Search results for: optimal shape design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16581

Search results for: optimal shape design

13971 A Modularized Sensing Platform for Sensor Design Demonstration

Authors: Chun-Ming Huang, Yi-Jun Liu, Yi-Jie Hsieh, Jin-Ju Chue, Wei-Lin Lai, Chun-Yu Chen, Chih-Chyau Yang, Chien-Ming Wu

Abstract:

The market of wearable devices has been growing rapidly in two years. The integration of sensors and wearable devices has become the trend of the next technology products. Thus, the academics and industries are eager to cultivate talented persons in sensing technology. Currently, academic and industries have more and more demands on the integrations of versatile sensors and applications, especially for the teams who focus on the development of sensor circuit architectures. These teams tape-out many MEMs sensors chips through the chip fabrication service from National Chip Implementation Center (CIC). However, most of these teams are only able to focus on the circuit design of MEMs sensors; they lack the key support of further system demonstration. This paper follows the CIC’s main mission of promoting the chip/system advanced design technology and aims to establish the environments of the modularized sensing system platform and the system design flow with the measurement and calibration technology. These developed environments are used to support these research teams and help academically advanced sensor designs to perform the system demonstration. Thus, the research groups can promote and transfer their advanced sensor designs to industrial and further derive the industrial economic values. In this paper, the modularized sensing platform is proposed to enable the system demonstration for advanced sensor chip design. The environment of sensor measurement and calibration is established for academic to achieve an accurate sensor result. Two reference sensor designs cooperated with the modularized sensing platform are given to show the sensing system integration and demonstration. These developed environments and platforms are currently provided to academics in Taiwan, and so that the academics can obtain a better environment to perform the system demonstration and improve the research and teaching quality.

Keywords: modularized sensing platform, sensor design and calibration, sensor system, sensor system design flow

Procedia PDF Downloads 235
13970 Conceptual Design of Experimental Helium Cooling Loop for Indian TBM R&D Experiments

Authors: B. K. Yadav, A. Gandhi, A. K. Verma, T. S. Rao, A. Saraswat, E. R. Kumar, M. Sarkar, K. N. Vyas

Abstract:

This paper deals with the conceptual design of Experimental Helium Cooling Loop (EHCL) for Indian Test Blanket Module (TBM) and its related thermal hydraulic experiments. Indian TBM team is developing Lead Lithium cooled Ceramic Breeder (IN-LLCB) TBM to be tested in ITER. The TBM box structure is cooled by high pressure (8 MPa) and high temperature (300-500C) helium gas. The first wall of TBM made of complex channel geometry having several parallel channels carrying helium gas for efficient heat extraction. Several mock-ups of these channels need to be tested before finalizing the TBM first wall design and fabrication. Besides the individual testing of such mock-ups of breeding blanket, the testing of Pb-Li to helium heat exchanger, the operational experience of helium loop and understanding of the behaviour of high pressure and high temperature system components are very essential for final development of Helium Cooling System for LLCB TBM in ITER. The main requirements and characteristics of the EHCL and its conceptual design are presented in this paper.

Keywords: DEMO, EHCL, ITER, LLCB TBM

Procedia PDF Downloads 384
13969 Mannequin Evaluation of 3D-Printed Intermittent Oro-Esophageal Tube Guide for Dysphagia

Authors: Yujin Jeong, Youkyung Son, Myounghwan Choi, Sanghyub Lee, Sangyeol Lee, Changho Hwang, Kyo-in Koo

Abstract:

Dysphasia is difficulty in swallowing food because of oral cavity impairments induced by stroke, muscle damage, tumor. Intermittent oro-esophageal (IOE) tube feeding is one of the well-known feeding methods for the dysphasia patients. However, it is hard to insert at the proper position in esophagus. In this study, we design and fabricate the IOE tube guide using 3-dimensional (3D) printer. The printed IOE tube is tested in a mannequin (Airway Management Trainer, Co., Ltd., Copenhagen, Denmark) mimicking human’s esophagus. The gag reflex point is measured as the design point in the mannequin. To avoid the gag reflex, we design various shapes of IOE tube guide. One structure is separated into three parts; biting part, part through oral cavity, connecting part to oro-esophageal. We designed 6 types of IOE tube guide adjusting length and angle of these three parts. To evaluate the IOE tube guide, it is inserted in the mannequin, and through the inserted guide, an endoscopic camera successfully arrived at the oro-esophageal. We had planned to apply this mannequin-based design experience to patients in near future.

Keywords: dysphagia, feeding method, IOE tube guide, 3-D printer

Procedia PDF Downloads 434
13968 Smart Interior Design: A Revolution in Modern Living

Authors: Fatemeh Modirzare

Abstract:

Smart interior design represents a transformative approach to creating living spaces that integrate technology seamlessly into our daily lives, enhancing comfort, convenience, and sustainability. This paper explores the concept of smart interior design, its principles, benefits, challenges, and future prospects. It also highlights various examples and applications of smart interior design to illustrate its potential in shaping the way we live and interact with our surroundings. In an increasingly digitized world, the boundaries between technology and interior design are blurring. Smart interior design, also known as intelligent or connected interior design, involves the incorporation of advanced technologies and automation systems into residential and commercial spaces. This innovative approach aims to make living environments more efficient, comfortable, and adaptable while promoting sustainability and user well-being. Smart interior design seamlessly integrates technology into the aesthetics and functionality of a space, ensuring that devices and systems do not disrupt the overall design. Sustainable materials, energy-efficient systems, and eco-friendly practices are central to smart interior design, reducing environmental impact. Spaces are designed to be adaptable, allowing for reconfiguration to suit changing needs and preferences. Smart homes and spaces offer greater comfort through features like automated climate control, adjustable lighting, and customizable ambiance. Smart interior design can significantly reduce energy consumption through optimized heating, cooling, and lighting systems. Smart interior design integrates security systems, fire detection, and emergency response mechanisms for enhanced safety. Sustainable materials, energy-efficient appliances, and waste reduction practices contribute to a greener living environment. Implementing smart interior design can be expensive, particularly when retrofitting existing spaces with smart technologies. The increased connectivity raises concerns about data privacy and cybersecurity, requiring robust measures to protect user information. Rapid advancements in technology may lead to obsolescence, necessitating updates and replacements. Users must be familiar with smart systems to fully benefit from them, requiring education and ongoing support. Residential spaces incorporate features like voice-activated assistants, automated lighting, and energy management systems. Intelligent office design enhances productivity and employee well-being through smart lighting, climate control, and meeting room booking systems. Hospitals and healthcare facilities use smart interior design for patient monitoring, wayfinding, and energy conservation. Smart retail design includes interactive displays, personalized shopping experiences, and inventory management systems. The future of smart interior design holds exciting possibilities, including AI-powered design tools that create personalized spaces based on user preferences. Smart interior design will increasingly prioritize factors that improve physical and mental health, such as air quality monitoring and mood-enhancing lighting. Smart interior design is revolutionizing the way we interact with our living and working spaces. By embracing technology, sustainability, and user-centric design principles, smart interior design offers numerous benefits, from increased comfort and convenience to energy efficiency and sustainability. Despite challenges, the future holds tremendous potential for further innovation in this field, promising a more connected, efficient, and harmonious way of living and working.

Keywords: smart interior design, home automation, sustainable living spaces, technological integration, user-centric design

Procedia PDF Downloads 72
13967 The Design and Construction of the PV-Wind Autonomous System for Greenhouse Plantations in Central Thailand

Authors: Napat Watjanatepin, Wikorn Wong-Satiean

Abstract:

The objective of this research is to design and construct the PV-Wind hybrid autonomous system for the greenhouse plantation, and analyze the technical performance of the PV-Wind energy system. This design depends on the water consumption in the greenhouse by using 24 of the fogging mist each with the capability of 24 liter/min. The operating time is 4 times per day, each round for 15 min. The fogging system is being driven by water pump with AC motor rating 0.5 hp. The load energy consumed is around 1.125 kWh/d. The designing results of the PV-Wind hybrid energy system is that sufficient energy could be generated by this system. The results of this study can be applied as a technical data reference for other areas in the central part of Thailand.

Keywords: PV-Wind hybrid autonomous system, greenhouse plantation, fogging system, central part of Thailand

Procedia PDF Downloads 314
13966 Characterizing the Rectification Process for Designing Scoliosis Braces: Towards Digital Brace Design

Authors: Inigo Sanz-Pena, Shanika Arachchi, Dilani Dhammika, Sanjaya Mallikarachchi, Jeewantha S. Bandula, Alison H. McGregor, Nicolas Newell

Abstract:

The use of orthotic braces for adolescent idiopathic scoliosis (AIS) patients is the most common non-surgical treatment to prevent deformity progression. The traditional method to create an orthotic brace involves casting the patient’s torso to obtain a representative geometry, which is then rectified by an orthotist to the desired geometry of the brace. Recent improvements in 3D scanning technologies, rectification software, CNC, and additive manufacturing processes have given the possibility to compliment, or in some cases, replace manual methods with digital approaches. However, the rectification process remains dependent on the orthotist’s skills. Therefore, the rectification process needs to be carefully characterized to ensure that braces designed through a digital workflow are as efficient as those created using a manual process. The aim of this study is to compare 3D scans of patients with AIS against 3D scans of both pre- and post-rectified casts that have been manually shaped by an orthotist. Six AIS patients were recruited from the Ragama Rehabilitation Clinic, Colombo, Sri Lanka. All patients were between 10 and 15 years old, were skeletally immature (Risser grade 0-3), and had Cobb angles between 20-45°. Seven spherical markers were placed at key anatomical locations on each patient’s torso and on the pre- and post-rectified molds so that distances could be reliably measured. 3D scans were obtained of 1) the patient’s torso and pelvis, 2) the patient’s pre-rectification plaster mold, and 3) the patient’s post-rectification plaster mold using a Structure Sensor Mark II 3D scanner (Occipital Inc., USA). 3D stick body models were created for each scan to represent the distances between anatomical landmarks. The 3D stick models were used to analyze the changes in position and orientation of the anatomical landmarks between scans using Blender open-source software. 3D Surface deviation maps represented volume differences between the scans using CloudCompare open-source software. The 3D stick body models showed changes in the position and orientation of thorax anatomical landmarks between the patient and the post-rectification scans for all patients. Anatomical landmark position and volume differences were seen between 3D scans of the patient’s torsos and the pre-rectified molds. Between the pre- and post-rectified molds, material removal was consistently seen on the anterior side of the thorax and the lateral areas below the ribcage. Volume differences were seen in areas where the orthotist planned to place pressure pads (usually at the trochanter on the side to which the lumbar curve was tilted (trochanter pad), at the lumbar apical vertebra (lumbar pad), on the rib connected to the apical vertebrae at the mid-axillary line (thoracic pad), and on the ribs corresponding to the upper thoracic vertebra (axillary extension pad)). The rectification process requires the skill and experience of an orthotist; however, this study demonstrates that the brace shape, location, and volume of material removed from the pre-rectification mold can be characterized and quantified. Results from this study can be fed into software that can accelerate the brace design process and make steps towards the automated digital rectification process.

Keywords: additive manufacturing, orthotics, scoliosis brace design, sculpting software, spinal deformity

Procedia PDF Downloads 147
13965 Intercultural Intelligence: How to Turn Cultural Difference into a Key Added Value with Tree Lighting Design Project Examples

Authors: Fanny Soulard

Abstract:

Today work environment is more multicultural than ever: spatial limits have been blown out, encouraging people and ideas mobility all around the globe. Indeed, opportunities to design with culturally diverse team workers, clients, or end-users, have become within everyone's reach. We enjoy traveling to discover other civilizations, but when it comes to business, we often take for granted that our own work methodology will be generic enough to federate each party and cover the project needs. This paper aims to explore why, by skipping cultural awareness, we often create misunderstandings, frustration, and even counterproductive design. Tree lighting projects successively developed by a French lighting studio, a Vietnamese lighting studio, and an Australian Engineering company will be assessed from their concept stage to completion. All these study cases are based in Vietnam, where the construction market is equally led by local and international consultants. Core criteria such as lighting standard reference, service scope, communication tools, internal team organization, delivery package content, key priorities, and client relationship will help to spot and list when and how cultural diversity has impacted the design output and effectiveness. On the second hand, we will demonstrate through the same selected projects how intercultural intelligence tools and mindset can not only respond positively to previous situations and avoid major clashes but also turn cultural differences into a key added value to generate significant benefits for individuals, teams, and companies. By understanding the major importance of including a cultural factor within any design, intercultural intelligence will quickly turn out as a “must have” skill to be developed and acquired by any designer.

Keywords: intercultural intelligence, lighting design, work methodology, multicultural diversity

Procedia PDF Downloads 95
13964 Determination of Brominated Flame Retardants In Recycled Plastic Toys Using Thermal Desorption GC/MS

Authors: Athena Nguyen, Rojin Belganeh

Abstract:

In recycling plastics industries, waste plastics are converted into monomers and other useful molecules by chemical reactions. Thermal energy generated by incineration is recovered when waste plastics melt. During the process, Flame retardants containing products get in, and brominated flame retardants (BFRs) are often used to reduce the flammability of products. Some of the originally formulated brominated flame retardants additives are restricted by the RoHS Directive, such as PBDE and PBB. The determination of BFRs other than those restricted by the RoHS directive is required. Frontier Lab developed a pyrolyzer based on the vertical micro-furnace design. The multi-mode pyrolyzer with different modes of operations, including evolve gas analysis (EGA), flash pyrolysis, thermal desorption, heart cutting, allows users to choose among the techniques for their analysis purposes. The method requires very little sample preparation. The first step is to perform an EGA using temperature programs. This technique provides information about the thermal temperature behaviors of the sample. The EGA thermogram is then used to determine the next steps in the analysis process. In this presentation, with an Optimal thermal temperature zone identified based on EGA thermogram, thermal desorption GC/MS is a chosen technique for the determination of brominated flame retardants in recycled plastic toys. Five types of general-purpose brominated flame retardants other than those restricted by the RoHS Directive are determined by the standard addition method.

Keywords: gas chromatography/mass spectrometry, pyrolysis, pyrolyzer, thermal desorption-GC/MS

Procedia PDF Downloads 193
13963 Development of Kenaf Cellulose CNT Paper for Electrical Conductive Paper

Authors: A. W. Fareezal, R. Rosazley, M. A. Izzati, M. Z. Shazana, I. Rushdan

Abstract:

Kenaf cellulose CNT paper production was for lightweight, high strength and excellent flexibility electrical purposes. Aqueous dispersions of kenaf cellulose and varied weight percentage of CNT were combined with the assistance of PEI solution by using ultrasonic probe. The solution was dried using vacuum filter continued with air drying in condition room for 2 days. Circle shape conductive paper was characterized with Fourier transformed infrared (FTIR) spectra, scanning electron microscopy (SEM) and therma gravimetric analysis (TGA).

Keywords: cellulose, CNT paper, PEI solution, electrical conductive paper

Procedia PDF Downloads 240
13962 Design and Characterization of a CMOS Process Sensor Utilizing Vth Extractor Circuit

Authors: Rohana Musa, Yuzman Yusoff, Chia Chieu Yin, Hanif Che Lah

Abstract:

This paper presents the design and characterization of a low power Complementary Metal Oxide Semiconductor (CMOS) process sensor. The design is targeted for implementation using Silterra’s 180 nm CMOS process technology. The proposed process sensor employs a voltage threshold (Vth) extractor architecture for detection of variations in the fabrication process. The process sensor generates output voltages in the range of 401 mV (fast-fast corner) to 443 mV (slow-slow corner) at nominal condition. The power dissipation for this process sensor is 6.3 µW with a supply voltage of 1.8V with a silicon area of 190 µm X 60 µm. The preliminary result of this process sensor that was fabricated indicates a close resemblance between test and simulated results.

Keywords: CMOS process sensor, PVT sensor, threshold extractor circuit, Vth extractor circuit

Procedia PDF Downloads 175
13961 Performance Enhancement of Hybrid Racing Car by Design Optimization

Authors: Tarang Varmora, Krupa Shah, Karan Patel

Abstract:

Environmental pollution and shortage of conventional fuel are the main concerns in the transportation sector. Most of the vehicles use an internal combustion engine (ICE), powered by gasoline fuels. This results into emission of toxic gases. Hybrid electric vehicle (HEV) powered by electric machine and ICE is capable of reducing emission of toxic gases and fuel consumption. However to build HEV, it is required to accommodate motor and batteries in the vehicle along with engine and fuel tank. Thus, overall weight of the vehicle increases. To improve the fuel economy and acceleration, the weight of the HEV can be minimized. In this paper, the design methodology to reduce the weight of the hybrid racing car is proposed. To this end, the chassis design is optimized. Further, attempt is made to obtain the maximum strength with minimum material weight. The best configuration out of the three main configurations such as series, parallel and the dual-mode (series-parallel) is chosen. Moreover, the most suitable type of motor, battery, braking system, steering system and suspension system are identified. The racing car is designed and analyzed in the simulating software. The safety of the vehicle is assured by performing static and dynamic analysis on the chassis frame. From the results, it is observed that, the weight of the racing car is reduced by 11 % without compromising on safety and cost. It is believed that the proposed design and specifications can be implemented practically for manufacturing hybrid racing car.

Keywords: design optimization, hybrid racing car, simulation, vehicle, weight reduction

Procedia PDF Downloads 296
13960 Customers Preference towards Islamic Banking in Ethiopia and Its Determinants: A PLS-SEM Analysis

Authors: Anwar Adem

Abstract:

Purpose: This study aimed to examine the socioeconomic, religious, and institutional factors affecting customers towards Islamic Banking in Ethiopia. Design/methodology/approach: This study employed a partial Least Square -structural equation modelling (PLS-SEM) to analyse survey data collected from Customer of Islamic Banking in Ethiopia in the capital city Addis Ababa, using a structured questionnaire with a 5-point Likert scale. Convenience and snowball sampling were used to obtain a broad sample of respondents. The sample size was 310. Findings: The findings indicate that Zakat literacy, high religiosity level, Islamic Bank Service Quality, and Awareness about Islamic Banking operations significantly influence customers' preference towards Islamic banking in Ethiopia. However, competitive pricing was found to have an insignificant effect on customers' preference for Islamic banking in this context. Practical implications: These findings underscore the need for the Islamic banking industry should initiate comprehensive awareness campaigns to promote Islamic banking products and their alignment with human welfare and adherence to Shariah principles. These campaigns should be conducted collaboratively by Islamic banks in partnership with renowned religious scholars from the respective region or territory to ensure maximum effectiveness. Additionally, policymakers, regulatory bodies, and particularly higher education institutions should foster a robust understanding of Islamic finance principles and products among consumers. Originality/value: This study provides unique insights into the determinants that shape customers' preference towards Islamic Banking in Ethiopia. The findings provide a foundation for developing superior quality of service delivery by Islamic banks that aligns with Ethiopia’s sociocultural dynamics.

Keywords: Zakat literacy, religiosity, customer preference, awareness

Procedia PDF Downloads 9
13959 Occipital Squama Convexity and Neurocranial Covariation in Extant Homo sapiens

Authors: Miranda E. Karban

Abstract:

A distinctive pattern of occipital squama convexity, known as the occipital bun or chignon, has traditionally been considered a derived Neandertal trait. However, some early modern and extant Homo sapiens share similar occipital bone morphology, showing pronounced internal and external occipital squama curvature and paralambdoidal flattening. It has been posited that these morphological patterns are homologous in the two groups, but this claim remains disputed. Many developmental hypotheses have been proposed, including assertions that the chignon represents a developmental response to a long and narrow cranial vault, a narrow or flexed basicranium, or a prognathic face. These claims, however, remain to be metrically quantified in a large subadult sample, and little is known about the feature’s developmental, functional, or evolutionary significance. This study assesses patterns of chignon development and covariation in a comparative sample of extant human growth study cephalograms. Cephalograms from a total of 549 European-derived North American subjects (286 male, 263 female) were scored on a 5-stage ranking system of chignon prominence. Occipital squama shape was found to exist along a continuum, with 34 subjects (6.19%) possessing defined chignons, and 54 subjects (9.84%) possessing very little occipital squama convexity. From this larger sample, those subjects represented by a complete radiographic series were selected for metric analysis. Measurements were collected from lateral and posteroanterior (PA) cephalograms of 26 subjects (16 male, 10 female), each represented at 3 longitudinal age groups. Age group 1 (range: 3.0-6.0 years) includes subjects during a period of rapid brain growth. Age group 2 (range: 8.0-9.5 years) includes subjects during a stage in which brain growth has largely ceased, but cranial and facial development continues. Age group 3 (range: 15.9-20.4 years) includes subjects at their adult stage. A total of 16 landmarks and 153 sliding semi-landmarks were digitized at each age point, and geometric morphometric analyses, including relative warps analysis and two-block partial least squares analysis, were conducted to study covariation patterns between midsagittal occipital bone shape and other aspects of craniofacial morphology. A convex occipital squama was found to covary significantly with a low, elongated neurocranial vault, and this pattern was found to exist from the youngest age group. Other tested patterns of covariation, including cranial and basicranial breadth, basicranial angle, midcoronal cranial vault shape, and facial prognathism, were not found to be significant at any age group. These results suggest that the chignon, at least in this sample, should not be considered an independent feature, but rather the result of developmental interactions relating to neurocranial elongation. While more work must be done to quantify chignon morphology in fossil subadults, this study finds no evidence to disprove the developmental homology of the feature in modern humans and Neandertals.

Keywords: chignon, craniofacial covariation, human cranial development, longitudinal growth study, occipital bun

Procedia PDF Downloads 202
13958 Improvement of Fixed Offshore Structures' Boat Landing Performance Using Practicable Design Criteria

Authors: A. Hamadelnil, Z. Razak, E. Matsoom

Abstract:

Boat landings on fixed offshore structure are designed to absorb the impact energy from the boats approaching the platform for crew transfer. As the size and speed of operating boats vary, the design and maintenance of the boat landings become more challenging. Different oil and gas operators adopting different design criteria for the boat landing design in the region of South East Asia. Rubber strip is used to increase the capacity of the boat landing in absorbing bigger impact energy. Recently, it has been reported that all the rubber strips peel off the boat landing frame within one to two years, and replacement is required to avoid puncturing of the boat’s hull by the exposed sharp edges and bolts used to secure the rubber strip. The capacity of the boat landing in absorbing the impact energy is reduced after the failure of the rubber strip and results in failure of the steel members. The replacement of the rubber strip is costly as it requires a diving spread. The objective of this study is to propose the most practicable criteria to be adopted by oil and gas operators in the design of the boat landings in the region of South East Asia to improve the performance of the boat landing and assure safe operation and cheaper maintenance. This study explores the current design and maintenance challenges of boat landing and compares between the criteria adopted by different operators. In addition, this study explains the reasons behind the denting of many of the boat landing. It also evaluates the effect of grout and rubber strip in the capacity of the boat landing and jacket legs and highlight. Boat landing model and analysis using USFOS and SACS software are carried out and presented in this study considering different design criteria. This study proposes the most practicable criteria to be used in designing the boat landing in South East Asia region to save cost and achieve better performance, safe operation and less cost and maintenance.

Keywords: boat landing, grout, plastic hinge, rubber strip

Procedia PDF Downloads 302
13957 The Co-Simulation Interface SystemC/Matlab Applied in JPEG and SDR Application

Authors: Walid Hassairi, Moncef Bousselmi, Mohamed Abid

Abstract:

Functional verification is a major part of today’s system design task. Several approaches are available for verification on a high abstraction level, where designs are often modeled using MATLAB/Simulink. However, different approaches are a barrier to a unified verification flow. In this paper, we propose a co-simulation interface between SystemC and MATLAB and Simulink to enable functional verification of multi-abstraction levels designs. The resulting verification flow is tested on JPEG compression algorithm. The required synchronization of both simulation environments, as well as data type conversion is solved using the proposed co-simulation flow. We divided into two encoder jpeg parts. First implemented in SystemC which is the DCT is representing the HW part. Second, consisted of quantization and entropy encoding which is implemented in Matlab is the SW part. For communication and synchronization between these two parts we use S-Function and engine in Simulink matlab. With this research premise, this study introduces a new implementation of a Hardware SystemC of DCT. We compare the result of our simulation compared to SW / SW. We observe a reduction in simulation time you have 88.15% in JPEG and the design efficiency of the supply design is 90% in SDR.

Keywords: hardware/software, co-design, co-simulation, systemc, matlab, s-function, communication, synchronization

Procedia PDF Downloads 407
13956 Pressure Surge Analysis for Al Gardabiya Pump Station Phase III of the Man-Made River Project

Authors: Ahmed Bensreti, Mohamed Gouarsha

Abstract:

This paper presents a review of the pressure surge simulations carried out for Phase III of the Man Made River project in Libya with particular emphasis on the transient generated by simultaneous pump trips at Al Gardabiya Pump Station. The omission of the surge vessel check valve and bypass system on the grounds of cost, ease of design, and construction will result in, as expected, increased surge fluctuations as the damping effect in the form was removed. From the hydraulic and control requirements, it is recommended for Al Gardabiya Pump station that the check valve and check valve bypass be included in the final surge vessel design.

Keywords: computational fluid dynamics, surge vessel design, transient surge analysis, water pipe hydraulics

Procedia PDF Downloads 74
13955 Assessment of the Effect of Building Materials on Indoor Comfort and Energy Demand of Residential Buildings in Jos: An Experimental and Numerical Approach

Authors: Selfa Johnson Zwalnan, Nanchen Nimyel Caleb, Gideon Duvuna Ayuba

Abstract:

Air conditioning accounts for a significant share of the overall energy consumed in residential buildings. Solar thermal gains in buildings account for a significant component of the air conditioning load in buildings. This study compares the solar thermal gain and air conditioning load of a proposed building design with a typical conventional building in the climatic conditions of Jos, Nigeria, using a combined experimental and computational method using TRNSYS software. According to the findings of this study, the proposed design building's annual average solar thermal gains are lower compared to the reference building's average solar heat gains. The study case building's decreased solar heat gain is mostly attributable to the somewhat lower temperature of the building zones because of the greater building volume and lower fenestration ratio (ratio of external opening area to the area of the external walls). This result shows that the innovative building design adjusts to the local climate better than the standard conventional construction in Jos to maintain a suitable temperature within the building. This finding means that the air-conditioning electrical energy consumption per volume of the proposed building design will be lower than that of a conventional building design.

Keywords: building simulation, solar gain, comfort temperature, temperature, carbon foot print

Procedia PDF Downloads 95
13954 Energy Efficiency of Secondary Refrigeration with Phase Change Materials and Impact on Greenhouse Gases Emissions

Authors: Michel Pons, Anthony Delahaye, Laurence Fournaison

Abstract:

Secondary refrigeration consists of splitting large-size direct-cooling units into volume-limited primary cooling units complemented by secondary loops for transporting and distributing cold. Such a design reduces the refrigerant leaks, which represents a source of greenhouse gases emitted into the atmosphere. However, inserting the secondary circuit between the primary unit and the ‘users’ heat exchangers (UHX) increases the energy consumption of the whole process, which induces an indirect emission of greenhouse gases. It is thus important to check whether that efficiency loss is sufficiently limited for the change to be globally beneficial to the environment. Among the likely secondary fluids, phase change slurries offer several advantages: they transport latent heat, they stabilize the heat exchange temperature, and the formerly evaporators still can be used as UHX. The temperature level can also be adapted to the desired cooling application. Herein, the slurry {ice in mono-propylene-glycol solution} (melting temperature Tₘ of 6°C) is considered for food preservation, and the slurry {mixed hydrate of CO₂ + tetra-n-butyl-phosphonium-bromide in aqueous solution of this salt + CO₂} (melting temperature Tₘ of 13°C) is considered for air conditioning. For the sake of thermodynamic consistency, the analysis encompasses the whole process, primary cooling unit plus secondary slurry loop, and the various properties of the slurries, including their non-Newtonian viscosity. The design of the whole process is optimized according to the properties of the chosen slurry and under explicit constraints. As a first constraint, all the units must deliver the same cooling power to the user. The other constraints concern the heat exchanges areas, which are prescribed, and the flow conditions, which prevent deposition of the solid particles transported in the slurry, and their agglomeration. Minimization of the total energy consumption leads to the optimal design. In addition, the results are analyzed in terms of exergy losses, which allows highlighting the couplings between the primary unit and the secondary loop. One important difference between the ice-slurry and the mixed-hydrate one is the presence of gaseous carbon dioxide in the latter case. When the mixed-hydrate crystals melt in the UHX, CO₂ vapor is generated at a rate that depends on the phase change kinetics. The flow in the UHX, and its heat and mass transfer properties are significantly modified. This effect has never been investigated before. Lastly, inserting the secondary loop between the primary unit and the users increases the temperature difference between the refrigerated space and the evaporator. This results in a loss of global energy efficiency, and therefore in an increased energy consumption. The analysis shows that this loss of efficiency is not critical in the first case (Tₘ = 6°C), while the second case leads to more ambiguous results, partially because of the higher melting temperature.The consequences in terms of greenhouse gases emissions are also analyzed.

Keywords: exergy, hydrates, optimization, phase change material, thermodynamics

Procedia PDF Downloads 132
13953 Performance Improvement in a Micro Compressor for Micro Gas Turbine Using Computational Fluid Dynamics

Authors: Kamran Siddique, Hiroyuki Asada, Yoshifumi Ogami

Abstract:

Micro gas turbine (MGT) nowadays has a wide variety of applications from drones to hybrid electric vehicles. As microfabrication technology getting better, the size of MGT is getting smaller. Overall performance of MGT is dependent on the individual components. Each component’s performance is dependent and interrelated with another component. Therefore, careful consideration needs to be given to each and every individual component of MGT. In this study, the focus is on improving the performance of the compressor in order to improve the overall performance of MGT. Computational Fluid Dynamics (CFD) is being performed using the software FLUENT to analyze the design of a micro compressor. Operating parameters like mass flow rate and RPM, and design parameters like inner blade angle (IBA), outer blade angle (OBA), blade thickness and number of blades are varied to study its effect on the performance of the compressor. Pressure ratio is used as a tool to measure the performance of the compressor. Higher the pressure ratio, better the design is. In the study, target mass flow rate is 0.2 g/s and RPM to be less than or equal to 900,000. So far, a pressure ratio of above 3 has been achieved at 0.2 g/s mass flow rate with 5 rotor blades, 0.36 mm blade thickness, 94.25 degrees OBA and 10.46 degrees IBA. The design in this study differs from a regular centrifugal compressor used in conventional gas turbines such that compressor is designed keeping in mind ease of manufacturability. So, this study proposes a compressor design which has a good pressure ratio, and at the same time, it is easy to manufacture using current microfabrication technologies.

Keywords: computational fluid dynamics, FLUENT microfabrication, RPM

Procedia PDF Downloads 162
13952 Advancing Urban Sustainability through Data-Driven Machine Learning Solutions

Authors: Nasim Eslamirad, Mahdi Rasoulinezhad, Francesco De Luca, Sadok Ben Yahia, Kimmo Sakari Lylykangas, Francesco Pilla

Abstract:

With the ongoing urbanization, cities face increasing environmental challenges impacting human well-being. To tackle these issues, data-driven approaches in urban analysis have gained prominence, leveraging urban data to promote sustainability. Integrating Machine Learning techniques enables researchers to analyze and predict complex environmental phenomena like Urban Heat Island occurrences in urban areas. This paper demonstrates the implementation of data-driven approach and interpretable Machine Learning algorithms with interpretability techniques to conduct comprehensive data analyses for sustainable urban design. The developed framework and algorithms are demonstrated for Tallinn, Estonia to develop sustainable urban strategies to mitigate urban heat waves. Geospatial data, preprocessed and labeled with UHI levels, are used to train various ML models, with Logistic Regression emerging as the best-performing model based on evaluation metrics to derive a mathematical equation representing the area with UHI or without UHI effects, providing insights into UHI occurrences based on buildings and urban features. The derived formula highlights the importance of building volume, height, area, and shape length to create an urban environment with UHI impact. The data-driven approach and derived equation inform mitigation strategies and sustainable urban development in Tallinn and offer valuable guidance for other locations with varying climates.

Keywords: data-driven approach, machine learning transparent models, interpretable machine learning models, urban heat island effect

Procedia PDF Downloads 41
13951 Urban Design for Autonomous Vehicles

Authors: Narjis Zehra

Abstract:

After automobile revolution 1.0, we have automobile revolution 2.0 standing at the horizon, Autonomous Vehicles (AVs). While the technology is developing into more adaptable form, the conversations around its impact on our cities have already started on multiple scales, from academic institutions and community town halls, to the offices of mayors. In order to explore more the AVs impact on Urban transformation, we first inquire if cities can be redesigned or rebuilt. Secondly, we discuss expectation management for the public and policy in terms of what people think/believe AV technology will deliver, and what the current technological evidence suggests the technology and its adoption will look like. Thirdly, based on these discussions, we take Pittsburgh, PA, as a case study to extrapolate what other cities might need to do in order to prepare themselves for the upcoming technological revolution, that may impact more than just the research institutes. Finally, we conclude by suggesting a political way forward to embed urban design with AV technology for equitable cities of tomorrow.

Keywords: urban design, autonomous vehicles, transformation, policy

Procedia PDF Downloads 108
13950 Using Genetic Algorithm to Organize Sustainable Urban Landscape in Historical Part of City

Authors: Shahab Mirzaean Mahabadi, Elham Ebrahimi

Abstract:

The urban development process in the historical urban context has predominately witnessed two main approaches: the first is the Preservation and conservation of the urban fabric and its value, and the second approach is urban renewal and redevelopment. The latter is generally supported by political and economic aspirations. These two approaches conflict evidently. The authors go through the history of urban planning in order to review the historical development of the mentioned approaches. In this article, various values which are inherent in the historical fabric of a city are illustrated by emphasizing on cultural identity and activity. In the following, it is tried to find an optimized plan which maximizes economic development and minimizes change in historical-cultural sites simultaneously. In the proposed model, regarding the decision maker’s intention, and the variety of functions, the selected zone is divided into a number of components. For each component, different alternatives can be assigned, namely, renovation, refurbishment, destruction, and change in function. The decision Variable in this model is to choose an alternative for each component. A set of decisions made upon all components results in a plan. A plan developed in this way can be evaluated based on the decision maker’s point of view. That is, interactions between selected alternatives can make a foundation for the assessment of urban context to design a historical-cultural landscape. A genetic algorithm (GA) approach is used to search for optimal future land use within the historical-culture landscape for a sustainable high-growth city.

Keywords: urban sustainability, green city, regeneration, genetic algorithm

Procedia PDF Downloads 69
13949 Comparative Morphometric Analysis of Yelganga-Shivbhadra and Kohilla River Sub-Basins in Aurangabad District Maharashtra India

Authors: Chandrakant Gurav, Md Babar, Ajaykumar Asode

Abstract:

Morphometric analysis is the first stage of any basin analysis. By using these morphometric parameters we give indirect information about the nature and relations of stream with other streams, Geology of the area, groundwater condition and tectonic history of the basin. In the present study, Yelganga, Shivbhadra and Kohilla rivers, tributaries of the Godavari River in Aurangabad district, Maharashtra, India are considered to compare and study their morphometric characters. The linear, areal and relief morphometric aspects of the sub-basins have been assessed and evaluated in GIS environment. For this study, ArcGIS 10.1 software has been used for delineating, digitizing and generating different thematic maps. The Survey of India (SOI) toposheets maps and Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) on resolution 30 m downloaded from United States Geological Survey (USGS) have been used for preparation of map and data generation. Geologically, the study area is covered by Central Deccan Volcanic Province (CDVP). It mainly consists of ‘aa’ type of basaltic lava flows of Late (upper) Cretaceous to Early (lower) Eocene age. The total geographical area of Yelganga, Shivbhadra and Kohilla river sub-basins are 185.5 sq. km., 142.6 sq. km and 122.3 sq. km. respectively The stream ordering method as suggested by the Strahler has been employed for present study and found that all the sub-basins are of 5th order streams. The average bifurcation ratio value of the sub-basins is below 5, indicates that there appears to be no strong structural control on drainage development, homogeneous nature of lithology and drainage network is in well-developed stage of erosion. The drainage density of Yelganga, Shivbhadra and Kohilla Sub-basins is 1.79 km/km2, 1.48 km/km2 and 1.89 km/km2 respectively and stream frequency is 1.94 streams/km2, 1.19 streams/km2 and 1.68 streams/km2 respectively, indicating semi-permeable sub-surface. Based on textural ratio values it indicates that the sub-basins have coarse texture. Shape parameters such as form factor ratio, circularity ratio and elongation ratio values shows that all three sub- basins are elongated in shape.

Keywords: GIS, Kohilla, morphometry, Shivbhadra, Yelganga

Procedia PDF Downloads 157
13948 Enhanced Model for Risk-Based Assessment of Employee Security with Bring Your Own Device Using Cyber Hygiene

Authors: Saidu I. R., Shittu S. S.

Abstract:

As the trend of personal devices accessing corporate data continues to rise through Bring Your Own Device (BYOD) practices, organizations recognize the potential cost reduction and productivity gains. However, the associated security risks pose a significant threat to these benefits. Often, organizations adopt BYOD environments without fully considering the vulnerabilities introduced by human factors in this context. This study presents an enhanced assessment model that evaluates the security posture of employees in BYOD environments using cyber hygiene principles. The framework assesses users' adherence to best practices and guidelines for maintaining a secure computing environment, employing scales and the Euclidean distance formula. By utilizing this algorithm, the study measures the distance between users' security practices and the organization's optimal security policies. To facilitate user evaluation, a simple and intuitive interface for automated assessment is developed. To validate the effectiveness of the proposed framework, design science research methods are employed, and empirical assessments are conducted using five artifacts to analyze user suitability in BYOD environments. By addressing the human factor vulnerabilities through the assessment of cyber hygiene practices, this study aims to enhance the overall security of BYOD environments and enable organizations to leverage the advantages of this evolving trend while mitigating potential risks.

Keywords: security, BYOD, vulnerability, risk, cyber hygiene

Procedia PDF Downloads 77
13947 Investigation into the Suitability of Aggregates for Use in Superpave Design Method

Authors: Ahmad Idris, Armaya`u Suleiman Labo, Ado Yusuf Abdulfatah, Murtala Umar

Abstract:

Super pave is the short form of Superior Performing Asphalt Pavement and represents a basis for specifying component materials, asphalt mixture design and analysis, and pavement performance prediction. This new technology is the result of long research projects conducted by the strategic Highway Research program (SHRP) of the Federal Highway Administration. This research was aimed at examining the suitability of Aggregates found in Kano for used in super pave design method. Aggregates samples were collected from different sources in Kano Nigeria and their Engineering properties, as they relate to the SUPERPAVE design requirements were determined. The average result of Coarse Aggregate Angularity in Kano was found to be 87% and 86% of one fractured face and two or more fractured faces respectively with a standard of 80% and 85% respectively. Fine Aggregate Angularity average result was found to be 47% with a requirement of 45% minimum. A flat and elongated particle which was found to be 10% has a maximum criterion of 10%. Sand equivalent was found to be 51% with the criteria of 45% minimum. Strength tests were also carried out, and the results reflect the requirements of the standards. The tests include Impact value test, Aggregate crushing value and Aggregate Abrasion tests and the results are 27.5%, 26.7% and 13% respectively with a maximum criteria of 30%. Specific gravity was also carried out and the result was found to have an average value of 2.52 with a criterion of 2.6 to 2.9 and Water absorption was found to be 1.41% with maximum criteria of 0.6%. From the study, the result of the tests indicated that the aggregates properties have met the requirements of Super pave design method based on the specifications of ASTMD 5821, ASTM D 4791, AASHTO T176, AASHTO T33 and BS815.

Keywords: aggregates, construction, road design, super pave

Procedia PDF Downloads 238
13946 A Postcolonial View Analysis on the Structural Rationalism Influence in Indonesian Modern Architecture

Authors: Ryadi Adityavarman

Abstract:

The study is an analysis by using the postcolonial theoretical lens on the search for a distinctive architectural identity by architect Maclaine Pont in Indonesia in the early twentieth century. Influenced by progressive architectural thinking and enlightened humanism at the time, Pont applied the fundamental principles of Structural Rationalism by using a creative combination of traditional Indonesian architectural typology and innovative structural application. The interpretive design strategy also celebrated creative use of local building materials with sensible tropical climate design response. Moreover, his holistic architectural scheme, including inclusion of local custom of building construction, represents the notion of Gesamkunstwerk. By using such hybrid strategy, Maclaine Pont intended to preserve the essential cultural identity and vernacular architecture of the indigenous. The study will chronologically investigate the evolution of Structural Rationalism architecture philosophy of Viollet-le-Duc to Hendrik Berlage’s influential design thinking in the Dutch modern architecture, and subsequently to the Maclaine Pont’s innovative design in Indonesia. Consequently, the morphology analysis on his exemplary design works of ITB campus (1923) and Pohsarang Church (1936) is to understand the evolutionary influence of Structural Rationalism theory. The postmodern analysis method is to highlight the validity of Pont’s idea in the contemporary Indonesian architecture within the culture of globalism era.

Keywords: Indonesian modern architecture, postcolonial, structural rationalism, critical regionalism

Procedia PDF Downloads 341
13945 Comparison of Cyclone Design Methods for Removal of Fine Particles from Plasma Generated Syngas

Authors: Mareli Hattingh, I. Jaco Van der Walt, Frans B. Waanders

Abstract:

A waste-to-energy plasma system was designed by Necsa for commercial use to create electricity from unsorted municipal waste. Fly ash particles must be removed from the syngas stream at operating temperatures of 1000 °C and recycled back into the reactor for complete combustion. A 2D2D high efficiency cyclone separator was chosen for this purpose. During this study, two cyclone design methods were explored: The Classic Empirical Method (smaller cyclone) and the Flow Characteristics Method (larger cyclone). These designs were optimized with regard to efficiency, so as to remove at minimum 90% of the fly ash particles of average size 10 μm by 50 μm. Wood was used as feed source at a concentration of 20 g/m3 syngas. The two designs were then compared at room temperature, using Perspex test units and three feed gases of different densities, namely nitrogen, helium and air. System conditions were imitated by adapting the gas feed velocity and particle load for each gas respectively. Helium, the least dense of the three gases, would simulate higher temperatures, whereas air, the densest gas, simulates a lower temperature. The average cyclone efficiencies ranged between 94.96% and 98.37%, reaching up to 99.89% in individual runs. The lowest efficiency attained was 94.00%. Furthermore, the design of the smaller cyclone proved to be more robust, while the larger cyclone demonstrated a stronger correlation between its separation efficiency and the feed temperatures. The larger cyclone can be assumed to achieve slightly higher efficiencies at elevated temperatures. However, both design methods led to good designs. At room temperature, the difference in efficiency between the two cyclones was almost negligible. At higher temperatures, however, these general tendencies are expected to be amplified so that the difference between the two design methods will become more obvious. Though the design specifications were met for both designs, the smaller cyclone is recommended as default particle separator for the plasma system due to its robust nature.

Keywords: Cyclone, design, plasma, renewable energy, solid separation, waste processing

Procedia PDF Downloads 214
13944 Study of Effect of Gear Tooth Accuracy on Transmission Mount Vibration

Authors: Kalyan Deepak Kolla, Ketan Paua, Rajkumar Bhagate

Abstract:

Transmission dynamics occupy major role in customer perception of the product in both senses of touch and quality of sound. The quantity and quality of sound perceived is more concerned with the whine noise of the gears engaged. Whine noise is tonal in nature and tonal noises cause fatigue and irritation to customers, which in turn affect the quality of the product. Transmission error is the usual suspect for whine noise, which can be caused due to misalignments, tolerances, manufacturing variabilities. In-cabin noise is also more sensitive to the gear design. As the details of the gear tooth design and manufacturing are in microns, anything out of the tolerance zone, either in design or manufacturing, will cause a whine noise. This will also cause high variation in stress and deformation due to change in the load and leads to the fatigue failure of the gears. Hence gear design and development take priority in the transmission development process. This paper aims to study such variability by considering five pairs of helical spur gears and their effect on the transmission error, contact pattern and vibration level on the transmission.

Keywords: gears, whine noise, manufacturing variability, mount vibration variability

Procedia PDF Downloads 151
13943 The Influence of the Laws of Ergonomics on the Design of High-Rise Buildings

Authors: Valery A. Aurov, Maria D. Bausheva, Elena V. Uliyanova

Abstract:

The problems of sustainability of contemporary high-rise buildings now demand an altogether new approach, which corresponds with the laws of dialectics. We should imply the principle “going from mega-object to the so called mezzo-object.” So the scientists have arrived at the conclusion that a contemporary “skyscraper” must not increase in height but develop horizontal space axes which unite a complex of high-rise buildings into a single composition. This is necessary both for safety issues and increasing skyscrapers’ functioning qualities. As a result, architects single out a quality unit in a dominating group of high-rise constructions and make a conclusion about the influence of visual fields on the designing parameters of this group.

Keywords: design, high-rise buildings, skyscrapers, sustainability, visual fields, dominating group, regulations, design recommendations

Procedia PDF Downloads 373
13942 The Four Pillars of Islamic Design: A Methodology for an Objective Approach to the Design and Appraisal of Islamic Urban Planning and Architecture Based on Traditional Islamic Religious Knowledge

Authors: Azzah Aldeghather, Sara Alkhodair

Abstract:

In the modern urban planning and architecture landscape, with western ideologies and styles becoming the mainstay of experience and definitions globally, the Islamic world requires a methodology that defines its expression, which transcends cultural, societal, and national styles. This paper will propose a methodology as an objective system to define, evaluate and apply traditional Islamic knowledge to Islamic urban planning and architecture, providing the Islamic world with a system to manifest its approach to design. The methodology is expressed as Four Pillars which are based on traditional meanings of Arab words roughly translated as Pillar One: The Principles (Al Mabade’), Pillar Two: The Foundations (Al Asas), Pillar Three: The Purpose (Al Ghaya), Pillar Four: Presence (Al Hadara). Pillar One: (The Principles) expresses the unification (Tawheed) pillar of Islam: “There is no God but God” and is comprised of seven principles listed as: 1. Human values (Qiyam Al Insan), 2. Universal language as sacred geometry, 3. Fortitude© and Benefitability©, 4. Balance and Integration: conjoining the opposites, 5. Man, time, and place, 6. Body, mind, spirit, and essence, 7. Unity of design expression to achieve unity, harmony, and security in design. Pillar Two: The Foundations is based on two foundations: “Muhammad is the Prophet of God” and his relationship to the renaming of Medina City as a prototypical city or place, which defines a center space for collection conjoined by an analysis of the Medina Charter as a base for the humanistic design. Pillar Three: The Purpose (Al Ghaya) is comprised of four criteria: The naming of the design as a title, the intention of the design as an end goal, the reasoning behind the design, and the priorities of expression. Pillar Four: Presence (Al Hadara) is usually translated as a civilization; in Arabic, the root of Hadara is to be present. This has five primary definitions utilized to express the act of design: Wisdom (Hikma) as a philosophical concept, Identity (Hawiya) of the form, and Dialogue (Hiwar), which are the requirements of the project vis-a-vis what the designer wishes to convey, Expression (Al Ta’abeer) the designer wishes to apply, and Resources (Mawarid) available. The Proposal will provide examples, where applicable, of past and present designs that exemplify the manifestation of the Pillars. The proposed methodology endeavors to return Islamic urban planning and architecture design to its a priori position as a leading design expression adaptable to any place, time, and cultural expression while providing a base for analysis that transcends the concept of style and external form as a definition and expresses the singularity of the esoteric “Spiritual” aspects in a rational, principled, and logical manner clearly addressed in Islam’s essence.

Keywords: Islamic architecture, Islamic design, Islamic urban planning, principles of Islamic design

Procedia PDF Downloads 107