in hospitals in the city by the Health Ministry of Colombia for this study. These pre-processings have consisted of different techniques such as the determination of the quality of data collection, determination of the quality of the registration network, identification and debugging of errors in data collection, completion of missing data and purified data, as well as the improvement of the time scale of records. The characterization of the quality of the data has been conducted by means of density analysis of the pollutant registration stations using ArcGis Software and through mass balance techniques, making it possible to determine inconsistencies in the records relating the registration data between stations following the linear regression. The results obtained in this process have highlighted the positive quality in the pollutant registration process. Consequently, debugging of errors has allowed us to identify certain data as statistically non-significant in the incidence and series of contamination. This data, together with certain missing records in the series recorded by the measuring stations, have been completed by statistical imputation equations. Following the application of these prior processes, the basic series of incidence data for respiratory disease and pollutant records have allowed the characterization of the influence of pollutants on respiratory diseases such as, for example, childhood asthma. This characterization has been carried out using statistical correlation methods, including visual correlation, simple linear regression correlation and spectral analysis with PAST Software which identifies maximum periodicity cycles and minimums under the formula of the Lomb periodgram. In relation to part of the results obtained, up to eleven maximums and minimums considered contemporary between the incidence records and the particles have been identified taking into account the visual comparison. The spectral analyses that have been performed on the incidence and the PM2.5 have returned a series of similar maximum periods in both registers, which are at a maximum during a period of one year and another every 25 days (0.9 and 0.07 years). The bivariate analysis has managed to characterize the variable "Daily Vehicular Flow" in the ninth position of importance of a total of 55 variables. However, the statistical correlation has not obtained a favorable result, having obtained a low value of the R2 coefficient. The series of analyses conducted has demonstrated the importance of the influence of pollutants such as PM2.5 in the development of childhood asthma in Cartagena. The quantification of the influence of the variables has been able to determine that there is a 56% probability of dependence between PM2.5 and childhood respiratory asthma in Cartagena. Considering this justification, the study could be completed through the application of the BenMap Software, throwing a series of spatial results of interpolated values of the pollutant contamination records that exceeded the established legal limits (represented by homogeneous units up to the neighborhood level) and results of the impact on the exacerbation of pediatric asthma. As a final result, an economic estimate (in Colombian Pesos) of the monthly and individual savings derived from the percentage reduction of the influence of pollutants in relation to visits to the Hospital Emergency Room due to asthma exacerbation in pediatric patients has been granted.

Keywords: Asthma Incidence, BenMap, PM2.5, Statistical Analysis

Procedia PDF Downloads 113
74 Meta-Analysis of Previously Unsolved Cases of Aviation Mishaps Employing Molecular Pathology

Authors: Michael Josef Schwerer

Abstract:

Background: Analyzing any aircraft accident is mandatory based on the regulations of the International Civil Aviation Organization and the respective country’s criminal prosecution authorities. Legal medicine investigations are unavoidable when fatalities involve the flight crew or when doubts arise concerning the pilot’s aeromedical health status before the event. As a result of frequently tremendous blunt and sharp force trauma along with the impact of the aircraft to the ground, consecutive blast or fire exposition of the occupants or putrefaction of the dead bodies in cases of delayed recovery, relevant findings can be masked or destroyed and therefor being inaccessible in standard pathology practice comprising just forensic autopsy and histopathology. Such cases are of considerable risk of remaining unsolved without legal consequences for those responsible. Further, no lessons can be drawn from these scenarios to improve flight safety and prevent future mishaps. Aims and Methods: To learn from previously unsolved aircraft accidents, re-evaluations of the investigation files and modern molecular pathology studies were performed. Genetic testing involved predominantly PCR-based analysis of gene regulation, studying DNA promotor methylations, RNA transcription and posttranscriptional regulation. In addition, the presence or absence of infective agents, particularly DNA- and RNA-viruses, was studied. Technical adjustments of molecular genetic procedures when working with archived sample material were necessary. Standards for the proper interpretation of the respective findings had to be settled. Results and Discussion: Additional molecular genetic testing significantly contributes to the quality of forensic pathology assessment in aviation mishaps. Previously undetected cardiotropic viruses potentially explain e.g., a pilot’s sudden incapacitation resulting from cardiac failure or myocardial arrhythmia. In contrast, negative results for infective agents participate in ruling out concerns about an accident pilot’s fitness to fly and the aeromedical examiner’s precedent decision to issue him or her an aeromedical certificate. Care must be taken in the interpretation of genetic testing for pre-existing diseases such as hypertrophic cardiomyopathy or ischemic heart disease. Molecular markers such as mRNAs or miRNAs, which can establish these diagnoses in clinical patients, might be misleading in-flight crew members because of adaptive changes in their tissues resulting from repeated mild hypoxia during flight, for instance. Military pilots especially demonstrate significant physiological adjustments to their somatic burdens in flight, such as cardiocirculatory stress and air combat maneuvers. Their non-pathogenic alterations in gene regulation and expression will likely be misinterpreted for genuine disease by inexperienced investigators. Conclusions: The growing influence of molecular pathology on legal medicine practice has found its way into aircraft accident investigation. As appropriate quality standards for laboratory work and data interpretation are provided, forensic genetic testing supports the medico-legal analysis of aviation mishaps and potentially reduces the number of unsolved events in the future.

Keywords: aviation medicine, aircraft accident investigation, forensic pathology, molecular pathology

Procedia PDF Downloads 38
73 The Potential of Rhizospheric Bacteria for Mycotoxigenic Fungi Suppression

Authors: Vanja Vlajkov, Ivana PajčIn, Mila Grahovac, Marta Loc, Dragana Budakov, Jovana Grahovac

Abstract:

The rhizosphere soil refers to the plant roots' dynamic environment characterized by their inhabitants' high biological activity. Rhizospheric bacteria are recognized as effective biocontrol agents and considered cardinal in alternative strategies for securing ecological plant diseases management. The need to suppress fungal pathogens is an urgent task, not only because of the direct economic losses caused by infection but also due to their ability to produce mycotoxins with harmful effects on human health. Aspergillus and Fusarium species are well-known producers of toxigenic metabolites with a high capacity to colonize crops and enter the food chain. The bacteria belonging to the Bacillus genus has been conceded as a plant beneficial species in agricultural practice and identified as plant growth-promoting rhizobacteria (PGPR). Besides incontestable potential, the full commercialization of microbial biopesticides is in the preliminary phase. Thus, there is a constant need for estimating the suitability of novel strains to be used as a central point of viable bioprocess leading to market-ready product development. In the present study, 76 potential producing strains were isolated from the rhizosphere soil, sampled from different localities in the Autonomous Province of Vojvodina, Republic of Serbia. The selective isolation process of strains started by resuspending 1 g of soil samples in 9 ml of saline and incubating at 28° C for 15 minutes at 150 rpm. After homogenization, thermal treatment at 100° C for 7 minutes was performed. Dilution series (10-1-10-3) were prepared, and 500 µl of each was inoculated on nutrient agar plates and incubated at 28° C for 48 h. The pure cultures of morphologically different strains indicating belonging to the Bacillus genus were obtained by the spread-plate technique. The cultivation of the isolated strains was carried out in an Erlenmeyer flask for 96 h, at 28 °C, 170 rpm. The antagonistic activity screening included two phytopathogenic fungi as test microorganisms: Aspergillus sp. and Fusarium sp. The mycelial growth inhibition was estimated based on the antimicrobial activity testing of cultivation broth by the diffusion method. For the Aspergillus sp., the highest antifungal activity was recorded for the isolates Kro-4a and Mah-1a. In contrast, for the Fusarium sp., following 15 isolates exhibited the highest antagonistic effect Par-1, Par-2, Par-3, Par-4, Kup-4, Paš-1b, Pap-3, Kro-2, Kro-3a, Kro-3b, Kra-1a, Kra-1b, Šar-1, Šar-2b and Šar-4. One-way ANOVA was performed to determine the antagonists' effect statistical significance on inhibition zone diameter. Duncan's multiple range test was conducted to define homogenous groups of antagonists with the same level of statistical significance regarding their effect on antimicrobial activity of the tested cultivation broth against tested pathogens. The study results have pointed out the significant in vitro potential of the isolated strains to be used as biocontrol agents for the suppression of the tested mycotoxigenic fungi. Further research should include the identification and detailed characterization of the most promising isolates and mode of action of the selected strains as biocontrol agents. The following research should also involve bioprocess optimization steps to fully reach the selected strains' potential as microbial biopesticides and design cost-effective biotechnological production.

Keywords: Bacillus, biocontrol, bioprocess, mycotoxigenic fungi

Procedia PDF Downloads 193
72 Geovisualization of Human Mobility Patterns in Los Angeles Using Twitter Data

Authors: Linna Li

Abstract:

The capability to move around places is doubtless very important for individuals to maintain good health and social functions. People’s activities in space and time have long been a research topic in behavioral and socio-economic studies, particularly focusing on the highly dynamic urban environment. By analyzing groups of people who share similar activity patterns, many socio-economic and socio-demographic problems and their relationships with individual behavior preferences can be revealed. Los Angeles, known for its large population, ethnic diversity, cultural mixing, and entertainment industry, faces great transportation challenges such as traffic congestion, parking difficulties, and long commuting. Understanding people’s travel behavior and movement patterns in this metropolis sheds light on potential solutions to complex problems regarding urban mobility. This project visualizes people’s trajectories in Greater Los Angeles (L.A.) Area over a period of two months using Twitter data. A Python script was used to collect georeferenced tweets within the Greater L.A. Area including Ventura, San Bernardino, Riverside, Los Angeles, and Orange counties. Information associated with tweets includes text, time, location, and user ID. Information associated with users includes name, the number of followers, etc. Both aggregated and individual activity patterns are demonstrated using various geovisualization techniques. Locations of individual Twitter users were aggregated to create a surface of activity hot spots at different time instants using kernel density estimation, which shows the dynamic flow of people’s movement throughout the metropolis in a twenty-four-hour cycle. In the 3D geovisualization interface, the z-axis indicates time that covers 24 hours, and the x-y plane shows the geographic space of the city. Any two points on the z axis can be selected for displaying activity density surface within a particular time period. In addition, daily trajectories of Twitter users were created using space-time paths that show the continuous movement of individuals throughout the day. When a personal trajectory is overlaid on top of ancillary layers including land use and road networks in 3D visualization, the vivid representation of a realistic view of the urban environment boosts situational awareness of the map reader. A comparison of the same individual’s paths on different days shows some regular patterns on weekdays for some Twitter users, but for some other users, their daily trajectories are more irregular and sporadic. This research makes contributions in two major areas: geovisualization of spatial footprints to understand travel behavior using the big data approach and dynamic representation of activity space in the Greater Los Angeles Area. Unlike traditional travel surveys, social media (e.g., Twitter) provides an inexpensive way of data collection on spatio-temporal footprints. The visualization techniques used in this project are also valuable for analyzing other spatio-temporal data in the exploratory stage, thus leading to informed decisions about generating and testing hypotheses for further investigation. The next step of this research is to separate users into different groups based on gender/ethnic origin and compare their daily trajectory patterns.

Keywords: geovisualization, human mobility pattern, Los Angeles, social media

Procedia PDF Downloads 113
71 Canadian Undergraduate and Graduate Nursing Students: Interest in Education in Medical and Recreational Cannabis for Practice and Career Development

Authors: Margareth S. Zanchetta, Kateryna Metersky, Valerie Tan, Charissa Cordon, Stephanie Lucchese, Yana Siganevich, Prasha Sivasundaram, Truong Binh Nguyen, Imran Qureshi

Abstract:

Due to a new area of practice, Canadian nurses possess knowledge gaps regarding the use of cannabis-based therapies by clients/patients. Education related to medical cannabis (MC) and recreational cannabis (RC) is required to promote nurses’ competency and confidence in supporting clients/patients using MC/RC toward the improvement of health outcomes. A team composed of nursing researchers and undergraduate/graduate students implemented a national survey to explore this theme with the population of undergraduate, graduate (MN and NP), and Post-Diploma (RN Bridging) nursing students enrolled in Canadian Universities Nursing Programs. Upon Research Ethics Board approval, survey recruitment was supported by major nursing stakeholders. The research questions were : (a) Which are the most preferred sources of information on MC/RC for nursing students? (b) Which are the factors and preferred learning modalities that could increase interest in learning about MC/RC, and (c) What are the future career plans among nursing students, and how would they consider the prospective use of cannabis in their practice? The survey was available from Sept. 2022 to Feb. 2023, hosted by a remote platform. An original questionnaire (English-French) was composed of 18 multiple choice questions and 2 open-ended questions. Sociodemographic information and closed-ended responses were compiled as descriptive statistics, while narrative accounts will be analysed through thematic analysis. Respondents (n=153) were from 7 Canadian provinces, national (99%) and international students (1%); the majority of respondents (61%) were in the age range of 21-30 years old. Results indicated that respondents perceive a gap in the undergraduate curriculum on the topics of MC/RC (91%) and that their learning needs include regulations (90%), data on effectiveness (88%), dosing best practices (86%), contraindications (83%), and clinical and medical indications (76%). Respondents reported motivation to learn more about MC/RC through online lectures/videos (65%), e-learning modules or online interactive training (61%), workshops (51%), webinars (36%), and social media (35%). Their primary career-related motivations regarding MC/RC knowledge include enhancing nursing practice (76%), learning about this growing scope of practice (61%), keeping up-to-date responding to scientific curiosity (59%), learning about evidence-based practice (59%), and utilizing alternative forms of medical treatment (37%). Respondents indicated that the integration of topics on cannabis in any course in the undergraduate and/or graduate curriculum would increase their desire to learn about MC/RC as equally as exposure within a clinical setting (75%). The emerging trend in the set of narrative responses (n=130) suggests that respondents believe educational MC/RC content should be integrated into core nursing courses. Respondents also urged educators to be well-informed about evidence-based practice related to MC/RC and to reflect upon stigma and biases surrounding its use. Future knowledge dissemination and translation activities include scholarly products and presentations to stimulate discussion amongst nursing faculty and students, as well as nurses in clinical settings. The goal is to mobilise talents and build collaboration for the development of a socially responsive curriculum on MC/RC competency to address the education-related expectations of all these social actors.

Keywords: Canada, medical cannabis, nursing education, nursing graduate student, nursing undergraduate student, online survey, recreational cannabis

Procedia PDF Downloads 87
70 A Computational Investigation of Potential Drugs for Cholesterol Regulation to Treat Alzheimer’s Disease

Authors: Marina Passero, Tianhua Zhai, Zuyi (Jacky) Huang

Abstract:

Alzheimer’s disease has become a major public health issue, as indicated by the increasing populations of Americans living with Alzheimer’s disease. After decades of extensive research in Alzheimer’s disease, only seven drugs have been approved by Food and Drug Administration (FDA) to treat Alzheimer’s disease. Five of these drugs were designed to treat the dementia symptoms, and only two drugs (i.e., Aducanumab and Lecanemab) target the progression of Alzheimer’s disease, especially the accumulation of amyloid-b plaques. However, controversial comments were raised for the accelerated approvals of either Aducanumab or Lecanemab, especially with concerns on safety and side effects of these two drugs. There is still an urgent need for further drug discovery to target the biological processes involved in the progression of Alzheimer’s disease. Excessive cholesterol has been found to accumulate in the brain of those with Alzheimer’s disease. Cholesterol can be synthesized in both the blood and the brain, but the majority of biosynthesis in the adult brain takes place in astrocytes and is then transported to the neurons via ApoE. The blood brain barrier separates cholesterol metabolism in the brain from the rest of the body. Various proteins contribute to the metabolism of cholesterol in the brain, which offer potential targets for Alzheimer’s treatment. In the astrocytes, SREBP cleavage-activating protein (SCAP) binds to Sterol Regulatory Element-binding Protein 2 (SREBP2) in order to transport the complex from the endoplasmic reticulum to the Golgi apparatus. Cholesterol is secreted out of the astrocytes by ATP-Binding Cassette A1 (ABCA1) transporter. Lipoprotein receptors such as triggering receptor expressed on myeloid cells 2 (TREM2) internalize cholesterol into the microglia, while lipoprotein receptors such as Low-density lipoprotein receptor-related protein 1 (LRP1) internalize cholesterol into the neuron. Cytochrome P450 Family 46 Subfamily A Member 1 (CYP46A1) converts excess cholesterol to 24S-hydroxycholesterol (24S-OHC). Cholesterol has been approved for its direct effect on the production of amyloid-beta and tau proteins. The addition of cholesterol to the brain promotes the activity of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), secretase, and amyloid precursor protein (APP), which all aid in amyloid-beta production. The reduction of cholesterol esters in the brain have been found to reduce phosphorylated tau levels in mice. In this work, a computational pipeline was developed to identify the protein targets involved in cholesterol regulation in brain and further to identify chemical compounds as the inhibitors of a selected protein target. Since extensive evidence shows the strong correlation between brain cholesterol regulation and Alzheimer’s disease, a detailed literature review on genes or pathways related to the brain cholesterol synthesis and regulation was first conducted in this work. An interaction network was then built for those genes so that the top gene targets were identified. The involvement of these genes in Alzheimer’s disease progression was discussed, which was followed by the investigation of existing clinical trials for those targets. A ligand-protein docking program was finally developed to screen 1.5 million chemical compounds for the selected protein target. A machine learning program was developed to evaluate and predict the binding interaction between chemical compounds and the protein target. The results from this work pave the way for further drug discovery to regulate brain cholesterol to combat Alzheimer’s disease.

Keywords: Alzheimer’s disease, drug discovery, ligand-protein docking, gene-network analysis, cholesterol regulation

Procedia PDF Downloads 69
69 Pathophysiological Implications in Immersion Treatment Methods of Icthyophthiriasis Disease in African Catfish (Clarias gariepinus) Using Moringa oleifera Extract

Authors: Ikele Chika Bright, Mgbenka Bernard Obialo, Ikele Chioma Faith

Abstract:

Icthyophthiriasis is a prevalent protozoan (ectoparasite) mostly affecting cultured and aquarium fishes. The majority of the chemotherapeutants lack efficacy for completely eliminating Ich parasite without affecting the environment and they are not safe for human health. The present work is focused on the evaluating different immersion treatments of African catfish (Clarias gariepinus) infected with ichthyophthiriasis and treated with a non-chemical and environmental friendly parasiticides Moringa oleifera. A total number of 800 apparently healthy parasites free (examined) post juvenile catfish were obtained from a reputable farm, disinfected with potassium permanganate in a quarantine tank to remove any possible external parasites. The fish were further challenged with approximately 44,000 infective stages of theronts which were obtained through serial passages by cohabitation. Seven groups (A-G) of post Juvenile were used for the experiment which was carried out into three stages; Dips (60minutes), short term treatment (24-96h) and prolong bath treatment (0-15 days). The concentrations selected were dependent on the outcome of the LC50 of the plant material from which dose-dependent factors were used to select various concentrations of the treatment. In Dips treatment, group D-G were treated with 1,500mg/L, 2500mg/L., 3500mg/L and 4500mg/L, short-term treatment was treated with 150mg/L, 250mg/L, 350mg/L and 450mg/L and prolong bath was treated with 15mg/L, 25mg/L, 35mg/L and 45mg/L of the plant extract whereas group A, B and C were normal control, Ich- infested not treated and Ich- infested treated with standard drug (Acriflavin), respectively. The various types of treatment applied with corresponding concentrations showed almost complete elimination of the adult parasites (trophonts) both in the gills and the body smear, thereby making M. oleifera a potential parasiticides. There were serious pathological alterations in the skin and gills which are usually the main point for Ich parasites invasion but no significant morphological characteristics was noted among the treated groups subjected to different immersion treatment patterns. Epitheliocystis, aneurysm, oedema, hemorrhage, and localization of the adult parasite in the gills were the overall common observations made in the gills whereas degeneration of muscle fibre, dermatitis, hemorrhage, oedema, abscess formation and keratinisation were observed in the skin. However, there are no pathological changes in the control group. Moreover, biochemical parameters such as urea, creatinine, albumin., globulin, total protein, ALT, AST), blood chemistry (sodium, chloride, potassium, bicarbonate), antioxidants (CAT, SOD, GPx, LPO), enzymatic activities (myeloperoxidase, thioreadoxin reductase), Inflammatory response (C-reactive protein), Stress markers (lactate dehydrogenase), heamatological parameters (RBC, PCV, WBC, HB and differential count), lipid profile (total cholesterol, tryglycerides , high density lipoprotein and low density lipoprotein) all showed various significant (P<0.05) and no significant (P>0.05) responses among the Ich-infested fish treated under three immersion treatments. It is suggested that M. oleifera may serve as an alternatives to chemotherapeutants for control of Ichthyophthiriasis in African catfish Clarias gariepinus.

Keywords: Icthyophthirius multifilis, immersion treatment, pathophysiology, African catfish

Procedia PDF Downloads 382
68 Enhanced Bioproduction of Moscatilin in Dendrobium ovatum through Hairy Root Culture

Authors: Ipsita Pujari, Abitha Thomas, Vidhu S. Babu, K. Satyamoorthy

Abstract:

Orchids are esteemed as celebrities in cut flower industry globally, due to their long-lasting fragrance and freshness. Apart from splendor, the unique metabolites endowed with pharmaceutical potency have made them one of the most hunted in plant kingdom. This had led to their trafficking, resulting in habitat loss, subsequently making them occupiers of IUCN red list as RET species. Many of the orchids especially wild varieties still remain undiscovered. In view to protect and conserve the wild germplasm, researchers have been inventing novel micropropagation protocols; thereby conserving Orchids. India is overflowing with exclusive wild cultivars of Orchids, whose pharmaceutical properties remain untapped and are not marketed owing to relatively small flowers. However, their germplasm is quite pertinent to be preserved for making unusual hybrids. Dendrobium genus is the second largest among Orchids exists in India and has highest demand attributable to enduring cut flowers and significant therapeutic uses in traditional medicinal system. Though the genus is quite endemic in Western Ghat regions of the country, many species are still anonymous with their unknown curative properties. A standard breeding cycle in Orchids usually takes five to seven years (Dendrobium hybrids taking a long juvenile phase of two to five years reaching maturity and flowering stage) and this extensive life cycle has always hindered the development of Dendrobium breeding. Dendrobium is reported with essential therapeutic plant bio-chemicals and ‘Moscatilin’ is one, found exclusive to this famous Dendrobium genus. Moscatilin is reported to have anti-mutagenic and anti-cancer properties, whose positive action has very recently been demonstrated against a range of cancers. Our preliminary study here established a simple and economic small-scale propagation protocol of Dendrobium ovatum describing in vitro production of Moscatilin. Subsequently for enhancing the content of Moscatilin, an efficient experimental related to the organization of transgenic (hairy) D. ovatum root cultures through infection of Agrobacterium rhizogenes 2364 strain on MS basal medium is being reported in the present study. Hairy roots generated on almost half of the explants used (spherules, in vitro plantlets and calli) maintained through suspension cultures, after 8 weeks of co-cultivation with Agrobacterium rhizogenes. GFP assay performed with isolated hairy roots has confirmed the integrative transformation which was further positively confirmed by PCR using rolB gene specific primers. Reverse phase-high performance liquid chromatography and mass spectrometry techniques were used for quantification and accurate identification of Moscatilin respectively from transgenic systems. A noticeable ~3 fold increase in contents were observed in transformed D. ovatum root cultures as compared to the simple in vitro culture, callus culture and callus regeneration plantlets. Role of elicitors e.g., Methyl jasmonate, Salicylic acid, Yeast extract and Chitosan were tested for elevating the Moscatilin content to obtain a comprehensive optimized protocol facilitating the in vitro production of valuable Moscatilin with larger yield. This study would provide evidence towards the in vitro assembly of Moscatilin within a short time-period through not a so-expensive technology for the first time. It also serves as an appropriate basis for bioreactor scale-up resulting in commercial bioproduction of Moscatilin.

Keywords: bioproduction, Dendrobium ovatum, hairy root culture, moscatilin

Procedia PDF Downloads 233
67 Ecotoxicological Test-Battery for Efficiency Assessment of TiO2 Assisted Photodegradation of Emerging Micropolluants

Authors: Ildiko Fekete-Kertesz, Jade Chaker, Sylvain Berthelot, Viktoria Feigl, Monika Molnar, Lidia Favier

Abstract:

There has been growing concern about emerging micropollutants in recent years, because of the possible environmental and health risk posed by these substances, which are released into the environment as a consequence of anthropogenic activities. Among them pharmaceuticals are currently not considered under water quality regulations; however, their potential effect on the environment have become more frequent in recent years. Due to the fact that these compounds can be detected in natural water matrices, it can be concluded, that the currently applied water treatment processes are not efficient enough for their effective elimination. To date, advanced oxidation processes (AOPs) are considered as highly competitive water treatment technologies for the removal of those organic micropollutants not treatable by conventional techniques due to their high chemical stability and/or low biodegradability. AOPs such as (photo)chemical oxidation and heterogeneous photocatalysis have proven their potential in degrading harmful organic compounds from aqueous matrices. However, some of these technologies generate reaction by-products, which can even be more toxic to aquatic organisms than the parent compounds. Thus, target compound removal does not necessarily result in the removal of toxicity. Therefore, to evaluate process efficiency the determination of the toxicity and ecotoxicity of the reaction intermediates is crucial to estimate the environmental risk of such techniques. In this context, the present study investigates the effectiveness of TiO2 assisted photodegradation for the removal of emerging water contaminants. Two drugs named losartan (used in high blood pressure medication) and levetiracetam (used to treat epilepsy) were considered in this work. The photocatalytic reactions were carried out with a commercial catalyst usually employed in photocatalysis. Moreover, the toxicity of the by-products generated during the process was assessed with various ecotoxicological methods applying aquatic test organisms from different trophic levels. A series of experiments were performed to evaluate the toxicity of untreated and treated solutions applying the Aliivibrio fischeri bioluminescence inhibition test, the Tetrahymena pyriformis proliferation inhibition test, the Daphnia magna lethality and immobilization tests and the Lemna minor growth inhibition test. The applied ecotoxicological methodology indicated sensitively the toxic effects of the treated and untreated water samples, hence the applied test battery is suitable for the ecotoxicological characterization of TiO2 based photocatalytic water treatment technologies and the indication of the formation of toxic by-products from the parent chemical compounds. Obtained results clearly showed that the TiO2 assisted photodegradation was more efficient in the elimination of losartan than levetiracetam. It was also observed that the treated levetiracetam solutions had more severe effect on the applied test organisms. A possible explanation would be the production of levetiracetam by-products, which are more toxic than the parent compound. The increased toxicity and the risk of formation of toxic metabolites represent one possible limitation to the implementation of photocatalytic treatment using TiO2 for the removal of losartan and levetiracetam. Our results proved that, the battery of ecotoxicity tests used in this work can be a promising investigation tool for the environmental risk assessment of photocatalytic processes.

Keywords: aquatic micropollutants, ecotoxicology, nano titanium dioxide, photocatalysis, water treatment

Procedia PDF Downloads 185
66 Speeding Up Lenia: A Comparative Study Between Existing Implementations and CUDA C++ with OpenGL Interop

Authors: L. Diogo, A. Legrand, J. Nguyen-Cao, J. Rogeau, S. Bornhofen

Abstract:

Lenia is a system of cellular automata with continuous states, space and time, which surprises not only with the emergence of interesting life-like structures but also with its beauty. This paper reports ongoing research on a GPU implementation of Lenia using CUDA C++ and OpenGL Interoperability. We demonstrate how CUDA as a low-level GPU programming paradigm allows optimizing performance and memory usage of the Lenia algorithm. A comparative analysis through experimental runs with existing implementations shows that the CUDA implementation outperforms the others by one order of magnitude or more. Cellular automata hold significant interest due to their ability to model complex phenomena in systems with simple rules and structures. They allow exploring emergent behavior such as self-organization and adaptation, and find applications in various fields, including computer science, physics, biology, and sociology. Unlike classic cellular automata which rely on discrete cells and values, Lenia generalizes the concept of cellular automata to continuous space, time and states, thus providing additional fluidity and richness in emerging phenomena. In the current literature, there are many implementations of Lenia utilizing various programming languages and visualization libraries. However, each implementation also presents certain drawbacks, which serve as motivation for further research and development. In particular, speed is a critical factor when studying Lenia, for several reasons. Rapid simulation allows researchers to observe the emergence of patterns and behaviors in more configurations, on bigger grids and over longer periods without annoying waiting times. Thereby, they enable the exploration and discovery of new species within the Lenia ecosystem more efficiently. Moreover, faster simulations are beneficial when we include additional time-consuming algorithms such as computer vision or machine learning to evolve and optimize specific Lenia configurations. We developed a Lenia implementation for GPU using the C++ and CUDA programming languages, and CUDA/OpenGL Interoperability for immediate rendering. The goal of our experiment is to benchmark this implementation compared to the existing ones in terms of speed, memory usage, configurability and scalability. In our comparison we focus on the most important Lenia implementations, selected for their prominence, accessibility and widespread use in the scientific community. The implementations include MATLAB, JavaScript, ShaderToy GLSL, Jupyter, Rust and R. The list is not exhaustive but provides a broad view of the principal current approaches and their respective strengths and weaknesses. Our comparison primarily considers computational performance and memory efficiency, as these factors are critical for large-scale simulations, but we also investigate the ease of use and configurability. The experimental runs conducted so far demonstrate that the CUDA C++ implementation outperforms the other implementations by one order of magnitude or more. The benefits of using the GPU become apparent especially with larger grids and convolution kernels. However, our research is still ongoing. We are currently exploring the impact of several software design choices and optimization techniques, such as convolution with Fast Fourier Transforms (FFT), various GPU memory management scenarios, and the trade-off between speed and accuracy using single versus double precision floating point arithmetic. The results will give valuable insights into the practice of parallel programming of the Lenia algorithm, and all conclusions will be thoroughly presented in the conference paper. The final version of our CUDA C++ implementation will be published on github and made freely accessible to the Alife community for further development.

Keywords: artificial life, cellular automaton, GPU optimization, Lenia, comparative analysis.

Procedia PDF Downloads 36