Search results for: Chevron corrugated plate heat exchanger
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3787

Search results for: Chevron corrugated plate heat exchanger

1207 Thermal Energy Storage Based on Molten Salts Containing Nano-Particles: Dispersion Stability and Thermal Conductivity Using Multi-Scale Computational Modelling

Authors: Bashar Mahmoud, Lee Mortimer, Michael Fairweather

Abstract:

New methods have recently been introduced to improve the thermal property values of molten nitrate salts (a binary mixture of NaNO3:KNO3in 60:40 wt. %), by doping them with minute concentration of nanoparticles in the range of 0.5 to 1.5 wt. % to form the so-called: Nano-heat-transfer-fluid, apt for thermal energy transfer and storage applications. The present study aims to assess the stability of these nanofluids using the advanced computational modelling technique, Lagrangian particle tracking. A multi-phase solid-liquid model is used, where the motion of embedded nanoparticles in the suspended fluid is treated by an Euler-Lagrange hybrid scheme with fixed time stepping. This technique enables measurements of various multi-scale forces whose characteristic (length and timescales) are quite different. Two systems are considered, both consisting of 50 nm Al2O3 ceramic nanoparticles suspended in fluids of different density ratios. This includes both water (5 to 95 °C) and molten nitrate salt (220 to 500 °C) at various volume fractions ranging between 1% to 5%. Dynamic properties of both phases are coupled to the ambient temperature of the fluid suspension. The three-dimensional computational region consists of a 1μm cube and particles are homogeneously distributed across the domain. Periodic boundary conditions are enforced. The particle equations of motion are integrated using the fourth order Runge-Kutta algorithm with a very small time-step, Δts, set at 10-11 s. The implemented technique demonstrates the key dynamics of aggregated nanoparticles and this involves: Brownian motion, soft-sphere particle-particle collisions, and Derjaguin, Landau, Vervey, and Overbeek (DLVO) forces. These mechanisms are responsible for the predictive model of aggregation of nano-suspensions. An energy transport-based method of predicting the thermal conductivity of the nanofluids is also used to determine thermal properties of the suspension. The simulation results confirms the effectiveness of the technique. The values are in excellent agreement with the theoretical and experimental data obtained from similar studies. The predictions indicates the role of Brownian motion and DLVO force (represented by both the repulsive electric double layer and an attractive Van der Waals) and its influence in the level of nanoparticles agglomeration. As to the nano-aggregates formed that was found to play a key role in governing the thermal behavior of nanofluids at various particle concentration. The presentation will include a quantitative assessment of these forces and mechanisms, which would lead to conclusions about nanofluids, heat transfer performance and thermal characteristics and its potential application in solar thermal energy plants.

Keywords: thermal energy storage, molten salt, nano-fluids, multi-scale computational modelling

Procedia PDF Downloads 172
1206 On the Exergy Analysis of the Aluminum Smelter

Authors: Ayoola T. Brimmo, Mohamed I. Hassan

Abstract:

The push to mitigate the aluminum smelting industry’s enormous energy consumption and high emission releases is now even more persistent with the recent climate change happenings. Common approaches to achieve this have been focused on improving energy efficiency in the pot line and cast house sections of the smelter. However, the conventional energy efficiency analyses are based on the first law of thermodynamics, which do not shed proper light on the smelter’s degradation of energy. This just gives a general idea of the furnace’s performance with no reference to locations where improvement is a possibility based on the second law of thermodynamics. In this study, we apply exergy analyses on the pot line and cast house sections of the smelter to identify the locality and causes of energy degradation. The exergy analyses, which are based on a real life smelter conditions, highlight the possible locations for technology improvement in a typical smelter. With this established, methods of minimizing the smelter’s exergy losses are assessed.

Keywords: exergy analysis, electrolytic cell, furnace, heat transfer

Procedia PDF Downloads 271
1205 After-Cooling Analysis of RC Structural Members Exposed to High Temperature by Using Numerical Approach

Authors: Ju-Young Hwang, Hyo-Gyoung Kwak

Abstract:

This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical nonlinearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.

Keywords: RC, high temperature, after-cooling analysis, nonlinear analysis

Procedia PDF Downloads 395
1204 Impact of Different Fuel Inlet Diameters onto the NOx Emissions in a Hydrogen Combustor

Authors: Annapurna Basavaraju, Arianna Mastrodonato, Franz Heitmeir

Abstract:

The Advisory Council for Aeronautics Research in Europe (ACARE) is creating awareness for the overall reduction of NOx emissions by 80% in its vision 2020. Hence this promotes the researchers to work on novel technologies, one such technology is the use of alternative fuels. Among these fuels hydrogen is of interest due to its one and only significant pollutant NOx. The influence of NOx formation due to hydrogen combustion depends on various parameters such as air pressure, inlet air temperature, air to fuel jet momentum ratio etc. Appropriately, this research is motivated to investigate the impact of the air to fuel jet momentum ratio onto the NOx formation in a hydrogen combustion chamber for aircraft engines. The air to jet fuel momentum is defined as the ratio of impulse/momentum of air with respect to the momentum of fuel. The experiments were performed in an existing combustion chamber that has been previously tested for methane. Premix of the reactants has not been considered due to the high reactivity of the hydrogen and high risk of a flashback. In order to create a less rich zone of reaction at the burner and to decrease the emissions, a forced internal recirculation flow has been achieved by integrating a plate similar to honeycomb structure, suitable to the geometry of the liner. The liner has been provided with an external cooling system to avoid the increase of local temperatures and in turn the reaction rate of the NOx formation. The injected air has been preheated to aim at so called flameless combustion. The air to fuel jet momentum ratio has been inspected by changing the area of fuel inlets and keeping the number of fuel inlets constant in order to alter the fuel jet momentum, thus maintaining the homogeneity of the flow. Within this analysis, promising results for a flameless combustion have been achieved. For a constant number of fuel inlets, it was seen that the reduction of the fuel inlet diameter resulted in decrease of air to fuel jet momentum ratio in turn lowering the NOx emissions.

Keywords: combustion chamber, hydrogen, jet momentum, NOx emission

Procedia PDF Downloads 277
1203 Electrophoretic Deposition of Ultrasonically Synthesized Nanostructured Conducting Poly(o-phenylenediamine)-Co-Poly(1-naphthylamine) Film for Detection of Glucose

Authors: Vaibhav Budhiraja, Chandra Mouli Pandey

Abstract:

The ultrasonic synthesis of nanostructured conducting copolymer is an effective technique to synthesize polymer with desired chemical properties. This tailored nanostructure, shows tremendous improvement in sensitivity and stability to detect a variety of analytes. The present work reports ultrasonically synthesized nanostructured conducting poly(o-phenylenediamine)-co-poly(1-naphthylamine) (POPD-co-PNA). The synthesized material has been characterized using Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy, transmission electron microscopy, X-ray diffraction and cyclic voltammetry. FTIR spectroscopy confirmed random copolymerization, while UV-visible studies reveal the variation in polaronic states upon copolymerization. High crystallinity was achieved via ultrasonic synthesis which was confirmed by X-ray diffraction, and the controlled morphology of the nanostructures was confirmed by transmission electron microscopy analysis. Cyclic voltammetry shows that POPD-co-PNA has rather high electrochemical activity. This behavior was explained on the basis of variable orientations adopted by the conducting polymer chains. The synthesized material was electrophoretically deposited at onto indium tin oxide coated glass substrate which is used as cathode and parallel platinum plate as the counter electrode. The fabricated bioelectrode was further used for detection of glucose by crosslinking of glucose oxidase in the PODP-co-PNA film. The bioelectrode shows a surface-controlled electrode reaction with the electron transfer coefficient (α) of 0.72, charge transfer rate constant (ks) of 21.77 s⁻¹ and diffusion coefficient 7.354 × 10⁻¹⁵ cm²s⁻¹.

Keywords: conducting, electrophoretic, glucose, poly (o-phenylenediamine), poly (1-naphthylamine), ultrasonic

Procedia PDF Downloads 128
1202 The Optimisation of Salt Impregnated Matrices as Potential Thermochemical Storage Materials

Authors: Robert J. Sutton, Jon Elvins, Sean Casey, Eifion Jewell, Justin R. Searle

Abstract:

Thermochemical storage utilises chemical salts which store and release energy a fully reversible endo/exothermic chemical reaction. Highly porous vermiculite impregnated with CaCl2, LiNO3 and MgSO4 (SIMs – Salt In Matrices) are proposed as potential materials for long-term thermochemical storage. The behavior of these materials during typical hydration and dehydration cycles is investigated. A simple moisture experiment represents the hydration, whilst thermogravimetric analysis (TGA) represents the dehydration. Further experiments to approximate the energy density and to determine the peak output temperatures of the SIMs are conducted. The CaCl2 SIM is deemed the best performing SIM across most experiments, whilst the results of MgSO4 SIM indicate difficulty associated with energy recovery.

Keywords: hydrated states, inter-seasonal heat storage, moisture sorption, salt in matrix

Procedia PDF Downloads 539
1201 Thermal and Flammability Properties of Paraffin/Nanoclay Composite Phase Change Materials Incorporated in Building Materials for Thermal Energy Storage

Authors: Awni H. Alkhazaleh, Baljinder K. Kandola

Abstract:

In this study, a form-stable composite Paraffin/Nanoclay (PA-NC) has been prepared by absorbing PA into porous particles of NC to be used for low-temperature latent heat thermal energy storage. The leakage test shows that the maximum mass fraction of PA that can be incorporated in NC without leakage is 60 wt.%. Differential scanning calorimetry (DSC) has been used to measure the thermal properties of the PA and PA-NC both before and after incorporation in plasterboard (PL). The mechanical performance of the samples has been evaluated in flexural mode. The thermal energy storage performance has been studied using a small test chamber (100 mm × 100 mm × 100 mm) made from 10 mm thick PL and measuring the temperatures using thermocouples. The flammability of the PL+PL-NC has been discussed using a cone calorimeter. The results indicate that the form composite PA has good potential for use as thermal energy storage materials in building applications.

Keywords: building materials, flammability, phase change materials, thermal energy storage

Procedia PDF Downloads 313
1200 Identification and Evaluation of Environmental Concepts in Paulo Coelho's "The Alchemist"

Authors: Tooba Sabir, Asima Jaffar, Namra Sabir, Mohammad Amjad Sabir

Abstract:

Ecocriticism is the study of relationship between human and environment which has been represented in literature since the very beginning in pastoral tradition. However, the analysis of such representation is new as compared to the other critical evaluations like Psychoanalysis, Marxism, Post-colonialism, Modernism and many others. Ecocritics seek to find information like anthropocentrism, ecocentrism, ecofeminism, eco-Marxism, representation of environment and environmental concept and several other topics. In the current study the representation of environmental concepts, were ecocritically analyzed in Paulo Coelho’s The Alchemist, one of the most read novels throughout the world, having been translated into many languages. Analysis of the text revealed, the representations of environmental ideas like landscapes and tourism, biodiversity, land-sea displacement, environmental disasters and warfare, desert winds and sand dunes. 'This desert was once a sea' throws light on different theories of land-sea displacement, one being the plate-tectonic theory which proposes Earth’s lithosphere to be divided into different large and small plates, continuously moving toward, away from or parallel to each other, resulting in land-sea displacement. Another theory is the continental drift theory which holds onto the belief that one large landmass—Pangea, broke down into smaller pieces of land that moved relative to each other and formed continents of the present time. The cause of desertification may, however, be natural i.e. climate change or artificial i.e. by human activities. Imagery of the environmental concepts, at some instances in the novel, is detailed and at other instances, is not as striking, but still is capable of arousing readers’ imagination. The study suggests that ecocritical justifications of environmental concepts in the text will increase the interactions between literature and environment which should be encouraged in order to induce environmental awareness among the readers.

Keywords: biodiversity, ecocritical analysis, ecocriticism, environmental disasters, landscapes

Procedia PDF Downloads 244
1199 Study on NOₓ Emission Characteristics of Internal Gas Recirculation Technique

Authors: DaeHae Kim, MinJun Kwon, Sewon Kim

Abstract:

This study is aimed to develop ultra-low NOₓ burner using the internal recirculation of flue gas inside the combustion chamber that utilizes the momentum of intake fuel and air. Detailed experimental investigations are carried out to study these fluid dynamic effects on the emission characteristics of newly developed burner in industrial steam boiler system. Experimental parameters are distance of Venturi tube from burner, Coanda nozzle gap distance, and air sleeve length at various fuel/air ratio and thermal heat load conditions. The results showed that NOₓ concentration decreases as the distance of Venturi tube from burner increases. The CO concentration values at all operating conditions were negligible. In addition, the increase of the Coanda nozzle gap distance decreased the NOₓ concentration. It is experimentally found out that both fuel injection recirculation and air injection recirculation technique was very effective in reducing NOₓ formation.

Keywords: Coanda effect, combustion, burner, low NOₓ

Procedia PDF Downloads 182
1198 Voxel Models as Input for Heat Transfer Simulations with Siemens NX Based on X-Ray Microtomography Images of Random Fibre Reinforced Composites

Authors: Steven Latré, Frederik Desplentere, Ilya Straumit, Stepan V. Lomov

Abstract:

A method is proposed in order to create a three-dimensional finite element model representing fibre reinforced insulation materials for the simulation software Siemens NX. VoxTex software, a tool for quantification of µCT images of fibrous materials, is used for the transformation of microtomography images of random fibre reinforced composites into finite element models. An automatic tool was developed to execute the import of the models to the thermal solver module of Siemens NX. The paper describes the numerical tools used for the image quantification and the transformation and illustrates them on several thermal simulations of fibre reinforced insulation blankets filled with low thermal conductive fillers. The calculation of thermal conductivity is validated by comparison with the experimental data.

Keywords: analysis, modelling, thermal, voxel

Procedia PDF Downloads 274
1197 The Mechanical Behavior of a Cement-Fiber Composite Material

Authors: K. Harrat, M. Hidjeb, M. T’kint

Abstract:

The aim of the present research work is to characterize a cement palm date fiber composite in order to be used in isolation and in the manufacture of new structural materials. This technique may possibly participate seriously in the preservation of the environment and develop a growing need for plant products. On one hand, It has been shown that the presence of natural fiber in the composite materials manufacture, based on hydraulic binder, has improved the mechanical behaviour of the material. On the Other hand, It has been proven that the durability of composite materials reinforced with untreated fibers was largely affected by the presence of organic matter. In order to extract the organic material, the fibers were treated with boiling water and then coated with different types of products. A considerable improvement in the sensitivity to water of the fibers, as well as in the mechanical strength and in the ductility of the composite material was observed. The fiber being sensitive to water, the study put the emphasis on its dimensional stability.

Keywords: cement composite, durability, heat treatment, mechanical behaviour, vegetal fiber

Procedia PDF Downloads 435
1196 Comparison Physicochemical Properties of Hexane Extracted Aniseed Oil from Cold Press Extraction Residue and Cold Press Aniseed Oil

Authors: Derya Ören, Şeyma Akalın

Abstract:

Cold pres technique is a traditional method to obtain oil. The cold-pressing procedure, involves neither heat nor chemical treatments, so cold press technique has low oil yield and cold pressed herbal material residue still contains some oil. In this study, the oil that is remained in the cold pressed aniseed extracted with hegzan and analysed to determine physicochemical properties and quality parameters. It is found that the aniseed after cold press process contains % 10 oil. Other analysis parametres free fatty acid (FFA) is 2,1 mgKOH/g, peroxide value is 7,6 meq02/kg. Cold pressed aniseed oil values are determined for fatty acid (FFA) value as 2,1 mgKOH/g, peroxide value 4,5 meq02/kg respectively. Also fatty acid composition is analysed, it is found that both of these oil have same fatty acid composition. The main fatty acids are; oleic, linoleic, and palmitic acids.

Keywords: aniseed oil, cold press, extraction, residue

Procedia PDF Downloads 368
1195 Assessment of Fluid Flow Hydrodynamics for Cylindrical and Conical Fluidized Bed Reactor

Authors: N. G. Thangan, A. B. Deoghare, P. M. Padole

Abstract:

Computational Fluid Dynamics (CFD) aids in modeling the prototype of a real world processes. CFD approach is useful in predicting the fluid flow, heat transfer mass transfer and other flow related phenomenon. In present study, hydrodynamic characteristics of gas-solid cylindrical fluidized bed is compared with conical fluidized beds. A 2D fluidized bed consists of different configurations of particle size of iron oxide, bed height and superficial velocities of nitrogen. Simulations are performed to capture the complex physics associated with it. The Eulerian multiphase model is prepared in ANSYS FLUENT v.14 which is used to simulate fluidization process. It is analyzed with nitrogen as primary phase and iron oxide as secondary phase. The bed hydrodynamics is assessed prominently to examine effect on fluidization time, pressure drop, minimum fluidization velocity, and gas holdup in the system.

Keywords: fluidized bed, bed hydrodynamics, Eulerian multiphase approach, computational fluid dynamics

Procedia PDF Downloads 431
1194 Engoglaze Development for the Production of Glazed Porcelain Tiles

Authors: Sezgi Isik, Yasin Urersoy, Gizem Ustunel, Ilkyaz Yalcin

Abstract:

Improvement of the digital tile application, lots of process revolutions have occurred in the tile production. In order to create unique and inimitable designs, all the competitors start to try different applications. Both Europian and domestic ceramic producers focus on the deep and realistic surfaces. In this study, the trend of engoglaze, which is becoming widespread in glaze porcelain tile designs to create the most intensive colours, were investigated. The aim of the study is to develop engoglaze formulation that supports digital ink activation. Thermal expansion coefficient values were determined by a dilatometer. Chemical analyses and sintering behaviors of engoglazes were made by X-ray diffraction and heat microscopy analysis. According to these glaze formulation studies, it has been reported that using engoglaze could easily reduce the digital ink consumption of the design. On the other hand, the advantage of the production cost is gained, and deepness of the design is provided.

Keywords: ceramic, engoglaze, digital ink activation, glazed porcelain tile

Procedia PDF Downloads 115
1193 A Review on the Use of Salt in Building Construction

Authors: Vesna Pungercar, Florian Musso

Abstract:

Identifying materials that can substitute rare or expensive natural resources is one of the key challenges for improving resource efficiency in the building sector. With a growing world population and rising living standards, more and more salt is produced as waste through seawater desalination and potash mining processes. Unfortunately, most of the salt is directly disposed of into nature, where it causes environmental pollution. On the other hand, salt is affordable, is used therapeutically in various respiratory treatments, and can store humidity and heat. It was, therefore, necessary to determine salt materials already in use in building construction and their hygrothermal properties. This research aims to identify salt materials from different scientific branches and historically, to investigate their properties and prioritize the most promising salt materials for indoor applications in a thermal envelope. This was realized through literature review and classification of salt materials into three groups (raw salt materials, composite salt materials, and processed salt materials). The outcome of this research shows that salt has already been used as a building material for centuries and has a potential for future applications due to its hygrothermal properties in a thermal envelope.

Keywords: salt, building material, hygrothermal properties, environment

Procedia PDF Downloads 144
1192 Laser Welding of Titanium Alloy Ti64 to Polyamide 6.6: Effects of Welding Parameters on Temperature Profile Evolution

Authors: A. Al-Sayyad, P. Lama, J. Bardon, P. Hirchenhahn, L. Houssiau, P. Plapper

Abstract:

Composite metal–polymer materials, in particular titanium alloy (Ti-6Al-4V) to polyamide (PA6.6), fabricated by laser joining, have gained cogent interest among industries and researchers concerned with aerospace and biomedical applications. This work adopts infrared (IR) thermography technique to investigate effects of laser parameters used in the welding process on the three-dimensional temperature profile at the rear-side of titanium, at the region to be welded with polyamide. Cross sectional analysis of welded joints showed correlations between the morphology of titanium and polyamide at the weld zone with the corresponding temperature profile. In particular, spatial temperature profile was found to be correlated with the laser beam energy density, titanium molten pool width and depth, and polyamide heat affected zone depth.

Keywords: laser welding, metals to polymers joining, process monitoring, temperature profile, thermography

Procedia PDF Downloads 122
1191 Antimicrobial, Antioxidant Activities and Phytochemical Screening of Five Species from Acacia Used in Sudanese Ethnomedicine

Authors: Hajir Abdllha, Alaa Mohamed, Khansa Almoniem, Naga Adam, Wdeea Alhaadi, Ahmed Elshikh, Ahmed Ali, Ismail Makuar, Anas Elnazeer, Nagat Elrofaei, Samir Abdoelftah, Monier Hemidan

Abstract:

The present study was designed to investigate antimicrobial, and antioxidant activities of five species from Acacia (Acacia albidia, Acacia mellifera, Acacia nubica, Acacia seyal var. seyal and Acacia tortilis). Phytochemical study was piloted to detect the bioactive compounds, which have been responsible from the biological activities. The ethanol, chloroform and acetone plant extracts were seasoned against standard bacteria strains of gram +ve bacteria Staphylococcus aureus (ATCC 25923), Gram -ve bacteria Pseudomonas aeruginosa (ATCC 27853) and standard fungi Candida albicans (ATCC 90028), using cup-plate method. The antioxidant activities were conducted via DPPH radical scavenging and metal chelating assays. Prospective activity against the five species was observed in acetone extract. Ethanol extract showed highest activities against Staphylococcus aureus, and Candida albicans. Potential antioxidant activity was presented by ethanol. Cholorophorm and acetone extracts via DPPH, the radical scavenging activities were found to be 91±0.03, 88±0.01 and 85±0.04 respectively. The results of phytochemical screening showed that all extracts of studied plant contain flavonoids, saponins, terpenoids, steroids, alkaloids, phenols and tannins. This study gives rise to antioxidant, antimicrobial properties of studied plant, and showed interesting correlation with the phytochemical constituents and biological activities.

Keywords: antimicrobial, antioxidant, Acacia albidia, Acacia mellifera, Acacia nubica, Acacia seyal var. seyal, Acacia tortilis

Procedia PDF Downloads 368
1190 Fabrication of Superhydrophobic Galvanized Steel by Sintering Zinc Nanopowder

Authors: Francisco Javier Montes Ruiz-Cabello, Guillermo Guerrero-Vacas, Sara Bermudez-Romero, Miguel Cabrerizo Vilchez, Miguel Angel Rodriguez-Valverde

Abstract:

Galvanized steel is one of the widespread metallic materials used in industry. It consists on a iron-based alloy (steel) coated with a layer of zinc with variable thickness. The zinc is aimed to prevent the inner steel from corrosion and staining. Its production is cheaper than the stainless steel and this is the reason why it is employed in the construction of materials with large dimensions in aeronautics, urban/ industrial edification or ski-resorts. In all these applications, turning the natural hydrophilicity of the metal surface into superhydrophobicity is particularly interesting and would open a wide variety of additional functionalities. However, producing a superhydrophobic surface on galvanized steel may be a very difficult task. Superhydrophobic surfaces are characterized by a specific surface texture which is reached either by coating the surface with a material that incorporates such texture, or by conducting several roughening methods. Since galvanized steel is already a coated material, the incorporation of a second coating may be undesired. On the other hand, the methods that are recurrently used to incorporate the surface texture leading to superhydrophobicity in metals are aggressive and may damage their surface. In this work, we used a novel strategy which goal is to produce superhydrophobic galvanized steel by a two-step non-aggressive process. The first process is aimed to create a hierarchical structure by incorporating zinc nanoparticles sintered on the surface at a temperature slightly lower than the zinc’s melting point. The second one is a hydrophobization by a thick fluoropolymer layer deposition. The wettability of the samples is characterized in terms of tilting plate and bouncing drop experiments, while the roughness is analyzed by confocal microscopy. The durability of the produced surfaces was also explored.

Keywords: galvanaized steel, superhydrophobic surfaces, sintering nanoparticles, zinc nanopowder

Procedia PDF Downloads 130
1189 Fabrication and Characterization of Cadmium Sulfide Nanowires on Aluminum Oxide Template

Authors: Malik Imran Afzal

Abstract:

Cadmium supplied nanowires have unique electrical and optical properties and applications. To obtain cadmium supplied nanowires with regular and good aspect ratio, they can be synthesized by template synthesis method. Porous anodized aluminum oxide is the most promising template with regular hexagonal shapes. Their aspect ratio can be controlled by controlling the pores’ depth and diameter which greatly depend on anodization voltage and temperature of the electrolyte. In this research, high purity aluminium was used to prepare nanotemplates at 5-6°C in 1M phosphoric acid and cadmium supplied was deposited electrochemically using a co-solution of thiourea, cadmium acetate and ammonium acetate. pH was maintained at 11 in a heat bath at 75°C with the help of aqueous ammonia solution. Both porous anodized alumina and cadmium supplied nanowires were characterized suing SEM. A good quality Nanowires were obtained in bunches with reasonably high aspect ratio.

Keywords: bunches, electrodeposition, hexagonal, thiourea

Procedia PDF Downloads 310
1188 Hybrid Dynamic Approach to Optimize the Impact of Shading Design and Control on Electrical Energy Demand

Authors: T. Parhizkar, H. Jafarian, F. Aramoun, Y. Saboohi

Abstract:

Applying motorized shades have substantial effect on reducing energy consumption in building sector. Moreover, the combination of motorized shades with lighting systems and PV panels can lead to considerable reduction in the energy demand of buildings. In this paper, a model is developed to assess and find an optimum combination from shade designs, lighting control systems (dimming and on/off) and implementing PV panels in shades point of view. It is worth mentioning that annual saving for all designs is obtained during hourly simulation of lighting, solar heat flux and electricity generation with the use of PV panel. From 12 designs in general, three designs, two lighting control systems and PV panel option is implemented for a case study. The results illustrate that the optimum combination causes a saving potential of 792kW.hr per year.

Keywords: motorized shades, daylight, cooling load, shade control, hourly simulation

Procedia PDF Downloads 158
1187 Investigation of the Effect of Anaerobic Digestate on Antifungal Activity and in Different Parameters of Maize

Authors: Nazia Zaffar, Alam Khan, Abdul Haq, Malik Badshah

Abstract:

Pakistan is an agricultural country. The increasing population leads to an increase in demand for food. A large number of crops are infected by different microbes, and nutrient deficiency of soil adversely affects the yield of crops. Furthermore, the use of chemical fertilizers like Nitrogen, Phosphorus, Potassium (NPK) Urea, and Diammonium phosphate (DAP) and pesticides have environmental consequences. Therefore, there is an urgent need to explore alternative renewable and sustainable biofertilizers. Maize is one of the top growing crops in Pakistan, but it has low yield compared to other countries due to deficiency of organic matter, widespread nutrients deficiency (phosphorus and nitrogen), unbalanced use of fertilizers and various fungal diseases. In order to get rid of all these disadvantages, Digestate emerged as a win-win opportunity for the control of a few plant diseases and a replacement for the chemical fertilizers. The present study was designed to investigate the effect of Anerobic digestate on Antifungal Activity and in different parameters of Maize. The antifungal activity, minimum inhibitory concentration (MIC), and minimum fungicidal concentration (MFC) against selected phytopathogens (Colletotrichum coccodis, Pythium ultimum, Phytophthora capsci, Rhizoctonia solani, Bipolaris oryzae and Fusarium Fujikuroi) were determined by microtiter plate method. The effect of various fertilizers in different growth parameters height, diameter, chlorophyll, leaf area, biomass, and yield were studied in field experiments. The extracts from anaerobic digestate have shown antifungal activity against selected phytopathogens, the highest activity was noted against P. ultimum, the MIC activity was high in case of P. ultimum and B. oryzae. The present study concludes that anaerobic digestate have a positive effect on maize growth and yield as well as an antifungal activity which can be potentially a good biofertilizer.

Keywords: anaerobic digestate, antifungal activity, MIC, phytopathogens

Procedia PDF Downloads 107
1186 Research on the Transformation of Bottom Space in the Teaching Area of Zijingang Campus, Zhejiang University

Authors: Jia Xu

Abstract:

There is a lot of bottom space in the teaching area of Zijingang Campus of Zhejiang University, which benefits to the ventilation, heat dissipation, circulation, partition of quiet and noisy areas and diversification of spaces. Hangzhou is hot in summer but cold in winter, so teachers and students spend much less time in the bottom space of buildings in winter than in summer. Recently, depending on the teachers and students’ proposals, the school transformed the bottom space in the teaching area to provide space for relaxing, chatting and staying in winter. Surveying and analyzing the existing ways to transform, the paper researches deeply on the transformation projects of bottom space in the teaching buildings. It is believed that this paper can be a salutary lesson to make the bottom space in the teaching areas of universities richer and bring more diverse activities for teachers and students.

Keywords: bottom space, teaching area, transformation, Zijingang Campus of Zhejiang University

Procedia PDF Downloads 372
1185 Antimicrobial, Antioxidant Activities, and Phytochemical Screening of Five Species from Acacia Used in Sudanese Ethnomedicine

Authors: Hajir, B. Abdllha, , Alaa, I. Mohamed, Khansa, A. Almoniem, Naga, I. Adam, Wdeea, Alhaadi, Ahmed, A. Elshikh, Ahmed, J. Ali, Ismail, G. Makuar, Anas, M. Elnazeer, Nagat, A. Elrofaei, Samir, F. Abdoelftah, Monier, N. Hemidan

Abstract:

The present study was designed to investigate antimicrobial, and antioxidant activities of five species from Acacia (Acacia albidia, Acacia mellifera, Acacia nubica, Acacia seyal var.seyal and Acacia tortilis). Phytochemical study was piloted to detect the bioactive compounds, which have been responsible from the biological activities. The ethanol, chloroform and acetone plant extracts were seasoned against standard bacteria strains of gram +ve bacteria Staphylococcus aureus (ATCC 25923) ,Gram -ve bacteria Pseudomonas aeruginosa (ATCC 27853) and standard fungi Candida albicans (ATCC 90028), using cup-plate method. The antioxidant activities were conducted via DPPH radical scavenging and metal chelating assays. Prospective activity against the five species was observed in acetone extract. Ethanol extract showed highest activities against Staphylococcus aureus, and Candida albicans. Potential antioxidant activity was presented by ethanol. Cholorophorm and acetone extracts via DPPH, the radical scavenging activities were found to be 91±0.03, 88±0.01 and 85±0.04 respectively. The results of phytochemical screening showed that all extracts of studied plant contain flavonoids, saponins, terpenoids, steroids, alkaloids, phenols and tannins. This study give rise to antioxidant, antimicrobial properties of studied plant, and showed interesting correlation with the phytochemical constituents and biological activities.

Keywords: antimicrobial, Antioxidant, Acacia albidia, Acacia mellifera, acacia nubica, acacia seyal var.seyal, Acacia tortilis

Procedia PDF Downloads 537
1184 Nutritional Profile and Food Intake Trends amongst Hospital Dieted Diabetic Eye Disease Patients of India

Authors: Parmeet Kaur, Nighat Yaseen Sofi, Shakti Kumar Gupta, Veena Pandey, Rajvaedhan Azad

Abstract:

Nutritional status and prevailing blood glucose level trends amongst hospitalized patients has been linked to clinical outcome. Therefore, the present study was undertaken to assess hospitalized Diabetic Eye Disease (DED) patients' anthropometric and dietary intake trends. DED patients with type 1 or 2 diabetes > 20 years were enrolled. Actual food intake was determined by weighed food record method. Mifflin St Joer predictive equation multiplied by a combined stress and activity factor of 1.3 was applied to estimate caloric needs. A questionnaire was further administered to obtain reasons of inadequate dietary intake. Results indicated validity of joint analyses of body mass index in combination with waist circumference for clinical risk prediction. Dietary data showed a significant difference (p < 0.0005) between average daily caloric and carbohydrate intake and actual daily caloric and carbohydrate needs. Mean fasting and post-prandial plasma glucose levels were 150.71 ± 72.200 mg/dL and 219.76 ± 97.365 mg/dL, respectively. Improvement in food delivery systems and nutrition educations were indicated for reducing plate waste and to enable better understanding of dietary aspects of diabetes management. A team approach of nurses, physicians and other health care providers is required besides the expertise of dietetics professional. To conclude, findings of the present study will be useful in planning nutritional care process (NCP) for optimizing glucose control as a component of quality medical nutrition therapy (MNT) in hospitalized DED patients.

Keywords: nutritional status, diabetic eye disease, nutrition care process, medical nutrition therapy

Procedia PDF Downloads 337
1183 Performance of Armchair Graphene Nanoribbon Resonant Tunneling Diode under Uniaxial Strain

Authors: Milad Zoghi, M. Zahangir Kabir

Abstract:

Performance of armchair graphene nanoribbon (AGNR) resonant tunneling diodes (RTD) alter if they go under strain. This may happen due to either using stretchable substrates or real working conditions such as heat generation. Therefore, it is informative to understand how mechanical deformations such as uniaxial strain can impact the performance of AGNR RTDs. In this paper, two platforms of AGNR RTD consist of width-modified AGNR RTD and electric-field modified AGNR RTD are subjected to both compressive and tensile uniaxial strain ranging from -2% to +2%. It is found that characteristics of AGNR RTD markedly change under both compressive and tensile strain. In particular, peak to valley ratio (PVR) can be totally disappeared upon strong enough strain deformation. Numerical tight binding (TB) coupled with Non-Equilibrium Green's Function (NEGF) is derived for this study to calculate corresponding Hamiltonian matrices and transport properties.

Keywords: armchair graphene nanoribbon, resonant tunneling diode, uniaxial strain, peak to valley ratio

Procedia PDF Downloads 159
1182 Potential Applications and Future Prospects of Zinc Oxide Thin Films

Authors: Temesgen Geremew

Abstract:

ZnO is currently receiving a lot of attention in the semiconductor industry due to its unique characteristics. ZnO is widely used in solar cells, heat-reflecting glasses, optoelectronic bias, and detectors. In this composition, we provide an overview of the ZnO thin flicks' packages, methods of characterization, and implicit operations. They consist of Transmission spectroscopy, Raman spectroscopy, Field emigration surveying electron microscopy, and X-ray diffraction. This review content also demonstrates how ZnO thin flicks function in electrical components for piezoelectric bias, optoelectronics, detectors, and renewable energy sources. Zinc oxide (ZnO) thin films offer a captivating tapestry of possibilities due to their unique blend of electrical, optical, and mechanical properties. This review delves into the realm of their potential applications and future prospects, highlighting the pivotal contributions of research endeavors aimed at tailoring their functionalities.

Keywords: Zinc oxide, raman spectroscopy, thin films, piezoelectric devices

Procedia PDF Downloads 66
1181 Simulation of the Performance of the Reforming of Methane in a Primary Reformer

Authors: A. Alkattib, M. Boumaza

Abstract:

Steam reforming is industrially important as it is incorporated in several major chemical processes including the production of ammonia, methanol, hydrogen and ox alcohols. Due to the strongly endothermic nature of the process, a large amount of heat is supplied by fuel burning (commonly natural gas) in the furnace chamber. Reaction conversions, tube catalyst life, energy consumption and CO2 emission represent the principal factors affecting the performance of this unit and are directly influenced by the high operating temperatures and pressures. This study presents a simulation of the performance of the reforming of methane in a primary reformer, through a developed empirical relation which enables to investigate the effects of operating parameters such as the pressure, temperature, steam to carbon ratio on the production of hydrogen, as well as the fraction of non-converted methane. It appears from this analysis that the exit temperature Te, the operating pressure as well the steam to carbon ratio has an important effect on the reforming of methane.

Keywords: reforming, methane, performance, hydrogen, parameters

Procedia PDF Downloads 199
1180 Impact of Flavor on Food Product Quality, A Case Study of Vanillin Stability during Biscuit Preparation

Authors: N. Yang, R. Linforth, I. Fisk

Abstract:

The influence of food processing and choice of flavour solvent was investigated using biscuits prepared with vanillin flavour as an example. Powder vanillin either was added directly into the dough or dissolved into flavour solvent then mixed into the dough. The impact of two commonly used flavour solvents on food quality was compared: propylene glycol (PG) or triacetin (TA). The analytical approach for vanillin detection was developed by chromatography (HPLC-PDA), and the standard extraction method for vanillin was also established. The results indicated the impact of solvent choice on vanillin level during biscuit preparation. After baking, TA as a more heat resistant solvent retained more vanillin than PG, so TA is a better solvent for products that undergo a heating process. The results also illustrated the impact of mixing and baking on vanillin stability in the matrices. The average loss of vanillin was 33% during mixing and 13% during baking, which indicated that the binding of vanillin to fat or flour before baking might cause larger loss than evaporation loss during baking.

Keywords: biscuit, flavour stability, food quality, vanillin

Procedia PDF Downloads 494
1179 [Keynote Talk]: Thermal Performance of Common Building Insulation Materials: Operating Temperature and Moisture Effect

Authors: Maatouk Khoukhi

Abstract:

An accurate prediction of the heat transfer through the envelope components of building is required to achieve an accurate cooling/heating load calculation which leads to precise sizing of the hvac equipment. This also depends on the accuracy of the thermal conductivity of the building insulation material. The proper use of thermal insulation in buildings (k-value) contribute significantly to reducing the HVAC size and consequently the annual energy cost. The first part of this paper presents an overview of building thermal insulation and their applications. The second part presents some results related to the change of the polystyrene insulation thermal conductivity with the change of the operating temperature and the moisture. Best-fit linear relationship of the k-value in term of the operating temperatures and different percentage of moisture content by weight has been established. The thermal conductivity of the polystyrene insulation material increases with the increase of both operating temperature and humidity content.

Keywords: building insulation material, moisture content, operating temperature, thermal conductivity

Procedia PDF Downloads 300
1178 Tribological Investigation of Piston Ring Liner Assembly

Authors: Bharatkumar Sutaria, Tejaskumar Chaudhari

Abstract:

An engine performance can be increased by minimizing losses. There are various losses observed in the engines. i.e. thermal loss, heat loss and mechanical losses. Mechanical losses are in the tune of 15 to 20 % of the overall losses. Piston ring assembly contributes the highest friction in the mechanical frictional losses. The variation of piston speed in stroke length the friction force development is not uniform. In present work, comparison has been made between theoretical and experimental friction force under different operating conditions. The experiments are performed using variable operating parameters such as load, speed, temperature and lubricants. It is found that reducing trend of friction force and friction coefficient is in good nature with mixed lubrication regime of the Stribeck curve. Overall outcome from the laboratory test performance of segmented piston ring assembly using multi-grade oil offers reasonably good results at room and elevated temperatures.

Keywords: friction force, friction coefficient, piston rings, Stribeck curve

Procedia PDF Downloads 453