Search results for: pin fin heat sink optimization
3541 Artificial Neural Networks Application on Nusselt Number and Pressure Drop Prediction in Triangular Corrugated Plate Heat Exchanger
Authors: Hany Elsaid Fawaz Abdallah
Abstract:
This study presents a new artificial neural network(ANN) model to predict the Nusselt Number and pressure drop for the turbulent flow in a triangular corrugated plate heat exchanger for forced air and turbulent water flow. An experimental investigation was performed to create a new dataset for the Nusselt Number and pressure drop values in the following range of dimensionless parameters: The plate corrugation angles (from 0° to 60°), the Reynolds number (from 10000 to 40000), pitch to height ratio (from 1 to 4), and Prandtl number (from 0.7 to 200). Based on the ANN performance graph, the three-layer structure with {12-8-6} hidden neurons has been chosen. The training procedure includes back-propagation with the biases and weight adjustment, the evaluation of the loss function for the training and validation dataset and feed-forward propagation of the input parameters. The linear function was used at the output layer as the activation function, while for the hidden layers, the rectified linear unit activation function was utilized. In order to accelerate the ANN training, the loss function minimization may be achieved by the adaptive moment estimation algorithm (ADAM). The ‘‘MinMax’’ normalization approach was utilized to avoid the increase in the training time due to drastic differences in the loss function gradients with respect to the values of weights. Since the test dataset is not being used for the ANN training, a cross-validation technique is applied to the ANN network using the new data. Such procedure was repeated until loss function convergence was achieved or for 4000 epochs with a batch size of 200 points. The program code was written in Python 3.0 using open-source ANN libraries such as Scikit learn, TensorFlow and Keras libraries. The mean average percent error values of 9.4% for the Nusselt number and 8.2% for pressure drop for the ANN model have been achieved. Therefore, higher accuracy compared to the generalized correlations was achieved. The performance validation of the obtained model was based on a comparison of predicted data with the experimental results yielding excellent accuracy.Keywords: artificial neural networks, corrugated channel, heat transfer enhancement, Nusselt number, pressure drop, generalized correlations
Procedia PDF Downloads 863540 Heat Forging Analysis Method on Blank Consist of Two Metals
Authors: Takashi Ueda, Shinichi Enoki
Abstract:
Forging parts is used to automobiles. Because they have high strength and it is possible to press them into complicated shape. When it is possible to manufacture hollow forging parts, it leads to reduce weight of the automobiles. But, hollow forging parts are confined to axisymmetrical shape. Hollow forging parts that were pressed to complicated shape are expected. Therefore, we forge a blank that aluminum alloy was inserted in stainless steel. After that, we can provide complex forging parts that are reduced weight, if it is possible to be melted the aluminum alloy away by using different of melting points. It is necessary to establish heat forging analysis method on blank consist of stainless steel and aluminum alloy. Because, this forging is different from conventional forging and this technology is not confirmed. In this study, we compared forging experiment with numerical analysis on the view point of forming load and shape after forming and establish how to set the material temperatures of two metals and material property of stainless steel on the analysis method. Consequently, temperature difference of stainless steel and aluminum alloy was obtained by experiment. We got material property of stainless steel on forging experimental by compression tests. We had compared numerical analysis that was used the temperature difference of two metals and the material property of stainless steel on forging experimental with forging experiment. Forging analysis method on blank consist of two metals was established by result of numerical analysis having agreed with result of forging experiment.Keywords: forging, lightweight, analysis, hollow
Procedia PDF Downloads 4143539 A Comparative Study of the Techno-Economic Performance of the Linear Fresnel Reflector Using Direct and Indirect Steam Generation: A Case Study under High Direct Normal Irradiance
Authors: Ahmed Aljudaya, Derek Ingham, Lin Ma, Kevin Hughes, Mohammed Pourkashanian
Abstract:
Researchers, power companies, and state politicians have given concentrated solar power (CSP) much attention due to its capacity to generate large amounts of electricity whereas overcoming the intermittent nature of solar resources. The Linear Fresnel Reflector (LFR) is a well-known CSP technology type for being inexpensive, having a low land use factor, and suffering from low optical efficiency. The LFR was considered a cost-effective alternative option to the Parabolic Trough Collector (PTC) because of its simplistic design, and this often outweighs its lower efficiency. The LFR has been found to be a promising option for directly producing steam to a thermal cycle in order to generate low-cost electricity, but also it has been shown to be promising for indirect steam generation. The purpose of this important analysis is to compare the annual performance of the Direct Steam Generation (DSG) and Indirect Steam Generation (ISG) of LFR power plants using molten salt and other different Heat Transfer Fluids (HTF) to investigate their technical and economic effects. A 50 MWe solar-only system is examined as a case study for both steam production methods in extreme weather conditions. In addition, a parametric analysis is carried out to determine the optimal solar field size that provides the lowest Levelized Cost of Electricity (LCOE) while achieving the highest technical performance. As a result of optimizing the optimum solar field size, the solar multiple (SM) is found to be between 1.2 – 1.5 in order to achieve as low as 9 Cent/KWh for the direct steam generation of the linear Fresnel reflector. In addition, the power plant is capable of producing around 141 GWh annually and up to 36% of the capacity factor, whereas the ISG produces less energy at a higher cost. The optimization results show that the DSG’s performance overcomes the ISG in producing around 3% more annual energy, 2% lower LCOE, and 28% less capital cost.Keywords: concentrated solar power, levelized cost of electricity, linear Fresnel reflectors, steam generation
Procedia PDF Downloads 1103538 Predictive Maintenance of Industrial Shredders: Efficient Operation through Real-Time Monitoring Using Statistical Machine Learning
Authors: Federico Pittino, Thomas Arnold
Abstract:
The shredding of waste materials is a key step in the recycling process towards the circular economy. Industrial shredders for waste processing operate in very harsh operating conditions, leading to the need for frequent maintenance of critical components. Maintenance optimization is particularly important also to increase the machine’s efficiency, thereby reducing the operational costs. In this work, a monitoring system has been developed and deployed on an industrial shredder located at a waste recycling plant in Austria. The machine has been monitored for one year, and methods for predictive maintenance have been developed for two key components: the cutting knives and the drive belt. The large amount of collected data is leveraged by statistical machine learning techniques, thereby not requiring very detailed knowledge of the machine or its live operating conditions. The results show that, despite the wide range of operating conditions, a reliable estimate of the optimal time for maintenance can be derived. Moreover, the trade-off between the cost of maintenance and the increase in power consumption due to the wear state of the monitored components of the machine is investigated. This work proves the benefits of real-time monitoring system for the efficient operation of industrial shredders.Keywords: predictive maintenance, circular economy, industrial shredder, cost optimization, statistical machine learning
Procedia PDF Downloads 1203537 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management
Authors: M. Graus, K. Westhoff, X. Xu
Abstract:
The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.Keywords: data analytics, green production, industrial energy management, optimization, renewable energies, simulation
Procedia PDF Downloads 4343536 Evaluation of Non-Staggered Body-Fitted Grid Based Solution Method in Application to Supercritical Fluid Flows
Authors: Suresh Sahu, Abhijeet M. Vaidya, Naresh K. Maheshwari
Abstract:
The efforts to understand the heat transfer behavior of supercritical water in supercritical water cooled reactor (SCWR) are ongoing worldwide to fulfill the future energy demand. The higher thermal efficiency of these reactors compared to a conventional nuclear reactor is one of the driving forces for attracting the attention of nuclear scientists. In this work, a solution procedure has been described for solving supercritical fluid flow problems in complex geometries. The solution procedure is based on non-staggered grid. All governing equations are discretized by finite volume method (FVM) in curvilinear coordinate system. Convective terms are discretized by first-order upwind scheme and central difference approximation has been used to discretize the diffusive parts. k-ε turbulence model with standard wall function has been employed. SIMPLE solution procedure has been implemented for the curvilinear coordinate system. Based on this solution method, 3-D Computational Fluid Dynamics (CFD) code has been developed. In order to demonstrate the capability of this CFD code in supercritical fluid flows, heat transfer to supercritical water in circular tubes has been considered as a test problem. Results obtained by code have been compared with experimental results reported in literature.Keywords: curvilinear coordinate, body-fitted mesh, momentum interpolation, non-staggered grid, supercritical fluids
Procedia PDF Downloads 1273535 Interval Bilevel Linear Fractional Programming
Authors: F. Hamidi, N. Amiri, H. Mishmast Nehi
Abstract:
The Bilevel Programming (BP) model has been presented for a decision making process that consists of two decision makers in a hierarchical structure. In fact, BP is a model for a static two person game (the leader player in the upper level and the follower player in the lower level) wherein each player tries to optimize his/her personal objective function under dependent constraints; this game is sequential and non-cooperative. The decision making variables are divided between the two players and one’s choice affects the other’s benefit and choices. In other words, BP consists of two nested optimization problems with two objective functions (upper and lower) where the constraint region of the upper level problem is implicitly determined by the lower level problem. In real cases, the coefficients of an optimization problem may not be precise, i.e. they may be interval. In this paper we develop an algorithm for solving interval bilevel linear fractional programming problems. That is to say, bilevel problems in which both objective functions are linear fractional, the coefficients are interval and the common constraint region is a polyhedron. From the original problem, the best and the worst bilevel linear fractional problems have been derived and then, using the extended Charnes and Cooper transformation, each fractional problem can be reduced to a linear problem. Then we can find the best and the worst optimal values of the leader objective function by two algorithms.Keywords: best and worst optimal solutions, bilevel programming, fractional, interval coefficients
Procedia PDF Downloads 4443534 Sulfur-Containing Diet Shift Hydrogen Metabolism and Reduce Methane Emission and Modulated Gut Microbiome in Goats
Authors: Tsegay Teklebrhan Gebremariam, Zhiliang, Arjan Jonker
Abstract:
The study investigated that using corn gluten (CG) instead of cornmeal (CM) increased dietary sulfur shifted H₂ metabolism from methanogenesis to alternative sink and modulated microbiome in the rumen as well as hindgut segments of goats. Ruminal fermentation, CH₄ emissions and microbial abundance in goats (n = 24). The experiment was performed using a randomized block design with two dietary treatments (CM and CG with 400 g/kg DM each). Goats in CG increased sulfur, NDF and CP intake and decreased starch intake as compared with those in CM. Goats that received CG diet had decreased dissolved hydrogen (dH₂) (P = 0.01) and dissolved methane yield and emission (dCH₄) (P = 0.001), while increased dH₂S both in the rumen and hindgut segments than those fed CM. Goats fed CG had higher (p < 0.01) gene copies of microbiota and cellulolytic bacteria, whereas starch utilizing bacterial species were less in the rumen and hindgut than those fed CM. Higher (P < 0.05) methanogenic diversity and abundances of Methanimicrococcus and Methanomicrobium were observed in goats that consumed CG, whilst containing lower Methanobrevibacter populations than those receiving CM. The study suggested that goats fed corn gluten improved the gene copies of microbiota and fibrolytic bacterial species while reducing starch utilizing species in the rumen and hindgut segments as compared with that fed cornmeal. Goats consuming corn gluten had a more enriched methanogenic diversity and reduced Methanobrevibacter, a contributor to CH₄ emissions, as compared with goats fed CM. Corn gluten could be used as an alternative feed to decrease the enteric CH₄ emission in ruminant production.Keywords: dissolved gasses, methanogenesis, microbial community, metagenomics
Procedia PDF Downloads 1563533 Significant Reduction in Specific CO₂ Emission through Process Optimization at G Blast Furnace, Tata Steel Jamshedpur
Authors: Shoumodip Roy, Ankit Singhania, M. K. G. Choudhury, Santanu Mallick, M. K. Agarwal, R. V. Ramna, Uttam Singh
Abstract:
One of the key corporate goals of Tata Steel company is to demonstrate Environment Leadership. Decreasing specific CO₂ emission is one of the key steps to achieve the stated corporate goal. At any Blast Furnace, specific CO₂ emission is directly proportional to fuel intake. To reduce the fuel intake at G Blast Furnace, an initial benchmarking exercise was carried out with international and domestic Blast Furnaces to determine the potential for improvement. The gap identified during the exercise revealed that the benchmark Blast Furnaces operated with superior raw material quality than that in G Blast Furnace. However, since the raw materials to G Blast Furnace are sourced from the captive mines, improvement in the raw material quality was out of scope. Therefore, trials were taken with different operating regimes, to identify the key process parameters, which on optimization could significantly reduce the fuel intake in G Blast Furnace. The key process parameters identified from the trial were the Stoichiometric Oxygen Ratio, Melting Capacity ratio and the burden distribution inside the furnace. These identified process parameters were optimized to bridge the gap in fuel intake at G Blast Furnace, thereby reducing specific CO₂ emission to benchmark levels. This paradigm shift enabled to lower the fuel intake by 70kg per ton of liquid iron produced, thereby reducing the specific CO₂ emission by 15 percent.Keywords: benchmark, blast furnace, CO₂ emission, fuel rate
Procedia PDF Downloads 2793532 Electricity Sector's Status in Lebanon and Portfolio Optimization for the Future Electricity Generation Scenarios
Authors: Nour Wehbe
Abstract:
The Lebanese electricity sector is at the heart of a deep crisis. Electricity in Lebanon is supplied by Électricité du Liban (EdL) which has to suffer from technical and financial deficiencies for decades and proved to be insufficient and deficient as the demand still exceeds the supply. As a result, backup generation is widespread throughout Lebanon. The sector costs massive government resources and, on top of it, consumers pay massive additional amounts for satisfying their electrical needs. While the developed countries have been investing in renewable energy for the past two decades, the Lebanese government realizes the importance of adopting such energy sourcing strategies for the upgrade of the electricity sector in the country. The diversification of the national electricity generation mix has increased considerably in Lebanon's energy planning agenda, especially that a detailed review of the energy potential in Lebanon has revealed a great potential of solar and wind energy resources, a considerable potential of biomass resource, and an important hydraulic potential in Lebanon. This paper presents a review of the energy status of Lebanon, and illustrates a detailed review of the EDL structure with the existing problems and recommended solutions. In addition, scenarios reflecting implementation of policy projects are presented, and conclusions are drawn on the usefulness of a proposed evaluation methodology and the effectiveness of the adopted new energy policy for the electrical sector in Lebanon.Keywords: EdL Electricite du Liban, portfolio optimization, electricity generation mix, mean-variance approach
Procedia PDF Downloads 2473531 Model Updating Based on Modal Parameters Using Hybrid Pattern Search Technique
Authors: N. Guo, C. Xu, Z. C. Yang
Abstract:
In order to ensure the high reliability of an aircraft, the accurate structural dynamics analysis has become an indispensable part in the design of an aircraft structure. Therefore, the structural finite element model which can be used to accurately calculate the structural dynamics and their transfer relations is the prerequisite in structural dynamic design. A dynamic finite element model updating method is presented to correct the uncertain parameters of the finite element model of a structure using measured modal parameters. The coordinate modal assurance criterion is used to evaluate the correlation level at each coordinate over the experimental and the analytical mode shapes. Then, the weighted summation of the natural frequency residual and the coordinate modal assurance criterion residual is used as the objective function. Moreover, the hybrid pattern search (HPS) optimization technique, which synthesizes the advantages of pattern search (PS) optimization technique and genetic algorithm (GA), is introduced to solve the dynamic FE model updating problem. A numerical simulation and a model updating experiment for GARTEUR aircraft model are performed to validate the feasibility and effectiveness of the present dynamic model updating method, respectively. The updated results show that the proposed method can be successfully used to modify the incorrect parameters with good robustness.Keywords: model updating, modal parameter, coordinate modal assurance criterion, hybrid genetic/pattern search
Procedia PDF Downloads 1593530 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization
Authors: Soheila Sadeghi
Abstract:
Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction
Procedia PDF Downloads 553529 The Effect of Ambient Temperature on the Performance of the Simple and Modified Cycle Gas Turbine Plants
Authors: Ogbe E. E., Ossia. C. V., Saturday. E. G., Ezekwe M. C.
Abstract:
The disparity in power output between a simple and a modified gas turbine plant is noticeable when the gas turbine functions under local environmental conditions that deviate from the standard ISO specifications. Extensive research and literature have demonstrated a well-known direct correlation between ambient temperature and the power output of a gas turbine plant. In this study, the Omotosho gas turbine plant was modified into three different configurations. The reason for the modification is to improve its performance and reduce the fuel consumption and emission rate. Aspen Hysys software was used to simulate both the simple (Omotosho) and the three modified gas turbine plants. The input parameters considered include ambient temperature, air mass flow rate, fuel mass flow rate, water mass flow rate, turbine inlet temperature, compressor efficiency, and turbine efficiency, while the output parameters considered are thermal efficiency, specific fuel consumption, heat rate, emission rate, compressor power, turbine power and power output. The three modified gas turbine power plants incorporate an inlet air cooling system and a heat recovery steam generator. The variations between the modifications are due to additional components or enhancements alongside the inlet air cooling system and heat recovery steam generator incorporated; the first modification has an additional turbine, the second modification has an additional combustion chamber, and the third modification has an additional turbine and combustion chamber. This paper clearly shows ambient temperature effects on both the simple and three modified gas turbine plants. for every 10-degree kelvin increase in ambient temperature, there is an approximate reduction of 3977 kW, 4795 kW, 4681 kW, and 4793 kW of the power output for the simple gas turbine, first, second, and third modifications, respectively. Also, for every 10-degree kelvin increase in temperature, there is a thermal efficiency decrease of 1.22%, 1.45%, 1.43%, and 1.44% for the simple gas turbine, first, second, and third modifications respectively. Low ambient temperature will help save fuel; looking at the high price of fuel presently in Nigeria for every 10 degrees kelvin increase in temperature, there is a specific fuel consumption increase of 0.0074 kg/kWh, 0.0051 kg/kWh, 0.0061 kg/kWh, and 0.0057 kg/kWh for the simple gas turbine, first, second, and third modifications respectively. These findings will aid in accurately evaluating local power generating plants, particularly in hotter regions, for installing gas turbine inlet air cooling (GTIAC) systems.Keywords: Aspen HYSYS software, Brayton Cycle, modified gas turbine, power plant, simple gas turbine, thermal efficiency.
Procedia PDF Downloads 313528 Production of Friendly Environmental Material as Building Element from Plastic Waste
Authors: Dheyaa Wajid Abbood, Mohanad Salih Farhan, Awadh E. Ajeel
Abstract:
The basic goal of this study is the production of cheap building elements from plastic waste. environmentally friendly and of good thermal insulation. The study depends on the addition of plastic waste as aggregates to the mixes of concrete at different percentages by weight (12 percentages) to produce lightweight aggregate concrete the density (1095 - 1892) kg/m3.The experimental work includes 120 specimens of concrete 72 cubes (150*150*150)mm, 48 cylinder (150*300) mm. The results obtained for concrete were for local raw materials without any additional materials or treatment. The mechanical and thermal properties determined were (compressive strength, static modulus of elasticity, density, thermal conductivity (k), specific heat capacity (Cp), thermal expansion (α) after (7) days of curing at 20 0C. The increase in amount of plastic waste decreases the density of concrete which leads to decrease in the mechanical and to improvement in thermal properties. The average measured static modulus of elasticity are found less than the predicted static modulus of elasticity and splitting tensile strength (ACI 318-2008 and ACI 213R-2003). All cubes specimens when exposed to heat at (200, 400, 600 0C), the compressive strength of all mixes decreases gradually at 600 0C, the strength of lightweight aggregate concrete were disintegrated. Lightweight aggregate concrete is about 25% lighter than normal concrete in dead load, and to the improve the properties of thermal insulation of building blocks.Keywords: LWAC, plastic waste, thermal property, thermal insulation
Procedia PDF Downloads 4263527 Implementation of a Multimodal Biometrics Recognition System with Combined Palm Print and Iris Features
Authors: Rabab M. Ramadan, Elaraby A. Elgallad
Abstract:
With extensive application, the performance of unimodal biometrics systems has to face a diversity of problems such as signal and background noise, distortion, and environment differences. Therefore, multimodal biometric systems are proposed to solve the above stated problems. This paper introduces a bimodal biometric recognition system based on the extracted features of the human palm print and iris. Palm print biometric is fairly a new evolving technology that is used to identify people by their palm features. The iris is a strong competitor together with face and fingerprints for presence in multimodal recognition systems. In this research, we introduced an algorithm to the combination of the palm and iris-extracted features using a texture-based descriptor, the Scale Invariant Feature Transform (SIFT). Since the feature sets are non-homogeneous as features of different biometric modalities are used, these features will be concatenated to form a single feature vector. Particle swarm optimization (PSO) is used as a feature selection technique to reduce the dimensionality of the feature. The proposed algorithm will be applied to the Institute of Technology of Delhi (IITD) database and its performance will be compared with various iris recognition algorithms found in the literature.Keywords: iris recognition, particle swarm optimization, feature extraction, feature selection, palm print, the Scale Invariant Feature Transform (SIFT)
Procedia PDF Downloads 2323526 Microwave-Assisted Chemical Pre-Treatment of Waste Sorghum Leaves: Process Optimization and Development of an Intelligent Model for Determination of Volatile Compound Fractions
Authors: Daneal Rorke, Gueguim Kana
Abstract:
The shift towards renewable energy sources for biofuel production has received increasing attention. However, the use and pre-treatment of lignocellulosic material are inundated with the generation of fermentation inhibitors which severely impact the feasibility of bioprocesses. This study reports the profiling of all volatile compounds generated during microwave assisted chemical pre-treatment of sorghum leaves. Furthermore, the optimization of reducing sugar (RS) from microwave assisted acid pre-treatment of sorghum leaves was assessed and gave a coefficient of determination (R2) of 0.76, producing an optimal RS yield of 2.74 g FS/g substrate. The development of an intelligent model to predict volatile compound fractions gave R2 values of up to 0.93 for 21 volatile compounds. Sensitivity analysis revealed that furfural and phenol exhibited high sensitivity to acid concentration, alkali concentration and S:L ratio, while phenol showed high sensitivity to microwave duration and intensity as well. These findings illustrate the potential of using an intelligent model to predict the volatile compound fraction profile of compounds generated during pre-treatment of sorghum leaves in order to establish a more robust and efficient pre-treatment regime for biofuel production.Keywords: artificial neural networks, fermentation inhibitors, lignocellulosic pre-treatment, sorghum leaves
Procedia PDF Downloads 2463525 Simulation of Performance and Layout Optimization of Solar Collectors with AVR Microcontroller to Achieve Desired Conditions
Authors: Mohsen Azarmjoo, Navid Sharifi, Zahra Alikhani Koopaei
Abstract:
This article aims to conserve energy and optimize the performance of solar water heaters using modern modeling systems. In this study, a large-scale solar water heater is modeled using an AVR microcontroller, which is a digital processor from the AVR microcontroller family. This mechatronic system will be used to analyze the performance and design of solar collectors, with the ultimate goal of improving the efficiency of the system being used. The findings of this research provide insights into optimizing the performance of solar water heaters. By manipulating the arrangement of solar panels and controlling the water flow through them using the AVR microcontroller, researchers can identify the optimal configurations and operational protocols to achieve the desired temperature and flow conditions. These findings can contribute to the development of more efficient and sustainable heating and cooling systems. This article investigates the optimization of solar water heater performance. It examines the impact of solar panel layout on system efficiency and explores methods of controlling water flow to achieve the desired temperature and flow conditions. The results of this research contribute to the development of more sustainable heating and cooling systems that rely on renewable energy sources.Keywords: energy conservation, solar water heaters, solar cooling, simulation, mechatronics
Procedia PDF Downloads 823524 The Importance of Downstream Supply Chain in Supply Chain Risk Management: Multi-Objective Optimization
Authors: Zohreh Khojasteh-Ghamari, Takashi Irohara
Abstract:
One of the efficient ways in supply chain risk management is avoiding the interruption in Supply Chain (SC) before it occurs. Although the majority of the organizations focus on their first-tier suppliers to avoid risk in the SC, studies show that in only 60 percent of the disruption cases the reason is first tier suppliers. In the 40 percent of the SC disruptions, the reason is downstream SC, which is the second tier and lower. Due to the increasing complexity and interrelation of modern supply chains, the SC elements have become difficult to trace. Moreover, studies show that there is a vital need to better understand the integration of risk and visibility, especially in the context of multiple objectives. In this study, we propose a multi-objective programming model to avoid disruption in SC. The objective of this study is evaluating the effect of downstream SCV on managing supply chain risk. We propose a multi-objective mathematical programming model with the objective functions of minimizing the total cost and maximizing the downstream supply chain visibility (SCV). The decision variable is supplier selection. We assume there are several manufacturers and several candidate suppliers. For each manufacturer, our model proposes the best suppliers with the lowest cost and maximum visibility in downstream supply chain. We examine the applicability of the model by numerical examples. We also define several scenarios for datasets and observe the tendency. The results show that minimum visibility in downstream SC is needed to have a safe SC network.Keywords: downstream supply chain, optimization, supply chain risk, supply chain visibility
Procedia PDF Downloads 2433523 Borassus aethiopum Mart Mature Fruits Macro-Composition, Drying Temperature Effect on Its Pulp Protein, Fat, Sugars, Metabolizable Energy, and Fatty Acids Profile
Authors: Tagouelbe Tiho, Amissa Augustin Adima, Yao Casimir Brou, Nabayo Traore, Gouha Firmin Kouassi, Thierry Roland Kouame, Maryline Kouba
Abstract:
The work aimed to study Borassus aethiopum Mart (B.a) dried pulp nutritional value for its incorporation in human and poultry diets. Firstly, the mature fruit macro-composition was assessed. Secondly, the pulp was dried at 40, 50, 60, 70, and 80ᵒC. Thereafter, the analysis was performed for fat, protein, total sugars, Ca, P, Mg, and fatty acid profile monitoring. As a result, the fruits weighed 1,591.35, delivered 516.73, and 677.82 grams of pulp and seeds, respectively. Mainly, increasing heat adversely affected the outputs. Consequently, the fat results were 14.12, 12.97, 8.93, 8.89ᶜ, and 5.56%; protein contents were 11.64, 10.15, 8.97, 8.84, and 8.42%; total sugar deliveries were 6.28, 6.05, 5.26, 5.02, and 4.76% (P < 0.01). Thereafter, the metabolizable energies were 3,785.22; 3,834.28; 3,616.62; 3,667.03; and 3,608.33 kcal/kg (DM). Additionally, Calcium (Ca) contents were 0.51, 0.55, 0.69, 0.77, and 0.81%, while phosphorus (P) mean was 0.17%, and the differences were not significant (P < 0.01). So, the Ca/P ratios were 2.79, 3.04, 4.10, 4.71, and 4.95. Finally, fatty acids (FA) assessments revealed 22.33 saturated (SFA), 77.67 unsaturated (UFA), within which 67.59% were monounsaturated (MUFA). Interestingly, the rising heat depressed n-6/n-3 ratios that were 1.1, 1.1, 0.45 and 0.38, respectively at 40, 50, 70 and 80ᵒC. In short, drying did not only enhance the product shelf life but it also improved the nutritional value. Thus, B.a mature fruit pulps dried at 70ᵒC are good functional foods, with more than 66% MUFA, and energy source for human and poultry nutrition.Keywords: Borassus aethiopum Mart, fatty acids, metabolizable energy, minerals, protein
Procedia PDF Downloads 1693522 Experimental Design for Formulation Optimization of Nanoparticle of Cilnidipine
Authors: Arti Bagada, Kantilal Vadalia, Mihir Raval
Abstract:
Cilnidipine is practically insoluble in water which results in its insufficient oral bioavailability. The purpose of the present investigation was to formulate cilnidipine nanoparticles by nanoprecipitation method to increase the aqueous solubility and dissolution rate and hence bioavailability by utilizing various experimental statistical design modules. Experimental design were used to investigate specific effects of independent variables during preparation cilnidipine nanoparticles and corresponding responses in optimizing the formulation. Plackett Burman design for independent variables was successfully employed for optimization of nanoparticles of cilnidipine. The influence of independent variables studied were drug concentration, solvent to antisolvent ratio, polymer concentration, stabilizer concentration and stirring speed. The dependent variables namely average particle size, polydispersity index, zeta potential value and saturation solubility of the formulated nanoparticles of cilnidipine. The experiments were carried out according to 13 runs involving 5 independent variables (higher and lower levels) employing Plackett-Burman design. The cilnidipine nanoparticles were characterized by average particle size, polydispersity index value, zeta potential value and saturation solubility and it results were 149 nm, 0.314, 43.24 and 0.0379 mg/ml, respectively. The experimental results were good correlated with predicted data analysed by Plackett-Burman statistical method.Keywords: dissolution enhancement, nanoparticles, Plackett-Burman design, nanoprecipitation
Procedia PDF Downloads 1583521 Design of a Cooperative Neural Network, Particle Swarm Optimization (PSO) and Fuzzy Based Tracking Control for a Tilt Rotor Unmanned Aerial Vehicle
Authors: Mostafa Mjahed
Abstract:
Tilt Rotor UAVs (Unmanned Aerial Vehicles) are naturally unstable and difficult to maneuver. The purpose of this paper is to design controllers for the stabilization and trajectory tracking of this type of UAV. To this end, artificial intelligence methods have been exploited. First, the dynamics of this UAV was modeled using the Lagrange-Euler method. The conventional method based on Proportional, Integral and Derivative (PID) control was applied by decoupling the different flight modes. To improve stability and trajectory tracking of the Tilt Rotor, the fuzzy approach and the technique of multilayer neural networks (NN) has been used. Thus, Fuzzy Proportional Integral and Derivative (FPID) and Neural Network-based Proportional Integral and Derivative controllers (NNPID) have been developed. The meta-heuristic approach based on Particle Swarm Optimization (PSO) method allowed adjusting the setting parameters of NNPID controller, giving us an improved NNPID-PSO controller. Simulation results under the Matlab environment show the efficiency of the approaches adopted. Besides, the Tilt Rotor UAV has become stable and follows different types of trajectories with acceptable precision. The Fuzzy, NN and NN-PSO-based approaches demonstrated their robustness because the presence of the disturbances did not alter the stability or the trajectory tracking of the Tilt Rotor UAV.Keywords: neural network, fuzzy logic, PSO, PID, trajectory tracking, tilt-rotor UAV
Procedia PDF Downloads 1173520 Patient Scheduling Improvement in a Cancer Treatment Clinic Using Optimization Techniques
Authors: Maryam Haghi, Ivan Contreras, Nadia Bhuiyan
Abstract:
Chemotherapy is one of the most popular and effective cancer treatments offered to patients in outpatient oncology centers. In such clinics, patients first consult with an oncologist and the oncologist may prescribe a chemotherapy treatment plan for the patient based on the blood test results and the examination of the health status. Then, when the plan is determined, a set of chemotherapy and consultation appointments should be scheduled for the patient. In this work, a comprehensive mathematical formulation for planning and scheduling different types of chemotherapy patients over a planning horizon considering blood test, consultation, pharmacy and treatment stages has been proposed. To be more realistic and to provide an applicable model, this study is focused on a case study related to a major outpatient cancer treatment clinic in Montreal, Canada. Comparing the results of the proposed model with the current practice of the clinic under study shows significant improvements regarding different performance measures. These major improvements in the patients’ schedules reveal that using optimization techniques in planning and scheduling of patients in such highly demanded cancer treatment clinics is an essential step to provide a good coordination between different involved stages which ultimately increases the efficiency of the entire system and promotes the staff and patients' satisfaction.Keywords: chemotherapy patients scheduling, integer programming, integrated scheduling, staff balancing
Procedia PDF Downloads 1743519 Automatic Tuning for a Systemic Model of Banking Originated Losses (SYMBOL) Tool on Multicore
Authors: Ronal Muresano, Andrea Pagano
Abstract:
Nowadays, the mathematical/statistical applications are developed with more complexity and accuracy. However, these precisions and complexities have brought as result that applications need more computational power in order to be executed faster. In this sense, the multicore environments are playing an important role to improve and to optimize the execution time of these applications. These environments allow us the inclusion of more parallelism inside the node. However, to take advantage of this parallelism is not an easy task, because we have to deal with some problems such as: cores communications, data locality, memory sizes (cache and RAM), synchronizations, data dependencies on the model, etc. These issues are becoming more important when we wish to improve the application’s performance and scalability. Hence, this paper describes an optimization method developed for Systemic Model of Banking Originated Losses (SYMBOL) tool developed by the European Commission, which is based on analyzing the application's weakness in order to exploit the advantages of the multicore. All these improvements are done in an automatic and transparent manner with the aim of improving the performance metrics of our tool. Finally, experimental evaluations show the effectiveness of our new optimized version, in which we have achieved a considerable improvement on the execution time. The time has been reduced around 96% for the best case tested, between the original serial version and the automatic parallel version.Keywords: algorithm optimization, bank failures, OpenMP, parallel techniques, statistical tool
Procedia PDF Downloads 3663518 Multi Objective Simultaneous Assembly Line Balancing and Buffer Sizing
Authors: Saif Ullah, Guan Zailin, Xu Xianhao, He Zongdong, Wang Baoxi
Abstract:
Assembly line balancing problem is aimed to divide the tasks among the stations in assembly lines and optimize some objectives. In assembly lines the workload on stations is different from each other due to different tasks times and the difference in workloads between stations can cause blockage or starvation in some stations in assembly lines. Buffers are used to store the semi-finished parts between the stations and can help to smooth the assembly production. The assembly line balancing and buffer sizing problem can affect the throughput of the assembly lines. Assembly line balancing and buffer sizing problems have been studied separately in literature and due to their collective contribution in throughput rate of assembly lines, balancing and buffer sizing problem are desired to study simultaneously and therefore they are considered concurrently in current research. Current research is aimed to maximize throughput, minimize total size of buffers in assembly line and minimize workload variations in assembly line simultaneously. A multi objective optimization objective is designed which can give better Pareto solutions from the Pareto front and a simple example problem is solved for assembly line balancing and buffer sizing simultaneously. Current research is significant for assembly line balancing research and it can be significant to introduce optimization approaches which can optimize current multi objective problem in future.Keywords: assembly line balancing, buffer sizing, Pareto solutions
Procedia PDF Downloads 4873517 Approximate Spring Balancing for Swimming Pool Lift Mechanism to Reduce Actuator Torque
Authors: Apurva Patil, Sujatha Srinivasan
Abstract:
Reducing actuator loads is important for applications in which human effort is required for actuation. The potential benefit of applying spring balancing to rehabilitation devices which work against gravity on a nonhorizontal plane is well recognized, but practical applications have been elusive. Although existing methods provide exact spring balance, they require additional masses or auxiliary links, or all the springs used originate from the ground, which makes the resulting device bulky and space-inefficient. This paper uses a method of static balancing of mechanisms with conservative loads such as gravity and spring loads using non-zero-free-length springs and no auxiliary links. Application of this method to a manually operated swimming pool lift mechanism which lowers and raises the physically challenged users into or out of the swimming pool is presented here. Various possible configurations using extension and compression springs as well as gas spring in the mechanism are compared. This work involves approximate spring balancing of the mechanism using minimization of potential energy variance. It uses the approach of flattening the potential energy distribution over the workspace and fuses it with numerical optimization. The results show the considerable reduction in actuator torque requirement with practical spring design and arrangement. Although the method provides only an approximate balancing, it is versatile, flexible in choosing appropriate control variables that are relevant to the design problem and easy to implement. The true potential of this technique lies in the fact that it uses a very simple optimization to find the spring constant, free length of the spring and the optimal attachment points subject to the optimization constraints. Also, it uses physically realizable non-zero-free-length springs directly, thereby reducing the complexity involved in simulating zero-free-length springs from non-zero-free-length springs. This method allows springs to be attached inside the mechanism, which makes the implementation of spring balancing practical. Because auxiliary linkages can be avoided, the resultant swimming pool lift mechanism is compact. The cost benefits and reduced complexity can be significant advantages in the development of this user-actuated swimming pool lift for developing countries.Keywords: gas spring, rehabilitation device, spring balancing, swimming pool lift
Procedia PDF Downloads 2413516 Unusual Weld Failures of Rotary Compressor during Hydraulic Tests: Analysis revealed Boron Induced Cracking in Fusion Zone
Authors: Kaushal Kishore, Vaibhav Jain, Hrishikesh Jugade, Saurabh Hadas, Manashi Adhikary, Goutam Mukhopadhyay, Sandip Bhattacharyya
Abstract:
Rotary air compressors in air conditioners are used to suck excessive volume of air from the atmosphere in a small space to provide drive to the components attached to them. Hydraulic test is one of the most important methods to decide the suitability of these components for usage. In the present application, projection welding is used to join the hot rolled steel sheets after forming for manufacturing of air compressors. These sheets belong to two different high strength low alloy (HSLA) steel grades. It was observed that one batch of compressors made of a particular grade was cracking from the weld, whereas those made of another grade were passing the hydraulic tests. Cracking was repeatedly observed from the weld location. A detailed comparative study of the compressors which failed and successfully passed pressure tests has been presented. Location of crack initiation was identified to be the interface of fusion zone/heat affected zone. Shear dimples were observed on the fracture surface confirming the ductile mode of failure. Hardness profile across the weld revealed a sharp rise in hardness in the fusion zone. This was attributed to the presence of untempered martensitic lath in the fusion zone. A sharp metallurgical notch existed at the heat affected zone/fusion zone interface due to transition in microstructure from acicular ferrite and bainite in HAZ to untempered martensite in the fusion zone. In contrast, welds which did not fail during the pressure tests showed a smooth hardness profile with no abnormal rise in hardness in the fusion zone. The bainitic microstructure was observed in the fusion zone of successful welds. This difference in microstructural constituents in the fusion zone was attributed to the presence of a small amount of boron (0.002 wt. %) in the sheets which were cracking. Trace amount of boron is known to substantially increase the hardenability of HSLA steel, and cooling rate during resolidification in the fusion zone is sufficient to form martensite. Post-weld heat treatment was recommended to transform untempered martensite to tempered martensite with lower hardness.Keywords: compressor, cracking, martensite, weld, boron, hardenability, high strength low alloy steel
Procedia PDF Downloads 1663515 An Efficient Algorithm for Solving the Transmission Network Expansion Planning Problem Integrating Machine Learning with Mathematical Decomposition
Authors: Pablo Oteiza, Ricardo Alvarez, Mehrdad Pirnia, Fuat Can
Abstract:
To effectively combat climate change, many countries around the world have committed to a decarbonisation of their electricity, along with promoting a large-scale integration of renewable energy sources (RES). While this trend represents a unique opportunity to effectively combat climate change, achieving a sound and cost-efficient energy transition towards low-carbon power systems poses significant challenges for the multi-year Transmission Network Expansion Planning (TNEP) problem. The objective of the multi-year TNEP is to determine the necessary network infrastructure to supply the projected demand in a cost-efficient way, considering the evolution of the new generation mix, including the integration of RES. The rapid integration of large-scale RES increases the variability and uncertainty in the power system operation, which in turn increases short-term flexibility requirements. To meet these requirements, flexible generating technologies such as energy storage systems must be considered within the TNEP as well, along with proper models for capturing the operational challenges of future power systems. As a consequence, TNEP formulations are becoming more complex and difficult to solve, especially for its application in realistic-sized power system models. To meet these challenges, there is an increasing need for developing efficient algorithms capable of solving the TNEP problem with reasonable computational time and resources. In this regard, a promising research area is the use of artificial intelligence (AI) techniques for solving large-scale mixed-integer optimization problems, such as the TNEP. In particular, the use of AI along with mathematical optimization strategies based on decomposition has shown great potential. In this context, this paper presents an efficient algorithm for solving the multi-year TNEP problem. The algorithm combines AI techniques with Column Generation, a traditional decomposition-based mathematical optimization method. One of the challenges of using Column Generation for solving the TNEP problem is that the subproblems are of mixed-integer nature, and therefore solving them requires significant amounts of time and resources. Hence, in this proposal we solve a linearly relaxed version of the subproblems, and trained a binary classifier that determines the value of the binary variables, based on the results obtained from the linearized version. A key feature of the proposal is that we integrate the binary classifier into the optimization algorithm in such a way that the optimality of the solution can be guaranteed. The results of a study case based on the HRP 38-bus test system shows that the binary classifier has an accuracy above 97% for estimating the value of the binary variables. Since the linearly relaxed version of the subproblems can be solved with significantly less time than the integer programming counterpart, the integration of the binary classifier into the Column Generation algorithm allowed us to reduce the computational time required for solving the problem by 50%. The final version of this paper will contain a detailed description of the proposed algorithm, the AI-based binary classifier technique and its integration into the CG algorithm. To demonstrate the capabilities of the proposal, we evaluate the algorithm in case studies with different scenarios, as well as in other power system models.Keywords: integer optimization, machine learning, mathematical decomposition, transmission planning
Procedia PDF Downloads 833514 Developing a Comprehensive Green Building Rating System Tailored for Nigeria: Analyzing International Sustainable Rating Systems to Create Environmentally Responsible Standards for the Nigerian Construction Industry and Built Environment
Authors: Azeez Balogun
Abstract:
Inexperienced building score practices are continually evolving and vary across areas. Yet, a few middle ideas stay steady, such as website selection, design, energy efficiency, water and material conservation, indoor environmental great, operational optimization, and waste discount. The essence of green building lies inside the optimization of 1 or more of those standards. This paper conducts a comparative analysis of 7 extensively recognized sustainable score structures—BREEAM, CASBEE, green GLOBES, inexperienced superstar, HK-BEAM, IGBC green homes, and LEED—based totally on the perceptions and opinions of stakeholders in Nigeria certified in green constructing rating systems. The purpose is to pick out and adopt an appropriate green building rating device for Nigeria. Numerous components of those systems had been tested to determine the high-quality health of the Nigerian built environment. The findings imply that LEED, the important machine within the USA and Canada, is the most suitable for Nigeria due to its sturdy basis, extensive funding, and confirmed blessings. LEED obtained the highest rating of eighty out of one hundred points on this assessment.Keywords: structure, built surroundings, inexperienced building score gadget, Nigeria Inexperienced Constructing Council, sustainability
Procedia PDF Downloads 263513 Application of Bacteriophage and Essential Oil to Enhance Photocatalytic Efficiency
Authors: Myriam Ben Said, Dhekra Trabelsi, Faouzi Achouri, Marwa Ben Saad, Latifa Bousselmi, Ahmed Ghrabi
Abstract:
This present study suggests the use of biological and natural bactericide, cheap, safe to handle, natural, environmentally benign agents to enhance the conventional wastewater treatment process. In the same sense, to highlight the enhancement of wastewater photocatalytic treatability, we were used virulent bacteriophage(s) and essential oils (EOs). The pre-phago-treatment of wastewater with lytic phage(s), leads to a decrease in bacterial density and, consequently, limits the establishment of intercellular communication (QS), thus preventing biofilm formation and inhibiting the expression of other virulence factors after photocatalysis. Moreover, to increase the photocatalytic efficiency, we were added to the secondary treated wastewater 1/1000 (w/v) of EO of thyme (T. vulgaris). This EO showed in vitro an anti-biofilm activity through the inhibition of plonctonic cell mobility and their attachment on an inert surface and also the deterioration of the sessile structure. The presence of photoactivatable molecules (photosensitizes) in this type of oil allows the optimization of photocatalytic efficiency without hazards relayed to dyes and chemicals reagent. The use of ‘biological and natural tools’ in combination with usual water treatment process can be considered as a safety procedure to reduce and/or to prevent the recontamination of treated water and also to prevent the re-expression of virulent factors by pathogenic bacteria such as biofilm formation with friendly processes.Keywords: biofilm, essential oil, optimization, phage, photocatalysis, wastewater
Procedia PDF Downloads 1523512 Slum Dwellers Residential Location Choices Decision: A Determinant of Slum Growth in Lagos Mega City
Authors: Olabisi Badmos, Daniel Callo-Concha, Babatunde Agbola, Andreas Rienow, Klaus Greve, Carsten Jurgens
Abstract:
Slums are important components of city development planning, especially in Africa where slum growth is on par with urban growth. Purposefully, our knowledge on the residential choice of slum dwellers, which contributes to population growth in slums, is limited. This is the case in Lagos, a megacity reportedly dominated by slum dwellers. Thus, this study aims to disclose the factors influencing the residential choices and causes of people to remain in Lagos slums. Data was collected through questionnaire administration and focus group discussions. Descriptive statistics were used to analyze and describe the factors influencing residential location choice; logistic regression was utilized to determine the extent to which the neighborhood and household attributes, influence slum dwellers decisions to remain in the slums. Results showed that movement to Lagos was the main cause of population growth in slums; most of the migrants were from closer geopolitical zones (in Nigeria). Further, the movement patterns observed support two theories of human mobility in slums: slum as a sink, and as a final destination. Also, the factors that brought most of the slum dwellers to the slums (cheap housing, proximity to work etc.) differs from the ones that made them stay (Gender, employment status, housing status etc.). This study concludes that residential choice and intention to stay are the major contributors to population growth in a slum. It is therefore important for Lagos state Government to incorporate these elements of residential choices of slum dwellers in their slum management policies if the city aims to be free of slums by 2030Keywords: Lagos, population growth, residential decision choices, slum
Procedia PDF Downloads 167