Search results for: non-linear dynamics features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7784

Search results for: non-linear dynamics features

5174 Energy Consumption, Population and Economic Development Dynamics in Nigeria: An Empirical Evidence

Authors: Evelyn Nwamaka Ogbeide-Osaretin, Bright Orhewere

Abstract:

This study examined the role of the population in the linkage between energy consumption and economic development in Nigeria. Time series data on energy consumption, population, and economic development were used for the period 1995 to 2020. The Autoregressive Distributed Lag -Error Correction Model (ARDL-ECM) was engaged. Economic development had a negative substantial impact on energy consumption in the long run. Population growth had a positive significant effect on energy consumption. Government expenditure was also found to impact the level of energy consumption, while energy consumption is not a function of oil price in Nigeria.

Keywords: dynamic analysis, energy consumption, population, economic development, Nigeria

Procedia PDF Downloads 186
5173 Estimation of Seismic Deformation Demands of Tall Buildings with Symmetric Setbacks

Authors: Amir Alirezaei, Shahram Vahdani

Abstract:

This study estimates the seismic demands of tall buildings with central symmetric setbacks by using nonlinear time history analysis. Three setback structures, all 60-story high with setback in three levels, are used for evaluation. The effects of irregularities occurred by setback, are evaluated by determination of global-drift, story-displacement and story drift. Story-displacement is modified by roof displacement and first story displacement and story drift is modified by global drift. All results are calculated at the center of mass and in x and y direction. Also the absolute values of these quantities are determined. The results show that increasing of vertical irregularities increases the global drift of the structure and enlarges the deformations in the height of the structure. It is also observed that the effects of geometry irregularity in the seismic deformations of setback structures are higher than those of mass irregularity.

Keywords: deformation demand, drift, setback, tall building

Procedia PDF Downloads 426
5172 Modelling Fluidization by Data-Based Recurrence Computational Fluid Dynamics

Authors: Varun Dongre, Stefan Pirker, Stefan Heinrich

Abstract:

Over the last decades, the numerical modelling of fluidized bed processes has become feasible even for industrial processes. Commonly, continuous two-fluid models are applied to describe large-scale fluidization. In order to allow for coarse grids novel two-fluid models account for unresolved sub-grid heterogeneities. However, computational efforts remain high – in the order of several hours of compute-time for a few seconds of real-time – thus preventing the representation of long-term phenomena such as heating or particle conversion processes. In order to overcome this limitation, data-based recurrence computational fluid dynamics (rCFD) has been put forward in recent years. rCFD can be regarded as a data-based method that relies on the numerical predictions of a conventional short-term simulation. This data is stored in a database and then used by rCFD to efficiently time-extrapolate the flow behavior in high spatial resolution. This study will compare the numerical predictions of rCFD simulations with those of corresponding full CFD reference simulations for lab-scale and pilot-scale fluidized beds. In assessing the predictive capabilities of rCFD simulations, we focus on solid mixing and secondary gas holdup. We observed that predictions made by rCFD simulations are highly sensitive to numerical parameters such as diffusivity associated with face swaps. We achieved a computational speed-up of four orders of magnitude (10,000 time faster than classical TFM simulation) eventually allowing for real-time simulations of fluidized beds. In the next step, we apply the checkerboarding technique by introducing gas tracers subjected to convection and diffusion. We then analyze the concentration profiles by observing mixing, transport of gas tracers, insights about the convective and diffusive pattern of the gas tracers, and further towards heat and mass transfer methods. Finally, we run rCFD simulations and calibrate them with numerical and physical parameters compared with convectional Two-fluid model (full CFD) simulation. As a result, this study gives a clear indication of the applicability, predictive capabilities, and existing limitations of rCFD in the realm of fluidization modelling.

Keywords: multiphase flow, recurrence CFD, two-fluid model, industrial processes

Procedia PDF Downloads 80
5171 Numerical Study of Two Mechanical Stirring Systems for Yield Stress Fluid

Authors: Amine Benmoussa, Mebrouk Rebhi, Rahmani Lakhdar

Abstract:

Mechanically agitated vessels are commonly used for various operations within a wide range process in chemical, pharmaceutical, polymer, biochemical, mineral, petroleum industries. Depending on the purpose of the operation carried out in mixer, the best choice for geometry of the tank and agitator type can vary widely. In this paper, the laminar 2D agitation flow and power consumption of viscoplastic fluids with straight and circular gate impellers in a stirring tank is studied by using computational fluid dynamics (CFD), where the velocity profile, the velocity fields and power consumption was analyzed.

Keywords: CFD, mechanical stirring, power consumption, yield stress fluid

Procedia PDF Downloads 358
5170 Between a Rock and a Hard Place: The Impact of Inflation on Global Supply Chains

Authors: Elad Harison

Abstract:

The paper identifies the complex links between post-COVID-19 inflationary pressures and global supply chains. Throughout the COVID-19 lockdowns and long periods after the termination of social distancing policies, consumers, notably in the U.S., have confronted and still face disruptions in the supply of goods. The study analyzes the monetary policy in the U.S. that led to the significant shift in consumer demand during a limited supply period, hence resulting in shortages and emphasizing inflationary dynamics. We argue that the monetary guidelines applied by the U.S. government further elevated the scope of supply chain disruptions.

Keywords: consumer demand, COVID-19, inflation, monetary policy, supply chain

Procedia PDF Downloads 96
5169 Optimization of Switched Reluctance Motor for Drive System in Automotive Applications

Authors: A. Peniak, J. Makarovič, P. Rafajdus, P. Dúbravka

Abstract:

The purpose of this work is to optimize a Switched Reluctance Motor (SRM) for an automotive application, specifically for a fully electric car. A new optimization approach is proposed. This unique approach transforms automotive customer requirements into an optimization problem, based on sound knowledge of a SRM theory. The approach combines an analytical and a finite element analysis of the motor to quantify static nonlinear and dynamic performance parameters, as phase currents and motor torque maps, an output power and power losses in order to find the optimal motor as close to the reality as possible, within reasonable time. The new approach yields the optimal motor which is competitive with other types of already proposed motors for automotive applications. This distinctive approach can also be used to optimize other types of electrical motors, when parts specifically related to the SRM are adjusted accordingly.

Keywords: automotive, drive system, electric car, finite element method, hybrid car, optimization, switched reluctance motor

Procedia PDF Downloads 524
5168 Optimum Parameter of a Viscous Damper for Seismic and Wind Vibration

Authors: Soltani Amir, Hu Jiaxin

Abstract:

Determination of optimal parameters of a passive control system device is the primary objective of this study. Expanding upon the use of control devices in wind and earthquake hazard reduction has led to development of various control systems. The advantage of non-linearity characteristics in a passive control device and the optimal control method using LQR algorithm are explained in this study. Finally, this paper introduces a simple approach to determine optimum parameters of a nonlinear viscous damper for vibration control of structures. A MATLAB program is used to produce the dynamic motion of the structure considering the stiffness matrix of the SDOF frame and the non-linear damping effect. This study concluded that the proposed system (variable damping system) has better performance in system response control than a linear damping system. Also, according to the energy dissipation graph, the total energy loss is greater in non-linear damping system than other systems.

Keywords: passive control system, damping devices, viscous dampers, control algorithm

Procedia PDF Downloads 475
5167 A Study of Structural Damage Detection for Spacecraft In-Orbit Based on Acoustic Sensor Array

Authors: Lei Qi, Rongxin Yan, Lichen Sun

Abstract:

With the increasing of human space activities, the number of space debris has increased dramatically, and the possibility that spacecrafts on orbit are impacted by space debris is growing. A method is of the vital significance to real-time detect and assess spacecraft damage, determine of gas leak accurately, guarantee the life safety of the astronaut effectively. In this paper, acoustic sensor array is used to detect the acoustic signal which emits from the damage of the spacecraft on orbit. Then, we apply the time difference of arrival and beam forming algorithm to locate the damage and leakage. Finally, the extent of the spacecraft damage is evaluated according to the nonlinear ultrasonic method. The result shows that this method can detect the debris impact and the structural damage, locate the damage position, and identify the damage degree effectively. This method can meet the needs of structural damage detection for the spacecraft in-orbit.

Keywords: acoustic sensor array, spacecraft, damage assessment, leakage location

Procedia PDF Downloads 300
5166 Approaches to Valuing Ecosystem Services in Agroecosystems From the Perspectives of Ecological Economics and Agroecology

Authors: Sandra Cecilia Bautista-Rodríguez, Vladimir Melgarejo

Abstract:

Climate change, loss of ecosystems, increasing poverty, increasing marginalization of rural communities and declining food security are global issues that require urgent attention. In this regard, a great deal of research has focused on how agroecosystems respond to these challenges as they provide ecosystem services (ES) that lead to higher levels of resilience, adaptation, productivity and self-sufficiency. Hence, the valuing of ecosystem services plays an important role in the decision-making process for the design and management of agroecosystems. This paper aims to define the link between ecosystem service valuation methods and ES value dimensions in agroecosystems from ecological economics and agroecology. The method used to identify valuation methodologies was a literature review in the fields of Agroecology and Ecological Economics, based on a strategy of information search and classification. The conceptual framework of the work is based on the multidimensionality of value, considering the social, ecological, political, technological and economic dimensions. Likewise, the valuation process requires consideration of the ecosystem function associated with ES, such as regulation, habitat, production and information functions. In this way, valuation methods for ES in agroecosystems can integrate more than one value dimension and at least one ecosystem function. The results allow correlating the ecosystem functions with the ecosystem services valued, and the specific tools or models used, the dimensions and valuation methods. The main methodologies identified are multi-criteria valuation (1), deliberative - consultative valuation (2), valuation based on system dynamics modeling (3), valuation through energy or biophysical balances (4), valuation through fuzzy logic modeling (5), valuation based on agent-based modeling (6). Amongst the main conclusions, it is highlighted that the system dynamics modeling approach has a high potential for development in valuation processes, due to its ability to integrate other methods, especially multi-criteria valuation and energy and biophysical balances, to describe through causal cycles the interrelationships between ecosystem services, the dimensions of value in agroecosystems, thus showing the relationships between the value of ecosystem services and the welfare of communities. As for methodological challenges, it is relevant to achieve the integration of tools and models provided by different methods, to incorporate the characteristics of a complex system such as the agroecosystem, which allows reducing the limitations in the processes of valuation of ES.

Keywords: ecological economics, agroecosystems, ecosystem services, valuation of ecosystem services

Procedia PDF Downloads 128
5165 Unraveling Language Dynamics: A Case Study of Language in Education in Pakistan

Authors: Naseer Ahmad

Abstract:

This research investigates the intricate dynamics of language policy, ideology, and the choice of educational language as a medium of instruction in rural Pakistan. Focused on addressing the complexities of language practices in underexplored educational contexts, the study employed a case study approach, analyzing interviews with education authorities, teachers, and students, alongside classroom observations in English-medium and Urdu-medium rural schools. The research underscores the significance of understanding linguistic diversity within rural communities. The analysis of interviews and classroom observations revealed that language policies in rural schools are influenced by multiple factors, including historical legacies, societal language ideologies, and government directives. The dominance of Urdu and English as the preferred languages of instruction reflected a broader language hierarchy, where regional languages are often marginalized. This language ideology perpetuates a sense of linguistic inferiority among students who primarily speak regional languages. The impact of language choices on students' learning experiences and outcomes is a central focus of the research. It became evident that while policies advocate for specific language practices, the implementation often diverges due to multifarious socio-cultural, economic, and institutional factors. This disparity significantly impacts the effectiveness of educational processes, influencing pedagogical approaches, student engagement, academic outcomes, social mobility, and language choices. Based on the findings, the study concluded that due to policy and practice gap, rural people have complex perceptions and language choices. They perceived Urdu as a national, lingua franca, cultural, easy, or low-status language. They perceived English as an international, lingua franca, modern, difficult, or high-status language. They perceived other languages as mother tongue, local, religious, or irrelevant languages. This research provided insights that are crucial for theory, policy, and practice, addressing educational inequities and inclusive language policies. It set the stage for further research and advocacy efforts in the realm of language policies in diverse educational settings.

Keywords: language-in-education policy, language ideology, educational language choice, pakistan

Procedia PDF Downloads 78
5164 Characterization of Surface Microstructures on Bio-Based PLA Fabricated with Nano-Imprint Lithography

Authors: D. Bikiaris, M. Nerantzaki, I. Koliakou, A. Francone, N. Kehagias

Abstract:

In the present study, the formation of structures in poly(lactic acid) (PLA) has been investigated with respect to producing areas of regular, superficial features with dimensions comparable to those of cells or biological macromolecules. Nanoimprint lithography, a method of pattern replication in polymers, has been used for the production of features ranging from tens of micrometers, covering areas up to 1 cm², down to hundreds of nanometers. Both micro- and nano-structures were faithfully replicated. Potentially, PLA has wide uses within biomedical fields, from implantable medical devices, including screws and pins, to membrane applications, such as wound covers, and even as an injectable polymer for, for example, lipoatrophy. The possibility of fabricating structured PLA surfaces, with structures of the dimensions associated with cells or biological macro- molecules, is of interest in fields such as cellular engineering. Imprint-based technologies have demonstrated the ability to selectively imprint polymer films over large areas resulting in 3D imprints over flat, curved or pre-patterned surfaces. Here, we compare nano-patterned with nano-patterned by nanoimprint lithography (NIL) PLA film. A silicon nanostructured stamp (provided by Nanotypos company) having positive and negative protrusions was used to pattern PLA films by means of thermal NIL. The polymer film was heated from 40°C to 60°C above its Tg and embossed with a pressure of 60 bars for 3 min. The stamp and substrate were demolded at room temperature. Scanning electron microscope (SEM) images showed good replication fidelity of the replicated Si stamp. Contact-angle measurements suggested that positive microstructuring of the polymer (where features protrude from the polymer surface) produced a more hydrophilic surface than negative micro-structuring. The ability to structure the surface of the poly(lactic acid), allied to the polymer’s post-processing transparency and proven biocompatibility. Films produced in this were also shown to enhance the aligned attachment behavior and proliferation of Wharton’s Jelly Mesenchymal Stem cells, leading to the observed growth contact guidance. The bacterial attachment patterns of some bacteria, highlighted that the nano-patterned PLA structure can reduce the propensity for the bacteria to attach to the surface, with a greater bactericidal being demonstrated activity against the Staphylococcus aureus cells. These biocompatible, micro- and nanopatterned PLA surfaces could be useful for polymer– cell interaction experiments at dimensions at, or below, that of individual cells. Indeed, post-fabrication modification of the microstructured PLA surface, with materials such as collagen (which can further reduce the hydrophobicity of the surface), will extend the range of applications, possibly through the use of PLA’s inherent biodegradability. Further study is being undertaken to examine whether these structures promote cell growth on the polymer surface.

Keywords: poly(lactic acid), nano-imprint lithography, anti-bacterial properties, PLA

Procedia PDF Downloads 334
5163 Critical Buckling Load of Carbon Nanotube with Non-Local Timoshenko Beam Using the Differential Transform Method

Authors: Tayeb Bensattalah, Mohamed Zidour, Mohamed Ait Amar Meziane, Tahar Hassaine Daouadji, Abdelouahed Tounsi

Abstract:

In this paper, the Differential Transform Method (DTM) is employed to predict and to analysis the non-local critical buckling loads of carbon nanotubes with various end conditions and the non-local Timoshenko beam described by single differential equation. The equation differential of buckling of the nanobeams is derived via a non-local theory and the solution for non-local critical buckling loads is finding by the DTM. The DTM is introduced briefly. It can easily be applied to linear or nonlinear problems and it reduces the size of computational work. Influence of boundary conditions, the chirality of carbon nanotube and aspect ratio on non-local critical buckling loads are studied and discussed. Effects of nonlocal parameter, ratios L/d, the chirality of single-walled carbon nanotube, as well as the boundary conditions on buckling of CNT are investigated.

Keywords: boundary conditions, buckling, non-local, differential transform method

Procedia PDF Downloads 305
5162 Nonlinear Analysis with Failure Using the Boundary Element Method

Authors: Ernesto Pineda Leon, Dante Tolentino Lopez, Janis Zapata Lopez

Abstract:

The current paper shows the application of the boundary element method for the analysis of plates under shear stress causing plasticity. In this case, the shear deformation of a plate is considered by means of the Reissner’s theory. The probability of failure of a Reissner’s plate due to a proposed index plastic behavior is calculated taken into account the uncertainty in mechanical and geometrical properties. The problem is developed in two dimensions. The classic plasticity’s theory is applied and a formulation for initial stresses that lead to the boundary integral equations due to plasticity is also used. For the plasticity calculation, the Von Misses criteria is used. To solve the non-linear equations an incremental method is employed. The results show a relatively small failure probability for the ranges of loads between 0.6 and 1.0. However, for values between 1.0 and 2.5, the probability of failure increases significantly. Consequently, for load bigger than 2.5 the plate failure is a safe event. The results are compared to those that were found in the literature and the agreement is good.

Keywords: boundary element method, failure, plasticity, probability

Procedia PDF Downloads 312
5161 Postbuckling Analysis of End Supported Rods under Self-Weight Using Intrinsic Coordinate Finite Elements

Authors: C. Juntarasaid, T. Pulngern, S. Chucheepsakul

Abstract:

A formulation of postbuckling analysis of end supported rods under self-weight has been presented by the variational method. The variational formulation involving the strain energy due to bending and the potential energy of the self-weight, are expressed in terms of the intrinsic coordinates. The variational formulation is accomplished by introducing the Lagrange multiplier technique to impose the boundary conditions. The finite element method is used to derive a system of nonlinear equations resulting from the stationary of the total potential energy and then Newton-Raphson iterative procedure is applied to solve this system of equations. The numerical results demonstrate the postbluckled configurations of end supported rods under self-weight. This finite element method based on variational formulation expressed in term of intrinsic coordinate is highly recommended for postbuckling analysis of end-supported rods under self-weight.

Keywords: postbuckling, finite element method, variational method, intrinsic coordinate

Procedia PDF Downloads 161
5160 Convergence of Sinc Methods Applied to Kuramoto-Sivashinsky Equation

Authors: Kamel Al-Khaled

Abstract:

A comparative study of the Sinc-Galerkin and Sinc-Collocation methods for solving the Kuramoto-Sivashinsky equation is given. Both approaches depend on using Sinc basis functions. Firstly, a numerical scheme using Sinc-Galerkin method is developed to approximate the solution of Kuramoto-Sivashinsky equation. Sinc approximations to both derivatives and indefinite integrals reduces the solution to an explicit system of algebraic equations. The error in the solution is shown to converge to the exact solution at an exponential. The convergence proof of the solution for the discrete system is given using fixed-point iteration. Secondly, a combination of a Crank-Nicolson formula in the time direction, with the Sinc-collocation in the space direction is presented, where the derivatives in the space variable are replaced by the necessary matrices to produce a system of algebraic equations. The methods are tested on two examples. The demonstrated results show that both of the presented methods more or less have the same accuracy.

Keywords: Sinc-Collocation, nonlinear PDEs, numerical methods, fixed-point

Procedia PDF Downloads 474
5159 Studying Perceived Stigma, Economic System Justification and Social Mobility Beliefs of Socially Vulnerable (Poor) People: The Case of Georgia

Authors: Nazi Pharsadanishvili, Anastasia Kitiashvili

Abstract:

The importance of studying the social-psychological features of people living in poverty is often emphasized in international research. Building a multidimensional economic framework for reducing poverty grounded in people’s experiences and values is the main goal of famous Poverty Research Centers (such as Oxford Poverty and Human Development Initiative, Abdul Latif Jameel Poverty Action Lab). The aims of the proposed research are to investigate the following characteristics of socially vulnerable people living in Georgia: 1) The features of the perceived stigma of poverty; 2) economic system justification and social justice beliefs; 3) Perceived social mobility and actual attempts at upward social mobility. Qualitative research was conducted to address the indicated research goals and descriptive research questions. Conducting in-depth interviews was considered to be the most appropriate method to capture the vivid feelings and experiences of people living in poverty. 17 respondents (registered in the unified database of socially vulnerable families) participated in in-depth interviews. According to the research results, socially vulnerable people living in Georgia perceive stigma targeted toward them. Two sub-dimensions were identified in perceived stigma: experienced stigma and internalized stigma. Experienced stigma reflects the instances of being discriminated and perceptions of negative treatment from other members of society. Internalized stigma covers negative personal emotions, the feelings of shame, the fear of future stigmatization, and self-isolation. The attitudes and justifications of the existing economic system affect people’s attempts to cope with poverty. Complex analysis of those results is important during the planning and implementing of social welfare reforms. Particularly, it is important to implement poverty stigma reduction mechanisms and help socially vulnerable people to see real perspectives on upward social mobility.

Keywords: coping with poverty, economic system justification, perceived stigma of poverty, upward social mobility

Procedia PDF Downloads 193
5158 Influence of Flexural Reinforcement on the Shear Strength of RC Beams Without Stirrups

Authors: Guray Arslan, Riza Secer Orkun Keskin

Abstract:

Numerical investigations were conducted to study the influence of flexural reinforcement ratio on the diagonal cracking strength and ultimate shear strength of reinforced concrete (RC) beams without stirrups. Three-dimensional nonlinear finite element analyses (FEAs) of the beams with flexural reinforcement ratios ranging from 0.58% to 2.20% subjected to a mid-span concentrated load were carried out. It is observed that the load-deflection and load-strain curves obtained from the numerical analyses agree with those obtained from the experiments. It is concluded that flexural reinforcement ratio has a significant effect on the shear strength and deflection capacity of RC beams without stirrups. The predictions of the diagonal cracking strength and ultimate shear strength of beams obtained by using the equations defined by a number of codes and researchers are compared with each other and with the experimental values.

Keywords: finite element, flexural reinforcement, reinforced concrete beam, shear strength

Procedia PDF Downloads 332
5157 Climate Related Variability and Stock-Recruitment Relationship of the North Pacific Albacore Tuna

Authors: Ashneel Ajay Singh, Naoki Suzuki, Kazumi Sakuramoto,

Abstract:

The North Pacific albacore (Thunnus alalunga) is a temperate tuna species distributed in the North Pacific which is of significant economic importance to the Pacific Island Nations and Territories. Despite its importance, the stock dynamics and ecological characteristics of albacore still, have gaps in knowledge. The stock-recruitment relationship of the North Pacific stock of albacore tuna was investigated for different density-dependent effects and a regime shift in the stock characteristics in response to changes in environmental and climatic conditions. Linear regression analysis for recruit per spawning biomass (RPS) and recruitment (R) against the female spawning stock biomass (SSB) were significant for the presence of different density-dependent effects and positive for a regime shift in the stock time series. Application of Deming regression to RPS against SSB with the assumption for the presence of observation and process errors in both the dependent and independent variables confirmed the results of simple regression. However, R against SSB results disagreed given variance level of < 3 and agreed with linear regression results given the assumption of variance ≥ 3. Assuming the presence of different density-dependent effects in the albacore tuna time series, environmental and climatic condition variables were compared with R, RPS, and SSB. The significant relationship of R, RPS and SSB were determined with the sea surface temperature (SST), Pacific Decadal Oscillation (PDO) and multivariate El Niño Southern Oscillation (ENSO) with SST being the principal variable exhibiting significantly similar trend with R and RPS. Recruitment is significantly influenced by the dynamics of the SSB as well as environmental conditions which demonstrates that the stock-recruitment relationship is multidimensional. Further investigation of the North Pacific albacore tuna age-class and structure is necessary for further support the results presented here. It is important for fishery managers and decision makers to be vigilant of regime shifts in environmental conditions relating to albacore tuna as it may possibly cause regime shifts in the albacore R and RPS which should be taken into account to effectively and sustainability formulate harvesting plans and management of the species in the North Pacific oceanic region.

Keywords: Albacore tuna, Thunnus alalunga, recruitment, spawning stock biomass, recruits per spawning biomass, sea surface temperature, pacific decadal oscillation, El Niño southern oscillation, density-dependent effects, regime shift

Procedia PDF Downloads 308
5156 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection

Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra

Abstract:

In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.

Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging

Procedia PDF Downloads 91
5155 An Alternative Richards’ Growth Model Based on Hyperbolic Sine Function

Authors: Samuel Oluwafemi Oyamakin, Angela Unna Chukwu

Abstract:

Richrads growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richards growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richards growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richards nonlinear growth models better than the classical Richards growth model.

Keywords: height, diameter at breast height, DBH, hyperbolic sine function, Pinus caribaea, Richards' growth model

Procedia PDF Downloads 398
5154 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal

Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan

Abstract:

This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.

Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal

Procedia PDF Downloads 122
5153 Influence of Ride Control Systems on the Motions Response and Passenger Comfort of High-Speed Catamarans in Irregular Waves

Authors: Ehsan Javanmardemamgheisi, Javad Mehr, Jason Ali-Lavroff, Damien Holloway, Michael Davis

Abstract:

During the last decades, a growing interest in faster and more efficient waterborne transportation has led to the development of high-speed vessels for both commercial and military applications. To satisfy this global demand, a wide variety of arrangements of high-speed crafts have been proposed by designers. Among them, high-speed catamarans have proven themselves to be a suitable Roll-on/Roll-off configuration for carrying passengers and cargo due to widely spaced demi hulls, a wide deck zone, and a high ratio of deadweight to displacement. To improve passenger comfort and crew workability and enhance the operability and performance of high-speed catamarans, mitigating the severity of motions and structural loads using Ride Control Systems (RCS) is essential.In this paper, a set of towing tank tests was conducted on a 2.5 m scaled model of a 112 m Incat Tasmania high-speed catamaran in irregular head seas to investigate the effect of different ride control algorithms including linear and nonlinear versions of the heave control, pitch control, and local control on motion responses and passenger comfort of the full-scale ship. The RCS included a centre bow-fitted T-Foil and two transom-mounted stern tabs. All the experiments were conducted at the Australian Maritime College (AMC) towing tank at a model speed of 2.89 m/s (37 knots full scale), a modal period of 1.5 sec (10 sec full scale) and two significant wave heights of 60 mm and 90 mm, representing full-scale wave heights of 2.7 m and 4 m, respectively. Spectral analyses were performed using Welch’s power spectral density method on the vertical motion time records of the catamaran model to calculate heave and pitch Response Amplitude Operators (RAOs). Then, noting that passenger discomfort arises from vertical accelerations and that the vertical accelerations vary at different longitudinal locations within the passenger cabin due to the variations in amplitude and relative phase of the pitch and heave motions, the vertical accelerations were calculated at three longitudinal locations (LCG, T-Foil, and stern tabs). Finally, frequency-weighted Root Mean Square (RMS) vertical accelerations were calculated to estimate Motion Sickness Dose Value (MSDV) of the ship based on ISO 2631-recommendations. It was demonstrated that in small seas, implementing a nonlinear pitch control algorithm reduces the peak pitch motions by 41%, the vertical accelerations at the forward location by 46%, and motion sickness at the forward position by around 20% which provides great potential for further improvement in passenger comfort, crew workability, and operability of high-speed catamarans.

Keywords: high-speed catamarans, ride control system, response amplitude operators, vertical accelerations, motion sickness, irregular waves, towing tank tests.

Procedia PDF Downloads 87
5152 In-Flight Aircraft Performance Model Enhancement Using Adaptive Lookup Tables

Authors: Georges Ghazi, Magali Gelhaye, Ruxandra Botez

Abstract:

Over the years, the Flight Management System (FMS) has experienced a continuous improvement of its many features, to the point of becoming the pilot’s primary interface for flight planning operation on the airplane. With the assistance of the FMS, the concept of distance and time has been completely revolutionized, providing the crew members with the determination of the optimized route (or flight plan) from the departure airport to the arrival airport. To accomplish this function, the FMS needs an accurate Aircraft Performance Model (APM) of the aircraft. In general, APMs that equipped most modern FMSs are established before the entry into service of an individual aircraft, and results from the combination of a set of ordinary differential equations and a set of performance databases. Unfortunately, an aircraft in service is constantly exposed to dynamic loads that degrade its flight characteristics. These degradations endow two main origins: airframe deterioration (control surfaces rigging, seals missing or damaged, etc.) and engine performance degradation (fuel consumption increase for a given thrust). Thus, after several years of service, the performance databases and the APM associated to a specific aircraft are no longer representative enough of the actual aircraft performance. It is important to monitor the trend of the performance deterioration and correct the uncertainties of the aircraft model in order to improve the accuracy the flight management system predictions. The basis of this research lies in the new ability to continuously update an Aircraft Performance Model (APM) during flight using an adaptive lookup table technique. This methodology was developed and applied to the well-known Cessna Citation X business aircraft. For the purpose of this study, a level D Research Aircraft Flight Simulator (RAFS) was used as a test aircraft. According to Federal Aviation Administration the level D is the highest certification level for the flight dynamics modeling. Basically, using data available in the Flight Crew Operating Manual (FCOM), a first APM describing the variation of the engine fan speed and aircraft fuel flow w.r.t flight conditions was derived. This model was next improved using the proposed methodology. To do that, several cruise flights were performed using the RAFS. An algorithm was developed to frequently sample the aircraft sensors measurements during the flight and compare the model prediction with the actual measurements. Based on these comparisons, a correction was performed on the actual APM in order to minimize the error between the predicted data and the measured data. In this way, as the aircraft flies, the APM will be continuously enhanced, making the FMS more and more precise and the prediction of trajectories more realistic and more reliable. The results obtained are very encouraging. Indeed, using the tables initialized with the FCOM data, only a few iterations were needed to reduce the fuel flow prediction error from an average relative error of 12% to 0.3%. Similarly, the FCOM prediction regarding the engine fan speed was reduced from a maximum error deviation of 5.0% to 0.2% after only ten flights.

Keywords: aircraft performance, cruise, trajectory optimization, adaptive lookup tables, Cessna Citation X

Procedia PDF Downloads 267
5151 Effects of Cellular Insulin Receptor Stimulators with Alkaline Water on Performance, some Blood Parameters and Hatchability in Breeding Japanese Quail

Authors: Rabia Göçmen, Gülşah Kanbur, Sinan Sefa Parlat

Abstract:

In this study, in the breeding Japanese quails (coturnix coturnix japonica), it was aimed to study the effects of cellular insulin receptor stimulation on the performance, some blood parameters, and hatchability features. In the study, a total of 84 breeding quails were used, which are in 6 weeks age, and whose 24 are male and 60 female. In the trial, rations which contain 2900 kcal/kg metabolic energy; crude protein of 20%, and water whose pH is calibrated to 7.45 were administered as ad-libitum, to the animals, as metformin source, metformin-HCl was used and as chrome resource, Chromium Picolinate. Trial groups were formed as control group (basal ration), metformin group (basal ration, added metformin at the level of fodder of 20 mg/kg), and chromium picolinate group (basal ration, added fodder of 1500 ppb Cr. When regarded to the results of performance at the end of trial, it is seen that live weight gain, fodder consumption, egg weight, fodder evaluation coefficient, and egg production were affected at the significant level (p < 0.05). When the results are evaluated in terms of incubation features at the end of trial, it was identified that incubation yield and hatchability are not affected by the treatments but in the groups, in which metformin and chromium picolinate are added to ration, that fertility rose at the significant level compared to control group (p < 0,05). According to the results of blood parameters and hormone at the end of the trial, while the level of plasma glucose level was not affected by treatments (p > 0.05), with the addition of metformin and chromium picolinate to ration, plasma, total control, cholesterol, HDL, LDL, and triglyceride levels were significantly affected from insulin receptor stimulators added to ration (p<0,05). Hormone level of Plasma T3 and T4 were also affected at the significant level from insulin receptor stimulators added to ration (p < 0,05).

Keywords: cholesterol, chromium picolinate, hormone, metformin, performance, quail

Procedia PDF Downloads 212
5150 An Approximation Technique to Automate Tron

Authors: P. Jayashree, S. Rajkumar

Abstract:

With the trend of virtual and augmented reality environments booming to provide a life like experience, gaming is a major tool in supporting such learning environments. In this work, a variant of Voronoi heuristics, employing supervised learning for the TRON game is proposed. The paper discusses the features that would be really useful when a machine learning bot is to be used as an opponent against a human player. Various game scenarios, nature of the bot and the experimental results are provided for the proposed variant to prove that the approach is better than those that are currently followed.

Keywords: artificial Intelligence, automation, machine learning, TRON game, Voronoi heuristics

Procedia PDF Downloads 472
5149 The Effect of Leadership Styles on Continuous Improvement Teams

Authors: Paul W. Murray

Abstract:

This research explores the relationship between leadership style and continuous improvement (CI) teams. CI teams have several features that are not always found in other types of teams, including multi-functional members, short time period for performance, positive and actionable results, and exposure to senior leadership. There is not only one best style of leadership for these teams. Instead, it is important to select the best leadership style for the situation. The leader must have the flexibility to change styles and the skill to use the chosen style effectively in order to ensure the team’s success.

Keywords: leadership style, lean manufacturing, teams, cross-functional

Procedia PDF Downloads 377
5148 Modeling and Simulation of the Structural, Electronic and Magnetic Properties of Fe-Ni Based Nanoalloys

Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz

Abstract:

There is a growing interest in the modeling and simulation of magnetic nanoalloys by various computational methods. Magnetic crystalline/amorphous nanoparticles (NP) are interesting materials from both the applied and fundamental points of view, as their properties differ from those of bulk materials and are essential for advanced applications such as high-performance permanent magnets, high-density magnetic recording media, drug carriers, sensors in biomedical technology, etc. As an important magnetic material, Fe-Ni based nanoalloys have promising applications in the chemical industry (catalysis, battery), aerospace and stealth industry (radar absorbing material, jet engine alloys), magnetic biomedical applications (drug delivery, magnetic resonance imaging, biosensor) and computer hardware industry (data storage). The physical and chemical properties of the nanoalloys depend not only on the particle or crystallite size but also on composition and atomic ordering. Therefore, computer modeling is an essential tool to predict structural, electronic, magnetic and optical behavior at atomistic levels and consequently reduce the time for designing and development of new materials with novel/enhanced properties. Although first-principles quantum mechanical methods provide the most accurate results, they require huge computational effort to solve the Schrodinger equation for only a few tens of atoms. On the other hand, molecular dynamics method with appropriate empirical or semi-empirical inter-atomic potentials can give accurate results for the static and dynamic properties of larger systems in a short span of time. In this study, structural evolutions, magnetic and electronic properties of Fe-Ni based nanoalloys have been studied by using molecular dynamics (MD) method in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and Density Functional Theory (DFT) in the Vienna Ab initio Simulation Package (VASP). The effects of particle size (in 2-10 nm particle size range) and temperature (300-1500 K) on stability and structural evolutions of amorphous and crystalline Fe-Ni bulk/nanoalloys have been investigated by combining molecular dynamic (MD) simulation method with Embedded Atom Model (EAM). EAM is applicable for the Fe-Ni based bimetallic systems because it considers both the pairwise interatomic interaction potentials and electron densities. Structural evolution of Fe-Ni bulk and nanoparticles (NPs) have been studied by calculation of radial distribution functions (RDF), interatomic distances, coordination number, core-to-surface concentration profiles as well as Voronoi analysis and surface energy dependences on temperature and particle size. Moreover, spin-polarized DFT calculations were performed by using a plane-wave basis set with generalized gradient approximation (GGA) exchange and correlation effects in the VASP-MedeA package to predict magnetic and electronic properties of the Fe-Ni based alloys in bulk and nanostructured phases. The result of theoretical modeling and simulations for the structural evolutions, magnetic and electronic properties of Fe-Ni based nanostructured alloys were compared with experimental and other theoretical results published in the literature.

Keywords: density functional theory, embedded atom model, Fe-Ni systems, molecular dynamics, nanoalloys

Procedia PDF Downloads 248
5147 An Alternative Proof for the Topological Entropy of the Motzkin Shift

Authors: Fahad Alsharari, Mohd Salmi Md. Noorani

Abstract:

A Motzkin shift is a mathematical model for constraints on genetic sequences. In terms of the theory of symbolic dynamics, the Motzkin shift is nonsofic, and therefore, we cannot use the Perron-Frobenius theory to calculate its topological entropy. The Motzkin shift M(M,N) which comes from language theory, is defined to be the shift system over an alphabet A that consists of N negative symbols, N positive symbols and M neutral symbols. For an x in the full shift AZ, x is in M(M,N) if and only if every finite block appearing in x has a non-zero reduced form. Therefore, the constraint for x cannot be bounded in length. K. Inoue has shown that the entropy of the Motzkin shift M(M,N) is log(M + N + 1). In this paper, we find a new method of calculating the topological entropy of the Motzkin shift M(M,N) without any measure theoretical discussion.

Keywords: entropy, Motzkin shift, mathematical model, theory

Procedia PDF Downloads 479
5146 AM/E/c Queuing Hub Maximal Covering Location Model with Fuzzy Parameter

Authors: M. H. Fazel Zarandi, N. Moshahedi

Abstract:

The hub location problem appears in a variety of applications such as medical centers, firefighting facilities, cargo delivery systems and telecommunication network design. The location of service centers has a strong influence on the congestion at each of them, and, consequently, on the quality of service. This paper presents a fuzzy maximal hub covering location problem (FMCHLP) in which travel costs between any pair of nodes is considered as a fuzzy variable. In order to consider the quality of service, we model each hub as a queue. Arrival rate follows Poisson distribution and service rate follows Erlang distribution. In this paper, at first, a nonlinear mathematical programming model is presented. Then, we convert it to the linear one. We solved the linear model using GAMS software up to 25 nodes and for large sizes due to the complexity of hub covering location problems, and simulated annealing algorithm is developed to solve and test the model. Also, we used possibilistic c-means clustering method in order to find an initial solution.

Keywords: fuzzy modeling, location, possibilistic clustering, queuing

Procedia PDF Downloads 398
5145 Impact of Slenderness Ratios on the Seismic Behavior of Reinforced Concrete Buildings

Authors: Juan Bojórquez, F. de Jesús Merino, Edén Bojórquez, Mario Llanez-Tizoc, Federico Valenzuela-Beltrán, Mario R. Flores, J. Ramón Gaxiola-Camacho, Henry Reyes

Abstract:

As urban populations continue to grow, the demand for higher housing density in large cities has led to increased use of slender buildings to maximize limited land availability. However, structures with high slenderness ratios face significant challenges related to their resistance capacity and lateral stiffness, particularly in seismic conditions. This study evaluates the seismic behavior of four reinforced concrete frame buildings with varying slenderness ratios situated on soft soil in Mexico City. Utilizing step-by-step nonlinear dynamic analysis, the research compares the seismic performance of these buildings, presenting detailed results, conclusions, and recommendations for enhancing the earthquake resistance of slender structures.

Keywords: dynamic analysis, reinforced concrete buildings, seismic behavior, slenderness ratio

Procedia PDF Downloads 30