Search results for: Moser’s worm problem
4604 Optimization of Structures with Mixed Integer Non-linear Programming (MINLP)
Authors: Stojan Kravanja, Andrej Ivanič, Tomaž Žula
Abstract:
This contribution focuses on structural optimization in civil engineering using mixed integer non-linear programming (MINLP). MINLP is characterized as a versatile method that can handle both continuous and discrete optimization variables simultaneously. Continuous variables are used to optimize parameters such as dimensions, stresses, masses, or costs, while discrete variables represent binary decisions to determine the presence or absence of structural elements within a structure while also calculating discrete materials and standard sections. The optimization process is divided into three main steps. First, a mechanical superstructure with a variety of different topology-, material- and dimensional alternatives. Next, a MINLP model is formulated to encapsulate the optimization problem. Finally, an optimal solution is searched in the direction of the defined objective function while respecting the structural constraints. The economic or mass objective function of the material and labor costs of a structure is subjected to the constraints known from structural analysis. These constraints include equations for the calculation of internal forces and deflections, as well as equations for the dimensioning of structural components (in accordance with the Eurocode standards). Given the complex, non-convex and highly non-linear nature of optimization problems in civil engineering, the Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm is applied. This algorithm alternately solves subproblems of non-linear programming (NLP) and main problems of mixed-integer linear programming (MILP), in this way gradually refines the solution space up to the optimal solution. The NLP corresponds to the continuous optimization of parameters (with fixed topology, discrete materials and standard dimensions, all determined in the previous MILP), while the MILP involves a global approximation to the superstructure of alternatives, where a new topology, materials, standard dimensions are determined. The optimization of a convex problem is stopped when the MILP solution becomes better than the best NLP solution. Otherwise, it is terminated when the NLP solution can no longer be improved. While the OA/ER algorithm, like all other algorithms, does not guarantee global optimality due to the presence of non-convex functions, various modifications, including convexity tests, are implemented in OA/ER to mitigate these difficulties. The effectiveness of the proposed MINLP approach is demonstrated by its application to various structural optimization tasks, such as mass optimization of steel buildings, cost optimization of timber halls, composite floor systems, etc. Special optimization models have been developed for the optimization of these structures. The MINLP optimizations, facilitated by the user-friendly software package MIPSYN, provide insights into a mass or cost-optimal solutions, optimal structural topologies, optimal material and standard cross-section choices, confirming MINLP as a valuable method for the optimization of structures in civil engineering.Keywords: MINLP, mixed-integer non-linear programming, optimization, structures
Procedia PDF Downloads 464603 Droning the Pedagogy: Future Prospect of Teaching and Learning
Authors: Farha Sattar, Laurence Tamatea, Muhammad Nawaz
Abstract:
Drones, the Unmanned Aerial Vehicles are playing an important role in real-world problem-solving. With the new advancements in technology, drones are becoming available, affordable and user- friendly. Use of drones in education is opening new trends in teaching and learning practices in an innovative and engaging way. Drones vary in types and sizes and possess various characteristics and capabilities which enhance their potential to be used in education from basic to advanced and challenging learning activities which are suitable for primary, middle and high school level. This research aims to provide an insight to explore different types of drones and their compatibility to be used in teaching different subjects at various levels. Research focuses on integrating the drone technology along with Australian curriculum content knowledge to reinforce the understanding of the fundamental concepts and helps to develop the critical thinking and reasoning in the learning process.Keywords: critical thinking, drone technology, drone types, innovative learning
Procedia PDF Downloads 3094602 Multi-Criteria Based Robust Markowitz Model under Box Uncertainty
Authors: Pulak Swain, A. K. Ojha
Abstract:
Portfolio optimization is based on dealing with the problems of efficient asset allocation. Risk and Expected return are two conflicting criteria in such problems, where the investor prefers the return to be high and the risk to be low. Using multi-objective approach we can solve those type of problems. However the information which we have for the input parameters are generally ambiguous and the input values can fluctuate around some nominal values. We can not ignore the uncertainty in input values, as they can affect the asset allocation drastically. So we use Robust Optimization approach to the problems where the input parameters comes under box uncertainty. In this paper, we solve the multi criteria robust problem with the help of E- constraint method.Keywords: portfolio optimization, multi-objective optimization, ϵ - constraint method, box uncertainty, robust optimization
Procedia PDF Downloads 1394601 Estimation of Fuel Cost Function Characteristics Using Cuckoo Search
Authors: M. R. Al-Rashidi, K. M. El-Naggar, M. F. Al-Hajri
Abstract:
The fuel cost function describes the electric power generation-cost relationship in thermal plants, hence, it sheds light on economical aspects of power industry. Different models have been proposed to describe this relationship with the quadratic function model being the most popular one. Parameters of second order fuel cost function are estimated in this paper using cuckoo search algorithm. It is a new population based meta-heuristic optimization technique that has been used in this study primarily as an accurate estimation tool. Its main features are flexibility, simplicity, and effectiveness when compared to other estimation techniques. The parameter estimation problem is formulated as an optimization one with the goal being minimizing the error associated with the estimated parameters. A case study is considered in this paper to illustrate cuckoo search promising potential as a valuable estimation and optimization technique.Keywords: cuckoo search, parameters estimation, fuel cost function, economic dispatch
Procedia PDF Downloads 5814600 Iraq Water Resources Planning: Perspectives and Prognoses
Authors: Nadhir Al-Ansari, Ammar A. Ali, Sven Knutsson
Abstract:
Iraq is located in the Middle East. It covers an area of 433,970 square kilometres populated by about 32 million inhabitants. Iraq greatly relies in its water resources on the Tigris and Euphrates Rivers. Recently, Iraq is suffering from water shortage problems. This is due to external and internal factors. The former includes global warming and water resources policies of neighbouring countries while the latter includes mismanagement of its water resources. The supply and demand are predicted to be 43 and 66.8 Billion Cubic Meters (BCM) respectively in 2015, while in 2025 it will be 17.61 and 77 BCM respectively. In addition, future prediction suggests that Tigris and Euphrates Rivers will be completely dry in 2040. To overcome this problem, prudent water management policies are to be adopted. This includes Strategic Water Management Vision, development of irrigation techniques, reduction of water losses, use of non-conventional water resources and research and development planning.Keywords: Iraq, Tigris River, Euphrates River, water scarcity, water resources management
Procedia PDF Downloads 4494599 Lateral Control of Electric Vehicle Based on Fuzzy Logic Control
Authors: Hartani Kada, Merah Abdelkader
Abstract:
Aiming at the high nonlinearities and unmatched uncertainties of the intelligent electric vehicles’ dynamic system, this paper presents a lateral motion control algorithm for intelligent electric vehicles with four in-wheel motors. A fuzzy logic procedure is presented and formulated to realize lateral control in lane change. The vehicle dynamics model and a desired target tracking model were established in this paper. A fuzzy logic controller was designed for integrated active front steering (AFS) and direct yaw moment control (DYC) in order to improve vehicle handling performance and stability, and a fuzzy controller for the automatic steering problem. The simulation results demonstrate the strong robustness and excellent tracking performance of the control algorithm that is proposed.Keywords: fuzzy logic, lateral control, AFS, DYC, electric car technology, longitudinal control, lateral motion
Procedia PDF Downloads 6104598 Climate Impact-Minimizing Road Infrastructure Layout for Growing Cities
Authors: Stanislovas Buteliauskas, Aušrius Juozapavičius
Abstract:
City road transport contributes significantly to climate change, and the ongoing world urbanization is only increasing the problem. The paper describes a city planning concept minimizing the number of vehicles on the roads while increasing overall mobility. This becomes possible by utilizing a recently invented two-level road junction with a unique property of serving both as an intersection of uninterrupted traffic and an easily accessible transport hub capable of accumulating private vehicles, and therefore becoming an especially effective park-and-ride solution, and a logistics or business center. Optimized layouts of city road infrastructure, living and work areas, and major roads are presented. The layouts are suitable both for the development of new cities as well as for the expansion of existing ones. Costs of the infrastructure and a positive impact on climate are evaluated in comparison to current city growth patterns.Keywords: congestion, city infrastructure, park-and-ride, road junctions
Procedia PDF Downloads 3054597 A Lexicographic Approach to Obstacles Identified in the Ontological Representation of the Tree of Life
Authors: Sandra Young
Abstract:
The biodiversity literature is vast and heterogeneous. In today’s data age, numbers of data integration and standardisation initiatives aim to facilitate simultaneous access to all the literature across biodiversity domains for research and forecasting purposes. Ontologies are being used increasingly to organise this information, but the rationalisation intrinsic to ontologies can hit obstacles when faced with the intrinsic fluidity and inconsistency found in the domains comprising biodiversity. Essentially the problem is a conceptual one: biological taxonomies are formed on the basis of specific, physical specimens yet nomenclatural rules are used to provide labels to describe these physical objects. These labels are ambiguous representations of the physical specimen. An example of this is with the genus Melpomene, the scientific nomenclatural representation of a genus of ferns, but also for a genus of spiders. The physical specimens for each of these are vastly different, but they have been assigned the same nomenclatural reference. While there is much research into the conceptual stability of the taxonomic concept versus the nomenclature used, to the best of our knowledge as yet no research has looked empirically at the literature to see the conceptual plurality or singularity of the use of these species’ names, the linguistic representation of a physical entity. Language itself uses words as symbols to represent real world concepts, whether physical entities or otherwise, and as such lexicography has a well-founded history in the conceptual mapping of words in context for dictionary making. This makes it an ideal candidate to explore this problem. The lexicographic approach uses corpus-based analysis to look at word use in context, with a specific focus on collocated word frequencies (the frequencies of words used in specific grammatical and collocational contexts). It allows for inconsistencies and contradictions in the source data and in fact includes these in the word characterisation so that 100% of the available evidence is counted. Corpus analysis is indeed suggested as one of the ways to identify concepts for ontology building, because of its ability to look empirically at data and show patterns in language usage, which can indicate conceptual ideas which go beyond words themselves. In this sense it could potentially be used to identify if the hierarchical structures present within the empirical body of literature match those which have been identified in ontologies created to represent them. The first stages of this research have revealed a hierarchical structure that becomes apparent in the biodiversity literature when annotating scientific species’ names, common names and more general names as classes, which will be the focus of this paper. The next step in the research is focusing on a larger corpus in which specific words can be analysed and then compared with existing ontological structures looking at the same material, to evaluate the methods by means of an alternative perspective. This research aims to provide evidence as to the validity of the current methods in knowledge representation for biological entities, and also shed light on the way that scientific nomenclature is used within the literature.Keywords: ontology, biodiversity, lexicography, knowledge representation, corpus linguistics
Procedia PDF Downloads 1374596 Assessment of Exhaust Emissions and Fuel Consumption from Means of Transport in Agriculture
Authors: Jerzy Merkisz, Piotr Lijewski, Pawel Fuc, Maciej Siedlecki, Andrzej Ziolkowski, Sylwester Weymann
Abstract:
The paper discusses the problem of load transport using farm tractors and road tractor units. This type of carriage of goods is often done with farm vehicles. The tests were performed with the PEMS equipment (Portable Emission Measurement System) under actual traffic conditions. The vehicles carried a load of 20000 kg. This research method is one of the most desired because it provides reliable information on the actual vehicle emissions and fuel consumption (carbon balance method). For the tests, a route was selected that simulated a trip from a small town to a food-processing facility located in a city. The analysis of the obtained results gave a clear answer as to what vehicles need to be used for the carriage of this type of cargo in terms of exhaust emissions and fuel consumption.Keywords: emission, transport, fuel consumption, PEMS
Procedia PDF Downloads 5304595 A Semiparametric Approach to Estimate the Mode of Continuous Multivariate Data
Authors: Tiee-Jian Wu, Chih-Yuan Hsu
Abstract:
Mode estimation is an important task, because it has applications to data from a wide variety of sources. We propose a semi-parametric approach to estimate the mode of an unknown continuous multivariate density function. Our approach is based on a weighted average of a parametric density estimate using the Box-Cox transform and a non-parametric kernel density estimate. Our semi-parametric mode estimate improves both the parametric- and non-parametric- mode estimates. Specifically, our mode estimate solves the non-consistency problem of parametric mode estimates (at large sample sizes) and reduces the variability of non-parametric mode estimates (at small sample sizes). The performance of our method at practical sample sizes is demonstrated by simulation examples and two real examples from the fields of climatology and image recognition.Keywords: Box-Cox transform, density estimation, mode seeking, semiparametric method
Procedia PDF Downloads 2854594 Biobutanol Production from Date Palm Waste by Clostridium acetobutylicum
Authors: Diya Alsafadi, Fawwaz Khalili, Mohammad W. Amer
Abstract:
Butanol is an important industrial solvent and potentially a better liquid transportation biofuel than ethanol. The cost of feedstock is one key problem associated with the biobutanol production. Date palm is sugar-rich fruit and highly abundant. Thousands of tons of date wastes that generated from date processing industries are thrown away each year and imposing serious environmental problems. To exploit the utilization of renewable biomass feedstock, date palm waste was utilized for butanol production by Clostridium acetobutylicum DSM 1731. Fermentation conditions were optimized by investigating several parameters that affect the production of butanol such as temperature, substrate concentration and pH. The highest butanol yield (1.0 g/L) and acetone, butanol, and ethanol (ABE) content (1.3 g/L) were achieved at 20 g/L date waste, pH 5.0 and 37 °C. These results suggest that date palm waste can be used for biobutanol production.Keywords: biofuel, acetone-butanol-ethanol fermentation, date palm waste, Clostridium acetobutylicum
Procedia PDF Downloads 3534593 Incorporating Anomaly Detection in a Digital Twin Scenario Using Symbolic Regression
Authors: Manuel Alves, Angelica Reis, Armindo Lobo, Valdemar Leiras
Abstract:
In industry 4.0, it is common to have a lot of sensor data. In this deluge of data, hints of possible problems are difficult to spot. The digital twin concept aims to help answer this problem, but it is mainly used as a monitoring tool to handle the visualisation of data. Failure detection is of paramount importance in any industry, and it consumes a lot of resources. Any improvement in this regard is of tangible value to the organisation. The aim of this paper is to add the ability to forecast test failures, curtailing detection times. To achieve this, several anomaly detection algorithms were compared with a symbolic regression approach. To this end, Isolation Forest, One-Class SVM and an auto-encoder have been explored. For the symbolic regression PySR library was used. The first results show that this approach is valid and can be added to the tools available in this context as a low resource anomaly detection method since, after training, the only requirement is the calculation of a polynomial, a useful feature in the digital twin context.Keywords: anomaly detection, digital twin, industry 4.0, symbolic regression
Procedia PDF Downloads 1204592 Heart Failure Identification and Progression by Classifying Cardiac Patients
Authors: Muhammad Saqlain, Nazar Abbas Saqib, Muazzam A. Khan
Abstract:
Heart Failure (HF) has become the major health problem in our society. The prevalence of HF has increased as the patient’s ages and it is the major cause of the high mortality rate in adults. A successful identification and progression of HF can be helpful to reduce the individual and social burden from this syndrome. In this study, we use a real data set of cardiac patients to propose a classification model for the identification and progression of HF. The data set has divided into three age groups, namely young, adult, and old and then each age group have further classified into four classes according to patient’s current physical condition. Contemporary Data Mining classification algorithms have been applied to each individual class of every age group to identify the HF. Decision Tree (DT) gives the highest accuracy of 90% and outperform all other algorithms. Our model accurately diagnoses different stages of HF for each age group and it can be very useful for the early prediction of HF.Keywords: decision tree, heart failure, data mining, classification model
Procedia PDF Downloads 4024591 Improving Sales through Inventory Reduction: A Retail Chain Case Study
Authors: M. G. Mattos, J. E. Pécora Jr, T. A. Briso
Abstract:
Today's challenging business environment, with unpredictable demand and volatility, requires a supply chain strategy that handles uncertainty and risks in the right way. Even though inventory models have been previously explored, this paper seeks to apply these concepts on a practical situation. This study involves the inventory replenishment problem, applying techniques that are mainly based on mathematical assumptions and modeling. The primary goal is to improve the retailer’s supply chain processes taking store differences when setting the various target stock levels. Through inventory review policy, picking piece implementation and minimum exposure definition, we were able not only to promote the inventory reduction as well as improve sales results. The inventory management theory from literature review was then tested on a single case study regarding a particular department in one of the largest Latam retail chains.Keywords: inventory, distribution, retail, risk, safety stock, sales, uncertainty
Procedia PDF Downloads 2684590 Lipschitz Classifiers Ensembles: Usage for Classification of Target Events in C-OTDR Monitoring Systems
Authors: Andrey V. Timofeev
Abstract:
This paper introduces an original method for guaranteed estimation of the accuracy of an ensemble of Lipschitz classifiers. The solution was obtained as a finite closed set of alternative hypotheses, which contains an object of classification with a probability of not less than the specified value. Thus, the classification is represented by a set of hypothetical classes. In this case, the smaller the cardinality of the discrete set of hypothetical classes is, the higher is the classification accuracy. Experiments have shown that if the cardinality of the classifiers ensemble is increased then the cardinality of this set of hypothetical classes is reduced. The problem of the guaranteed estimation of the accuracy of an ensemble of Lipschitz classifiers is relevant in the multichannel classification of target events in C-OTDR monitoring systems. Results of suggested approach practical usage to accuracy control in C-OTDR monitoring systems are present.Keywords: Lipschitz classifiers, confidence set, C-OTDR monitoring, classifiers accuracy, classifiers ensemble
Procedia PDF Downloads 4924589 Body Image Dissatisfaction of Females: A Holistic Therapeutic Approach
Authors: Katy Eleanor Addinall
Abstract:
Women’s body image dissatisfaction is a widespread problem, and it is present in all age groups, on every socioeconomic level, in all occupations, all cultures, and religions. Body image dissatisfaction is a broad term that is used to vary from normal discontent of a woman about one or more of her physical attributes to extreme negative causes, for example, an eating disorder. South African women were examined, and an empirical qualitative study was done to evaluate the women’s thoughts and feelings regarding their bodies. The causes and effects of body image dissatisfaction were examined, and social science literature was used to determine the etiology of body image dissatisfaction, which confirmed that it is multifactorial. A variety of therapeutic aids were studied, and cognitive behavioural therapy appeared to be the most effective. Every woman is an individual with an individual body image and must be approached as an individual holistic being. Thus, a holistic pragmatic model was developed as a possible aid in the woman’s healing process.Keywords: body, body image, females, woman, therapy, dissatisfaction, holistic, cognitive behavioural therapy
Procedia PDF Downloads 1394588 Corporate Cash Holdings and the Effect of Chaebol Affiliated on the Implied Cost of Equity Capital: Evidence from Korea
Authors: Hongmin Chun
Abstract:
This paper examines corporate cash holdings and their effect on the cost of equity capital. In addition, this study examines the potentially different effects when the firm belongs to chaebol and non-chaebol groups. Chaebol is a South Korean form of business conglomerate. Chaebol is typically global multinationals and owns numerous international enterprises, controlled by a chairman with power over all the operations. The overall empirical result suggests that higher cash holdings are a risk increasing factor which holds for the chaebol group of firms. This result is valid in a battery of robustness tests and 2SLS regressions. In Korea, higher cash holdings represent a risk premium factor that is closely related to the overinvestment and agency problems between managers and shareholders.Keywords: cash holdings, implied cost of equity capital, chaebol, agency problem
Procedia PDF Downloads 1764587 Adaptive Few-Shot Deep Metric Learning
Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian
Abstract:
Whereas currently the most prevalent deep learning methods require a large amount of data for training, few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.Keywords: few-shot learning, triplet network, adaptive margin, deep learning
Procedia PDF Downloads 1714586 Machine Learning Approach for Lateralization of Temporal Lobe Epilepsy
Authors: Samira-Sadat JamaliDinan, Haidar Almohri, Mohammad-Reza Nazem-Zadeh
Abstract:
Lateralization of temporal lobe epilepsy (TLE) is very important for positive surgical outcomes. We propose a machine learning framework to ultimately identify the epileptogenic hemisphere for temporal lobe epilepsy (TLE) cases using magnetoencephalography (MEG) coherence source imaging (CSI) and diffusion tensor imaging (DTI). Unlike most studies that use classification algorithms, we propose an effective clustering approach to distinguish between normal and TLE cases. We apply the famous Minkowski weighted K-Means (MWK-Means) technique as the clustering framework. To overcome the problem of poor initialization of K-Means, we use particle swarm optimization (PSO) to effectively select the initial centroids of clusters prior to applying MWK-Means. We demonstrate that compared to K-means and MWK-means independently, this approach is able to improve the result of a benchmark data set.Keywords: temporal lobe epilepsy, machine learning, clustering, magnetoencephalography
Procedia PDF Downloads 1564585 Biogas Production Using Water Hyacinth as a Means of Waste Management Control at Hartbeespoort Dam, South Africa
Authors: Trevor Malambo Simbayi, Diane Hildebrandt, Tonderayi Matambo
Abstract:
The rapid growth of population in recent decades has resulted in an increased need for energy to meet human activities. As energy demands increase, the need for other sources of energy other than fossil fuels, increases in turn. Furthermore, environmental concerns such as global warming due to the use of fossil fuels, depleting fossil fuel reserves and the rising cost of oil have contributed to an increased interest in renewables sources of energy. Biogas is a renewable source of energy produced through the process of anaerobic digestion (AD) and it offers a two-fold solution; it provides an environmentally friendly source of energy and its production helps to reduce the amount of organic waste taken to landfills. This research seeks to address the waste management problem caused by an aquatic weed called water hyacinth (Eichhornia crassipes) at the Hartbeespoort (Harties) Dam in the North West Province of South Africa, through biogas production of the weed. Water hyacinth is a category 1 invasive species and it is deemed to be the most problematic aquatic weed. This weed is said to double its size in the space of five days. Eutrophication in the Hartbeespoort Dam has manifested itself through the excessive algae bloom and water hyacinth infestation. A large amount of biomass from water hyacinth and algae are generated per annum from the two hundred hectare surface area of the dam exposed to the sun. This biomass creates a waste management problem. Water hyacinth when in full bloom can cover nearly half of the surface of Hartbeespoort Dam. The presence of water hyacinth in the dam has caused economic and environmental problems. Economic activities such as fishing, boating, and recreation, are hampered by the water hyacinth’s prolific growth. This research proposes the use of water hyacinth as a feedstock or substrate for biogas production in order to find an economic and environmentally friendly means of waste management for the communities living around the Hartbeespoort Dam. In order to achieve this objective, water hyacinth will be collected from the dam and it will be mechanically pretreated before anaerobic digestion. Pretreatment is required for lignocellulosic materials like water hyacinth because such materials are called recalcitrant solid materials. Cow manure will be employed as a source of microorganisms needed for biogas production to occur. Once the water hyacinth and the cow dung are mixed, they will be placed in laboratory anaerobic reactors. Biogas production will be monitored daily through the downward displacement of water. Characterization of the substrates (cow manure and water hyacinth) to determine the nitrogen, sulfur, carbon and hydrogen, total solids (TS) and volatile solids (VS). Liquid samples from the anaerobic digesters will be collected and analyzed for volatile fatty acids (VFAs) composition by means of a liquid gas chromatography machine.Keywords: anaerobic digestion, biogas, waste management, water hyacinth
Procedia PDF Downloads 1954584 Scale Prototype to Estimate the Resistance to Lateral Displacement Buried Pipes and submerged in non-Cohesive Soils
Authors: Enrique Castañeda, Tomas Hernadez, Mario Ulloa
Abstract:
Recent studies related to submarine pipelines under high pressure, temperature and buried, forces us to make bibliographical and documentary research to make us of references applicable to our problem. This paper presents an experimental methodology to the implementation of results obtained in a scale model, bibliography soil mechanics and finite element simulation. The model consists of a tank of 0.60 x 0.90 x 0.60 basis equipped high side windows, tires and digital hardware devices for measuring different variables to be applied to the model, where the mechanical properties of the soil are determined, simulation of drag a pipeline buried in a non-cohesive seafloor of the Gulf of Mexico, estimate the failure surface and application of each of the variables for the determination of mechanical elements.Keywords: static friction coefficient, maximum passive force resistant soil, normal, tangential stress
Procedia PDF Downloads 3624583 Generic Early Warning Signals for Program Student Withdrawals: A Complexity Perspective Based on Critical Transitions and Fractals
Authors: Sami Houry
Abstract:
Complex systems exhibit universal characteristics as they near a tipping point. Among them are common generic early warning signals which precede critical transitions. These signals include: critical slowing down in which the rate of recovery from perturbations decreases over time; an increase in the variance of the state variable; an increase in the skewness of the state variable; an increase in the autocorrelations of the state variable; flickering between different states; and an increase in spatial correlations over time. The presence of the signals has management implications, as the identification of the signals near the tipping point could allow management to identify intervention points. Despite the applications of the generic early warning signals in various scientific fields, such as fisheries, ecology and finance, a review of literature did not identify any applications that address the program student withdrawal problem at the undergraduate distance universities. This area could benefit from the application of generic early warning signals as the program withdrawal rate amongst distance students is higher than the program withdrawal rate at face-to-face conventional universities. This research specifically assessed the generic early warning signals through an intensive case study of undergraduate program student withdrawal at a Canadian distance university. The university is non-cohort based due to its system of continuous course enrollment where students can enroll in a course at the beginning of every month. The assessment of the signals was achieved through the comparison of the incidences of generic early warning signals among students who withdrew or simply became inactive in their undergraduate program of study, the true positives, to the incidences of the generic early warning signals among graduates, the false positives. This was achieved through significance testing. Research findings showed support for the signal pertaining to the rise in flickering which is represented in the increase in the student’s non-pass rates prior to withdrawing from a program; moderate support for the signals of critical slowing down as reflected in the increase in the time a student spends in a course; and moderate support for the signals on increase in autocorrelation and increase in variance in the grade variable. The findings did not support the signal on the increase in skewness of the grade variable. The research also proposes a new signal based on the fractal-like characteristic of student behavior. The research also sought to extend knowledge by investigating whether the emergence of a program withdrawal status is self-similar or fractal-like at multiple levels of observation, specifically the program level and the course level. In other words, whether the act of withdrawal at the program level is also present at the course level. The findings moderately supported self-similarity as a potential signal. Overall, the assessment of the signals suggests that the signals, with the exception with the increase of skewness, could be utilized as a predictive management tool and potentially add one more tool, the fractal-like characteristic of withdrawal, as an additional signal in addressing the student program withdrawal problem.Keywords: critical transitions, fractals, generic early warning signals, program student withdrawal
Procedia PDF Downloads 1854582 Environmental Liability of Architects: Architects Destroying the City in Designed and Creative Way, Dhaka City
Authors: Md. Ratin
Abstract:
This paper aims to show how Dhaka city is getting destroyed and the creator and guide of the city – the architects destroying the city in more designed and creative way. The liability of architects should be first and foremost to make the would, country, city a better living environment. As without it where the architects will do their design? To make a better living environment architects should conserve the tress, river and other related ingredient related to the environment. This paper attempts to show how cutting down trees and filling rivers causing more problem than having a great architecture in those places. For increasing people in a city like Dhaka, we need more shelter. But for providing those architects building more living spaces. But as a liability of an architect, one should give something back to the environment too. With time the city’s greenery and water body are getting vanished like magic. And for this, the architects should be blamed for giving us a disastrous future. The analysis is based on literature survey and survey by questionnaire, interviews of users.Keywords: architect, environment, liability, river
Procedia PDF Downloads 3464581 The Psychological Impact of Industrial Noise on Workers
Authors: Beriache Abderazik
Abstract:
It is clear that the psychological effects of noise and physiological eloquent on the workers, what will inevitably affect the performance of both productivity and efficiency in all its aspects, industrial noise became among the most prominent modern professional problems, That require study and analysis in order to arrive at solutions and ways that you can reduce the effects of industrial noise. These factors, in addition to other reasons, made us try in this research to know the real impact of industrial noise on the professional satisfaction of workers. In light of this title we have identified the following general problem: - Is the professional satisfaction factor varies depending on the noise level in the work environment? For the purpose of ascertaining the veracity of the assumptions, we have a comparative study between two samples of equal workers, the first sample is working under the influence of industrial noise severe about (100 Db), and the second sample is working under the influence of industrial noise is low (about 63 Db), and applied them test the professional satisfaction. The results support the hypotheses and confirm all sincerity.Keywords: industrial noise, job satisfaction, the psychological effects of noise, work environment
Procedia PDF Downloads 5804580 Annealing Process Study at Galvanizing Line: Characterization and Implication Inherent to Lead Entrainment
Authors: Marcelo Franzkowiak Stahlschmidt
Abstract:
This paper discusses the experiments carried out based on the wire drawing process analysis and later annealing on lead furnace on a galvanizing line. Using Design of Experiments methodology, the aim of this work is to understand the occurrence of lead entrainment originating from the annealed wires in order to decrease this problem. Wire samples were collected from wire drawing machines and galvanizing line and submitted to surface roughness analysis and its implications on lead drag out based on wire speed, wire diameter, lead bath temperature, thermal capacity of the lead kettle, wire surface condition, wire roughness and wire superficial cleanliness. Proposals to decrease lead drag out were made in order to increase wire drawing machines and galvanizing line performance.Keywords: wire drawing process, galvanizing, heat treatment, lead
Procedia PDF Downloads 6374579 Data Science/Artificial Intelligence: A Possible Panacea for Refugee Crisis
Authors: Avi Shrivastava
Abstract:
In 2021, two heart-wrenching scenes, shown live on television screens across countries, painted a grim picture of refugees. One of them was of people clinging onto an airplane's wings in their desperate attempt to flee war-torn Afghanistan. They ultimately fell to their death. The other scene was the U.S. government authorities separating children from their parents or guardians to deter migrants/refugees from coming to the U.S. These events show the desperation refugees feel when they are trying to leave their homes in disaster zones. However, data paints a grave picture of the current refugee situation. It also indicates that a bleak future lies ahead for the refugees across the globe. Data and information are the two threads that intertwine to weave the shimmery fabric of modern society. Data and information are often used interchangeably, but they differ considerably. For example, information analysis reveals rationale, and logic, while data analysis, on the other hand, reveals a pattern. Moreover, patterns revealed by data can enable us to create the necessary tools to combat huge problems on our hands. Data analysis paints a clear picture so that the decision-making process becomes simple. Geopolitical and economic data can be used to predict future refugee hotspots. Accurately predicting the next refugee hotspots will allow governments and relief agencies to prepare better for future refugee crises. The refugee crisis does not have binary answers. Given the emotionally wrenching nature of the ground realities, experts often shy away from realistically stating things as they are. This hesitancy can cost lives. When decisions are based solely on data, emotions can be removed from the decision-making process. Data also presents irrefutable evidence and tells whether there is a solution or not. Moreover, it also responds to a nonbinary crisis with a binary answer. Because of all that, it becomes easier to tackle a problem. Data science and A.I. can predict future refugee crises. With the recent explosion of data due to the rise of social media platforms, data and insight into data has solved many social and political problems. Data science can also help solve many issues refugees face while staying in refugee camps or adopted countries. This paper looks into various ways data science can help solve refugee problems. A.I.-based chatbots can help refugees seek legal help to find asylum in the country they want to settle in. These chatbots can help them find a marketplace where they can find help from the people willing to help. Data science and technology can also help solve refugees' many problems, including food, shelter, employment, security, and assimilation. The refugee problem seems to be one of the most challenging for social and political reasons. Data science and machine learning can help prevent the refugee crisis and solve or alleviate some of the problems that refugees face in their journey to a better life. With the explosion of data in the last decade, data science has made it possible to solve many geopolitical and social issues.Keywords: refugee crisis, artificial intelligence, data science, refugee camps, Afghanistan, Ukraine
Procedia PDF Downloads 724578 Mindfulness and Motivational Based Intervention for Pregnant Women with Tobacco Dependency: Pilot Study
Authors: Ilona Krone
Abstract:
Maternal smoking during pregnancy increases the risk of perinatal/postnatal negative health outcomes; however, only 1 in 5 pregnant smokers quit smoking. That is a clinical and public health problem. Pregnant smokers have negative paternal support, and higher levels of perceived stress than non-smokers and quitters return to smoking in a stressful situation. A crisis like the COVID-19 outbreak causes significant uncertainty and stress. For pregnant women, additional stress may increase due to concerns for their fetus. Strategies targeting maternal stress and isolation may be particularly useful to prevent negative outcomes for women and their fetuses. Within the post-doctoral study, cooperating with leading specialists, an innovative program for pregnant smokers will be developed. Feasibility for reducing craving, distress intolerance, Covid 19 related stress, and fear in pregnant women in Latvia will be assessed.Keywords: COVID 19, mindfulness, motivation, pregnancy, smoking cessation
Procedia PDF Downloads 2174577 Exploiting Non-Uniform Utility of Computing: A Case Study
Authors: Arnab Sarkar, Michael Huang, Chuang Ren, Jun Li
Abstract:
The increasing importance of computing in modern society has brought substantial growth in the demand for more computational power. In some problem domains such as scientific simulations, available computational power still sets a limit on what can be practically explored in computation. For many types of code, there is non-uniformity in the utility of computation. That is not every piece of computation contributes equally to the quality of the result. If this non-uniformity is understood well and exploited effectively, we can much more effectively utilize available computing power. In this paper, we discuss a case study of exploring such non-uniformity in a particle-in-cell simulation platform. We find both the existence of significant non-uniformity and that it is generally straightforward to exploit it. We show the potential of order-of-magnitude effective performance gain while keeping the comparable quality of output. We also discuss some challenges in both the practical application of the idea and evaluation of its impact.Keywords: approximate computing, landau damping, non uniform utility computing, particle-in-cell
Procedia PDF Downloads 2594576 Rheological Properties of Polysulfone-Sepiolite Nanocomposites
Authors: Nilay Tanrıver, Birgül Benli, Nilgün Kızılcan
Abstract:
Polysulfone (PSU) is a specialty engineering polymer having various industrial applications. PSU is especially used in waste water treatment membranes due to its good mechanical properties, structural and chemical stability. But it is a hydrophobic material and therefore its surface aim to pollute easily. In order to resolve this problem and extend the properties of membrane, PSU surface is rendered hydrophilic by addition of the sepiolite nanofibers. Sepiolite is one of the natural clays, which is a hydrate magnesium silicate fiber, also one of the well known layered clays of the montmorillonites where has several unique channels and pores within. It has also moisture durability, strength and low price. Sepiolite channels give great capacity of absorption and good surface properties. In this study, nanocomposites of commercial PSU and Sepiolite were prepared by solvent mixing method. Different organic solvents and their mixtures were used. Rheological characteristics of PSU-Sepiolite solvent mixtures were analyzed, the solubility of nanocomposite content in those mixtures were studied.Keywords: nanocomposite, polysulfone, rheology, sepiolite, solution mixing
Procedia PDF Downloads 4244575 Mean-Field Type Modeling of Non-Local Congestion in Pedestrian Crowd Dynamics
Authors: Alexander Aurell
Abstract:
One of the latest trends in the modeling of human crowds is the mean-field game approach. In the mean-field game approach, the motion of a human crowd is described by a nonstandard stochastic optimal control problem. It is nonstandard since congestion is considered, introduced through a dependence in the performance functional on the distribution of the crowd. This study extends the class of mean-field pedestrian crowd models to allow for non-local congestion and arbitrary, but finitely, many interacting crowds. The new congestion feature grants pedestrians a 'personal space' where crowding is undesirable. The model is treated as a mean-field type game which is derived from a particle picture. This, in contrast to a mean-field game, better describes a situation where the crowd can be controlled by a central planner. The latter is suitable for decentralized situations. Solutions to the mean-field type game are characterized via a Pontryagin-type Maximum Principle.Keywords: congestion, crowd dynamics, interacting populations, mean-field approximation, optimal control
Procedia PDF Downloads 445