Search results for: remote health monitoring system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26548

Search results for: remote health monitoring system

628 Epidemiological Data of Schistosoma haematobium Bilharzia in Rural and Urban Localities in the Republic of Congo

Authors: Jean Akiana, Digne Merveille Nganga Bouanga, Nardiouf Sjelin Nsana, Wilfrid Sapromet Ngoubili, Chyvanelle Ndous Akiridzo, Vishnou Reize Ampiri, Henri-Joseph Parra, Florence Fenollar, Didier Raoult, Oleg Mediannikov, Cheikh Sadhibou Sokhna

Abstract:

Schistosoma haematobium schistosomiasis is an endemic disease in which the level of human exposure, incidence, and fatality attributed to it remains, unfortunately, high worldwide. The erection of hydroelectric infrastructures constitute a major factor in the emergence of this disease. In the context of the Republic of the Congo, which considers industrialization and modernization as two essential pillars of development, building the hydroelectric dams of Liouesso (19 Mw) and the feasibility studies of the dams of Chollet (600MW) in the Sangha, of Sounda (1000MW) in Kouilou and Kouembali (150MW) on Lefini is necessary to increase the country's energy capacities. Likewise, the urbanization of former endemic localities should take into account the maintenance of contamination points. However, health impact studies on schistosomiasis epidemiology in general and urinary bilharzia, in particular, have never been carried out in these areas, neither before nor after the erection of those dams. Participants benefited from an investigative questionnaire, urinalysis both by dipstick and urine filtrate examined under a microscope. Assessment of the genetic diversity of schistosoma species populations was considered as well as PCR analysis to confirm the test strip and microscopy tests. 405 participants were registered in five localities. The sampling was made up of a balanced population in terms of male/female ratio, which is around 1. The prevalence rate was 45% (55/123) in Nkayi, 10.40% (11/106) in Loudima, 1 case in Mbomo (West Cuvette), which would probably be imported, zero in Liouesso and Kabo. The highest oviuria (number of eggs per volume of urine) is 150 S. haematobium eggs/10ml in Nkayi, apart from the case of imported Mbomo, imported from Gabon, which has 160 S. haematobium eggs/10ml. The lowest oviuria was 2 S. haematobium eggs/10ml. Prevalence rates are still high in semi-urban areas (Nkayi). As praziquantel treatments are available and effective, it is important to step up mass treatment campaigns in high risk areas already largely initiated by the National Schistosomiasis Control Program. Prevalence rates are still high in semi-urban areas (Nkayi). As praziquantel treatments are available and effective, it is important to step up mass treatment campaigns in high risk areas already largely initiated by the National Schistosomiasis Control Program.

Keywords: Bilharzia, Schistosoma haematobium, oviuria, urbanization, Congo

Procedia PDF Downloads 142
627 Small Town Big Urban Issues the Case of Kiryat Ono, Israel

Authors: Ruth Shapira

Abstract:

Introduction: The rapid urbanization of the last century confronts planners, regulatory bodies, developers and most of all – the public with seemingly unsolved conflicts regarding values, capital, and wellbeing of the built and un-built urban space. This is reflected in the quality of the urban form and life which has known no significant progress in the last 2-3 decades despite the on-growing urban population. It is the objective of this paper to analyze some of these fundamental issues through the case study of a relatively small town in the center of Israel (Kiryat-Ono, 100,000 inhabitants), unfold the deep structure of qualities versus disruptors, present some cure that we have developed to bridge over and humbly suggest a practice that may be generic for similar cases. Basic Methodologies: The OBJECT, the town of Kiryat Ono, shall be experimented upon in a series of four action processes: De-composition, Re-composition, the Centering process and, finally, Controlled Structural Disintegration. Each stage will be based on facts, analysis of previous multidisciplinary interventions on various layers – and the inevitable reaction of the OBJECT, leading to the conclusion based on innovative theoretical and practical methods that we have developed and that we believe are proper for the open ended network, setting the rules for the contemporary urban society to cluster by. The Study: Kiryat Ono, was founded 70 years ago as an agricultural settlement and rapidly turned into an urban entity. In spite the massive intensification, the original DNA of the old small town was still deeply embedded, mostly in the quality of the public space and in the sense of clustered communities. In the past 20 years, the recent demand for housing has been addressed to on the national level with recent master plans and urban regeneration policies mostly encouraging individual economic initiatives. Unfortunately, due to the obsolete existing planning platform the present urban renewal is characterized by pressure of developers, a dramatic change in building scale and widespread disintegration of the existing urban and social tissue. Our office was commissioned to conceptualize two master plans for the two contradictory processes of Kiryat Ono’s future: intensification and conservation. Following a comprehensive investigation into the deep structures and qualities of the existing town, we developed a new vocabulary of conservation terms thus redefying the sense of PLACE. The main challenge was to create master plans that should offer a regulatory basis to the accelerated and sporadic development providing for the public good and preserving the characteristics of the PLACE consisting of a tool box of design guidelines that will have the ability to reorganize space along the time axis in a coherent way. In Conclusion: The system of rules that we have developed can generate endless possible patterns making sure that at each implementation fragment an event is created, and a better place is revealed. It takes time and perseverance but it seems to be the way to provide a healthy framework for the accelerated urbanization of our chaotic present.

Keywords: housing, architecture, urban qualities, urban regeneration, conservation, intensification

Procedia PDF Downloads 358
626 Identification of Odorant Receptors through the Antennal Transcriptome of the Grapevine Pest, Lobesia botrana (Lepidoptera: Tortricidae)

Authors: Ricardo Godoy, Herbert Venthur, Hector Jimenez, Andres Quiroz, Ana Mutis

Abstract:

In agriculture, grape production has great economic importance at global level, considering that in 2013 it reached 7.4 million hectares (ha) covered by plantations of this fruit worldwide. Chile is the number one exporter in the world with 800,000 tons. However, these values have been threatened by the attack of the grapevine moth, Lobesia botrana (Denis & Schiffermuller) (Lepidoptera: Tortricidae), since its detection in 2008. Nowadays, the use of semiochemicals, in particular the major component of the sex pheromone, (E,Z)-7.9-dodecadienil acetate, are part of mating disruption methods to control L. botrana. How insect pests can recognize these molecules, is being part of huge efforts to deorphanize their olfactory mechanism at molecular level. Thus, an interesting group of proteins has been identified in the antennae of insects, where odorant-binding proteins (OBPs) are known by transporting molecules to odorant receptors (ORs) and a co-receptor (ORCO) causing a behavioral change in the insect. Other proteins such as chemosensory proteins (CSPs), ionotropic receptors (IRs), odorant degrading enzymes (ODEs) and sensory neuron membrane proteins (SNMPs) seem to be involved, but few studies have been performed so far. The above has led to an increasing interest in insect communication at a molecular level, which has contributed to both a better understanding of the olfaction process and the design of new pest management strategies. To date, it has been reported that the ORs can detect one or a small group of odorants in a specific way. Therefore, the objective of this study is the identification of genes that encode these ORs using the antennal transcriptome of L. botrana. Total RNA was extracted for females and males of L. botrana, and the antennal transcriptome sequenced by Next Generation Sequencing service using an Illumina HiSeq2500 platform with 50 million reads per sample. Unigenes were assembled using Trinity v2.4.0 package and transcript abundance was obtained using edgeR. Genes were identified using BLASTN and BLASTX locally installed in a Unix system and based on our own Tortricidae database. Those Unigenes related to ORs were characterized using ORFfinder and protein Blastp server. Finally, a phylogenetic analysis was performed with the candidate amino acid sequences for LbotORs including amino acid sequences of other moths ORs, such as Bombyx mori, Cydia pomonella, among others. Our findings suggest 61 genes encoding ORs and one gene encoding an ORCO in both sexes, where the greatest difference was found in the OR6 because of the transcript abundance according to the value of FPKM in females and males was 1.48 versus 324.00. In addition, according to phylogenetic analysis OR6 is closely related to OR1 in Cydia pomonella and OR6, OR7 in Epiphyas postvittana, which have been described as pheromonal receptors (PRs). These results represent the first evidence of ORs present in the antennae of L. botrana and a suitable starting point for further functional studies with selected ORs, such as OR6, which is potentially related to pheromonal recognition.

Keywords: antennal transcriptome, lobesia botrana, odorant receptors (ORs), phylogenetic analysis

Procedia PDF Downloads 193
625 Overcoming Adversity: Women with Disabled Children and Microfinance Solutions

Authors: Aarif Hussain, Afnan Tariq

Abstract:

In recent years, microfinance has emerged as a critical tool for promoting financial inclusion and empowering marginalized communities, particularly women. In India, where poverty and lack of access to financial services continue to be significant challenges for many, microfinance has the potential to provide much-needed support to women with disabled children. These women face unique challenges, including discrimination, lack of access to education and employment, and limited support systems, making it even more difficult for them to break out of poverty and provide for their families. Microfinance, by providing small loans, savings products, and other financial services, can help these women to start or grow businesses, build assets, and achieve financial independence. India has adhered to an SHG-bank linkage model of microfinance since 1980, and programs like IRDP and SGSY were initiatives in the same direction. In the year 2011, India launched DAY-NRLM, a restructured version of SGSY. DAY-NRLM is an SHG-based microfinance program targeting the rural women of India. It aims to organise these poor women into SHGs and link them to banking institutions for creating sustainable livelihoods. The program has a reservation for disabled women but has no special status for mothers with disabled children. The impact of microfinance on women with disabilities and their families has been well documented. Studies have shown that women participating in microfinance programs are more likely to start businesses, increase their income, and improve their standard of living. Furthermore, these women are more likely to invest in their children's education and health, which can have long-term positive effects on their family’s well-being. In the Union territory of Jammu and Kashmir, the programme started in 2013 and is running smoothly to date. Women with children having a disability have not been documented as a category within the programme. The core aspect of this study is to delve into these women’s lives and analyse the impact of SHG membership on their lives and their children. The participants were selected purposively. For data collection, in-depth interviews were conducted. The findings of the paper show that microfinance has the potential to play a significant role in promoting financial inclusion and empowering women with children having disabilities in Kashmir. By providing access to small loans, savings products, and other financial services, microfinance can help these women to start or grow businesses, build assets, and achieve financial independence. However, more work is needed to ensure that these women have equal access to financial services and opportunities and that microfinance institutions are equipped to effectively serve this population. Working together to address these challenges can create a brighter future for women with children having disabilities and their families in India.

Keywords: DAY-NRLM, microfinance, SHGs, women, disabled children

Procedia PDF Downloads 67
624 “laws Drifting Off While Artificial Intelligence Thriving” – A Comparative Study with Special Reference to Computer Science and Information Technology

Authors: Amarendar Reddy Addula

Abstract:

Definition of Artificial Intelligence: Artificial intelligence is the simulation of mortal intelligence processes by machines, especially computer systems. Explicit operations of AI comprise expert systems, natural language processing, and speech recognition, and machine vision. Artificial Intelligence (AI) is an original medium for digital business, according to a new report by Gartner. The last 10 times represent an advance period in AI’s development, prodded by the confluence of factors, including the rise of big data, advancements in cipher structure, new machine literacy ways, the materialization of pall computing, and the vibrant open- source ecosystem. Influence of AI to a broader set of use cases and druggies and its gaining fashionability because it improves AI’s versatility, effectiveness, and rigidity. Edge AI will enable digital moments by employing AI for real- time analytics closer to data sources. Gartner predicts that by 2025, further than 50 of all data analysis by deep neural networks will do at the edge, over from lower than 10 in 2021. Responsible AI is a marquee term for making suitable business and ethical choices when espousing AI. It requires considering business and societal value, threat, trust, translucency, fairness, bias mitigation, explainability, responsibility, safety, sequestration, and nonsupervisory compliance. Responsible AI is ever more significant amidst growing nonsupervisory oversight, consumer prospects, and rising sustainability pretensions. Generative AI is the use of AI to induce new vestiges and produce innovative products. To date, generative AI sweats have concentrated on creating media content similar as photorealistic images of people and effects, but it can also be used for law generation, creating synthetic irregular data, and designing medicinals and accoutrements with specific parcels. AI is the subject of a wide- ranging debate in which there's a growing concern about its ethical and legal aspects. Constantly, the two are varied and nonplussed despite being different issues and areas of knowledge. The ethical debate raises two main problems the first, abstract, relates to the idea and content of ethics; the alternate, functional, and concerns its relationship with the law. Both set up models of social geste, but they're different in compass and nature. The juridical analysis is grounded on anon-formalistic scientific methodology. This means that it's essential to consider the nature and characteristics of the AI as a primary step to the description of its legal paradigm. In this regard, there are two main issues the relationship between artificial and mortal intelligence and the question of the unitary or different nature of the AI. From that theoretical and practical base, the study of the legal system is carried out by examining its foundations, the governance model, and the nonsupervisory bases. According to this analysis, throughout the work and in the conclusions, International Law is linked as the top legal frame for the regulation of AI.

Keywords: artificial intelligence, ethics & human rights issues, laws, international laws

Procedia PDF Downloads 88
623 Establishment and Evaluation of a Nutrition Therapy Guide and 7-Day Menu for Educating Hemodialysis Patients: A Case Study of Douala General Hospital, Cameroon

Authors: Ngwa Lodence Njwe

Abstract:

This study investigated the response of hemodialysis patients to an established nutrition therapy guide accompanied by a 7-day menu plan administered for a month. End Stage Renal Disease (ESRD), also known as End Stage Kidney Disease (ESKD), is a non-communicable disease primarily caused by hypertension and diabetes, posing significant challenges in both developed and developing nations. Hemodialysis is a key treatment for these patients. In this experimental study, 100 hemodialysis patients from Douala General Hospital in Cameroon participated. A questionnaire was used to collect data on sociodemographic and anthropometric characteristics, health status, and dietary intake, while medical records provided biomedical data. The levels of the biochemical parameters (Phosphorus, calcium and hemoglobin) were determined before and one month after the distribution of the nutrition education guide and the use of a 7-day menu plan. The Phosphorus and Calcium levels were measured using an LTCC03 semi-automatic chemistry analyzer. Blood was collected from each patient into a test tube, allowed to clot and centrifuged. 50µl of the serum was aspirated by the analyzer for Ca and P level analysis, and results were read from the display. The hemoglobin level was measured using the URIT–12 hemoglobin Meter. The blood sample was collected by hand prick and placed in a strip, and the results were read from the screen. The means of the biochemical parameters were then computed. The most prevalent age group was 40-49 years, with males constituting 70% and females 30% of respondents. Among these patients, 80% were hypertensive, 3% had both hypertension and diabetes, 9% were hypertensive, diabetic, and obese, and 1% suffered from hypertension and heart failure. Analysis of anthropometric parameters revealed a high prevalence of underweight, overweight, and obesity, highlighting the urgent need for targeted nutrition interventions to modify cooking methods, enhance food choices, and increase dietary variety for improved quality of life. Before the nutrition therapy guide was implemented, average calcium levels were 73.05 mg/L for males and 89.44 mg/L for females; post-implementation, these values increased to 77.55 mg/L and 91.44 mg/L, respectively. Conversely, average phosphorus levels decreased from 42.05 mg/L for males and 43.55 mg/L for females to 41.05 mg/L and 39.3 mg/L, respectively, after the intervention. Additionally, average hemoglobin levels increased from 8.35 g/dL for males and 8.5 g/dL for females to 9.2 g/dL and 8.95 g/dL, respectively. The findings confirm that the nutrition therapy guide and the 7-day menu significantly impacted the biomedical parameters of hemodialysis patients, underscoring the need for ongoing nutrition education and counseling for this population.

Keywords: end stage kidney disease, nutrition therapy guide, nutritional status, anthropometric parameters, food frequency, biomedical data

Procedia PDF Downloads 11
622 E-Waste Generation in Bangladesh: Present and Future Estimation by Material Flow Analysis Method

Authors: Rowshan Mamtaz, Shuvo Ahmed, Imran Noor, Sumaiya Rahman, Prithvi Shams, Fahmida Gulshan

Abstract:

Last few decades have witnessed a phenomenal rise in the use of electrical and electronic equipment globally in our everyday life. As these items reach the end of their lifecycle, they turn into e-wastes and contribute to the waste stream. Bangladesh, in conformity with the global trend and due to its ongoing rapid growth, is also using electronics-based appliances and equipment at an increasing rate. This has caused a corresponding increase in the generation of e-wastes. Bangladesh is a developing country; its overall waste management system, is not yet efficient, nor is it environmentally sustainable. Most of its solid wastes are disposed of in a crude way at dumping sites. Addition of e-wastes, which often contain toxic heavy metals, into its waste stream has made the situation more difficult and challenging. Assessment of generation of e-wastes is an important step towards addressing the challenges posed by e-wastes, setting targets, and identifying the best practices for their management. Understanding and proper management of e-wastes is a stated item of the Sustainable Development Goals (SDG) campaign, and Bangladesh is committed to fulfilling it. A better understanding and availability of reliable baseline data on e-wastes will help in preventing illegal dumping, promote recycling, and create jobs in the recycling sectors and thus facilitate sustainable e-waste management. With this objective in mind, the present study has attempted to estimate the amount of e-wastes and its future generation trend in Bangladesh. To achieve this, sales data on eight selected electrical and electronic products (TV, Refrigerator, Fan, Mobile phone, Computer, IT equipment, CFL (Compact Fluorescent Lamp) bulbs, and Air Conditioner) have been collected from different sources. Primary and secondary data on the collection, recycling, and disposal of the e-wastes have also been gathered by questionnaire survey, field visits, interviews, and formal and informal meetings with the stakeholders. Material Flow Analysis (MFA) method has been applied, and mathematical models have been developed in the present study to estimate e-waste amounts and their future trends up to the year 2035 for the eight selected electrical and electronic equipment. End of life (EOL) method is adopted in the estimation. Model inputs are products’ annual sale/import data, past and future sales data, and average life span. From the model outputs, it is estimated that the generation of e-wastes in Bangladesh in 2018 is 0.40 million tons and by 2035 the amount will be 4.62 million tons with an average annual growth rate of 20%. Among the eight selected products, the number of e-wastes generated from seven products are increasing whereas only one product, CFL bulb, showed a decreasing trend of waste generation. The average growth rate of e-waste from TV sets is the highest (28%) while those from Fans and IT equipment are the lowest (11%). Field surveys conducted in the e-waste recycling sector also revealed that every year around 0.0133 million tons of e-wastes enter into the recycling business in Bangladesh which may increase in the near future.

Keywords: Bangladesh, end of life, e-waste, material flow analysis

Procedia PDF Downloads 187
621 Seawater Desalination for Production of Highly Pure Water Using a Hydrophobic PTFE Membrane and Direct Contact Membrane Distillation (DCMD)

Authors: Ahmad Kayvani Fard, Yehia Manawi

Abstract:

Qatar’s primary source of fresh water is through seawater desalination. Amongst the major processes that are commercially available on the market, the most common large scale techniques are Multi-Stage Flash distillation (MSF), Multi Effect distillation (MED), and Reverse Osmosis (RO). Although commonly used, these three processes are highly expensive down to high energy input requirements and high operating costs allied with maintenance and stress induced on the systems in harsh alkaline media. Beside that cost, environmental footprint of these desalination techniques are significant; from damaging marine eco-system, to huge land use, to discharge of tons of GHG and huge carbon footprint. Other less energy consuming techniques based on membrane separation are being sought to reduce both the carbon footprint and operating costs is membrane distillation (MD). Emerged in 1960s, MD is an alternative technology for water desalination attracting more attention since 1980s. MD process involves the evaporation of a hot feed, typically below boiling point of brine at standard conditions, by creating a water vapor pressure difference across the porous, hydrophobic membrane. Main advantages of MD compared to other commercially available technologies (MSF and MED) and specially RO are reduction of membrane and module stress due to absence of trans-membrane pressure, less impact of contaminant fouling on distillate due to transfer of only water vapor, utilization of low grade or waste heat from oil and gas industries to heat up the feed up to required temperature difference across the membrane, superior water quality, and relatively lower capital and operating cost. To achieve the objective of this study, state of the art flat-sheet cross-flow DCMD bench scale unit was designed, commissioned, and tested. The objective of this study is to analyze the characteristics and morphology of the membrane suitable for DCMD through SEM imaging and contact angle measurement and to study the water quality of distillate produced by DCMD bench scale unit. Comparison with available literature data is undertaken where appropriate and laboratory data is used to compare a DCMD distillate quality with that of other desalination techniques and standards. Membrane SEM analysis showed that the PTFE membrane used for the study has contact angle of 127º with highly porous surface supported with less porous and bigger pore size PP membrane. Study on the effect of feed solution (salinity) and temperature on water quality of distillate produced from ICP and IC analysis showed that with any salinity and different feed temperature (up to 70ºC) the electric conductivity of distillate is less than 5 μS/cm with 99.99% salt rejection and proved to be feasible and effective process capable of consistently producing high quality distillate from very high feed salinity solution (i.e. 100000 mg/L TDS) even with substantial quality difference compared to other desalination methods such as RO and MSF.

Keywords: membrane distillation, waste heat, seawater desalination, membrane, freshwater, direct contact membrane distillation

Procedia PDF Downloads 224
620 Effect of Renin Angiotensin Pathway Inhibition on the Efficacy of Anti-programmed Cell Death (PD-1/L-1) Inhibitors in Advanced Non-small Cell Lung Cancer Patients- Comparison of Single Hospital Retrospective Assessment to the Published Literature

Authors: Esther Friedlander, Philip Friedlander

Abstract:

The use of immunotherapy that inhibits programmed death-1 (PD-1) or its ligand PD-L1 confers survival benefits in patients with non-small cell lung cancer (NSCLC). However, approximately 45% of patients experience primary treatment resistance, necessitating the development of strategies to improve efficacy. While the renin-angiotensin system (RAS) has systemic hemodynamic effects, tissue-specific regulation exists along with modulation of immune activity in part through regulation of myeloid cell activity, leading to the hypothesis that RAS inhibition may improve anti-PD-1/L-1 efficacy. A retrospective analysis was conducted that included 173 advanced solid tumor cancer patients treated at Valley Hospital, a community Hospital in New Jersey, USA, who were treated with a PD-1/L-1 inhibitor in a defined time period showing a statistically significant relationship between RAS pathway inhibition (RASi through concomitant treatment with an ACE inhibitor or angiotensin receptor blocker) and positive efficacy to the immunotherapy that was independent of age, gender and cancer type. Subset analysis revealed strong numerical benefit for efficacy in both patients with squamous and nonsquamous NSCLC as determined by documented clinician assessment of efficacy and by duration of therapy. A PUBMED literature search was now conducted to identify studies assessing the effect of RAS pathway inhibition on anti-PD-1/L1 efficacy in advanced solid tumor patients and compare these findings to those seen in the Valley Hospital retrospective study with a focus on NSCLC specifically. A total of 11 articles were identified assessing the effects of RAS pathway inhibition on the efficacy of checkpoint inhibitor immunotherapy in advanced cancer patients. Of the 11 studies, 10 assessed the effect on survival of RASi in the context of treatment with anti-PD-1/PD-L1, while one assessed the effect on CTLA-4 inhibition. Eight of the studies included patients with NSCLC, while the remaining 2 were specific to genitourinary malignancies. Of the 8 studies, two were specific to NSCLC patients, with the remaining 6 studies including a range of cancer types, of which NSCLC was one. Of these 6 studies, only 2 reported specific survival data for the NSCLC subpopulation. Patient characteristics, multivariate analysis data and efficacy data seen in the 2 NSLCLC specific studies and in the 2 basket studies, which provided data on the NSCLC subpopulation, were compared to that seen in the Valley Hospital retrospective study supporting a broader effect of RASi on anti-PD-1/L1 efficacy in advanced NSLCLC with the majority of studies showing statistically significant benefit or strong statistical trends but with one study demonstrating worsened outcomes. This comparison of studies extends published findings to the community hospital setting and supports prospective assessment through randomized clinical trials of efficacy in NSCLC patients with pharmacodynamic components to determine the effect on immune cell activity in tumors and on the composition of the tumor microenvironment.

Keywords: immunotherapy, cancer, angiotensin, efficacy, PD-1, lung cancer, NSCLC

Procedia PDF Downloads 66
619 Source-Detector Trajectory Optimization for Target-Based C-Arm Cone Beam Computed Tomography

Authors: S. Hatamikia, A. Biguri, H. Furtado, G. Kronreif, J. Kettenbach, W. Birkfellner

Abstract:

Nowadays, three dimensional Cone Beam CT (CBCT) has turned into a widespread clinical routine imaging modality for interventional radiology. In conventional CBCT, a circular sourcedetector trajectory is used to acquire a high number of 2D projections in order to reconstruct a 3D volume. However, the accumulated radiation dose due to the repetitive use of CBCT needed for the intraoperative procedure as well as daily pretreatment patient alignment for radiotherapy has become a concern. It is of great importance for both health care providers and patients to decrease the amount of radiation dose required for these interventional images. Thus, it is desirable to find some optimized source-detector trajectories with the reduced number of projections which could therefore lead to dose reduction. In this study we investigate some source-detector trajectories with the optimal arbitrary orientation in the way to maximize performance of the reconstructed image at particular regions of interest. To achieve this approach, we developed a box phantom consisting several small target polytetrafluoroethylene spheres at regular distances through the entire phantom. Each of these spheres serves as a target inside a particular region of interest. We use the 3D Point Spread Function (PSF) as a measure to evaluate the performance of the reconstructed image. We measured the spatial variance in terms of Full-Width-Half-Maximum (FWHM) of the local PSFs each related to a particular target. The lower value of FWHM shows the better spatial resolution of reconstruction results at the target area. One important feature of interventional radiology is that we have very well-known imaging targets as a prior knowledge of patient anatomy (e.g. preoperative CT) is usually available for interventional imaging. Therefore, we use a CT scan from the box phantom as the prior knowledge and consider that as the digital phantom in our simulations to find the optimal trajectory for a specific target. Based on the simulation phase we have the optimal trajectory which can be then applied on the device in real situation. We consider a Philips Allura FD20 Xper C-arm geometry to perform the simulations and real data acquisition. Our experimental results based on both simulation and real data show our proposed optimization scheme has the capacity to find optimized trajectories with minimal number of projections in order to localize the targets. Our results show the proposed optimized trajectories are able to localize the targets as good as a standard circular trajectory while using just 1/3 number of projections. Conclusion: We demonstrate that applying a minimal dedicated set of projections with optimized orientations is sufficient to localize targets, may minimize radiation.

Keywords: CBCT, C-arm, reconstruction, trajectory optimization

Procedia PDF Downloads 129
618 Evaluation of Antibiotic Resistance and Extended-Spectrum β-Lactamases Production Rates of Gram Negative Rods in a University Research and Practice Hospital, 2012-2015

Authors: Recep Kesli, Cengiz Demir, Onur Turkyilmaz, Hayriye Tokay

Abstract:

Objective: Gram-negative rods are a large group of bacteria, and include many families, genera, and species. Most clinical isolates belong to the family Enterobacteriaceae. Resistance due to the production of extended-spectrum β-lactamases (ESBLs) is a difficulty in the handling of Enterobacteriaceae infections, but other mechanisms of resistance are also emerging, leading to multidrug resistance and threatening to create panresistant species. We aimed in this study to evaluate resistance rates of Gram-negative rods bacteria isolated from clinical specimens in Microbiology Laboratory, Afyon Kocatepe University, ANS Research and Practice Hospital, between October 2012 and September 2015. Methods: The Gram-negative rods strains were identified by conventional methods and VITEK 2 automated identification system (bio-Mérieux, Marcy l’etoile, France). Antibiotic resistance tests were performed by both the Kirby-Bauer disk-diffusion and automated Antimicrobial Susceptibility Testing (AST, bio-Mérieux, Marcy l’etoile, France) methods. Disk diffusion results were evaluated according to the standards of Clinical and Laboratory Standards Institute (CLSI). Results: Of the totally isolated 1.701 Enterobacteriaceae strains 1434 (84,3%) were Klebsiella pneumoniae, 171 (10%) were Enterobacter spp., 96 (5.6%) were Proteus spp., and 639 Nonfermenting gram negatives, 477 (74.6%) were identified as Pseudomonas aeruginosa, 135 (21.1%) were Acinetobacter baumannii and 27 (4.3%) were Stenotrophomonas maltophilia. The ESBL positivity rate of the totally studied Enterobacteriaceae group were 30.4%. Antibiotic resistance rates for Klebsiella pneumoniae were as follows: amikacin 30.4%, gentamicin 40.1%, ampicillin-sulbactam 64.5%, cefepime 56.7%, cefoxitin 35.3%, ceftazidime 66.8%, ciprofloxacin 65.2%, ertapenem 22.8%, imipenem 20.5%, meropenem 20.5 %, and trimethoprim-sulfamethoxazole 50.1%, and for 114 Enterobacter spp were detected as; amikacin 26.3%, gentamicin 31.5%, cefepime 26.3%, ceftazidime 61.4%, ciprofloxacin 8.7%, ertapenem 8.7%, imipenem 12.2%, meropenem 12.2%, and trimethoprim-sulfamethoxazole 19.2 %. Resistance rates for Proteus spp. were: 24,3% meropenem, 26.2% imipenem, 20.2% amikacin 10.5% cefepim, 33.3% ciprofloxacin and levofloxacine, 31.6% ceftazidime, 20% ceftriaxone, 15.2% gentamicin, 26.6% amoxicillin-clavulanate, and 26.2% trimethoprim-sulfamethoxale. Resistance rates of P. aeruginosa was found as follows: Amikacin 32%, gentamicin 42 %, imipenem 43%, merpenem 43%, ciprofloxacin 50%, levofloxacin 52%, cefepim 38%, ceftazidim 63%, piperacillin/tacobactam 85%, for Acinetobacter baumannii; Amikacin 53.3%, gentamicin 56.6 %, imipenem 83%, merpenem 86%, ciprofloxacin 100%, ceftazidim 100%, piperacillin/tacobactam 85 %, colisitn 0 %, and for S. malthophilia; levofloxacin 66.6 % and trimethoprim/sulfamethoxozole 0 %. Conclusions: This study showed that resistance in Gram-negative rods was a serious clinical problem in our hospital and suggested the need to perform typification of the isolated bacteria with susceptibility testing regularly in the routine laboratory procedures. This application guided to empirical antibiotic treatment choices truly, as a consequence of the reality that each hospital shows different resistance profiles.

Keywords: antibiotic resistance, gram negative rods, ESBL, VITEK 2

Procedia PDF Downloads 327
617 Effect of Non-Thermal Plasma, Chitosan and Polymyxin B on Quorum Sensing Activity and Biofilm of Pseudomonas aeruginosa

Authors: Alena Cejkova, Martina Paldrychova, Jana Michailidu, Olga Matatkova, Jan Masak

Abstract:

Increasing the resistance of pathogenic microorganisms to many antibiotics is a serious threat to the treatment of infectious diseases and cleaning medical instruments. It should be added that the resistance of microbial populations growing in biofilms is often up to 1000 times higher compared to planktonic cells. Biofilm formation in a number of microorganisms is largely influenced by the quorum sensing regulatory mechanism. Finding external factors such as natural substances or physical processes that can interfere effectively with quorum sensing signal molecules should reduce the ability of the cell population to form biofilm and increase the effectiveness of antibiotics. The present work is devoted to the effect of chitosan as a representative of natural substances with anti-biofilm activity and non- thermal plasma (NTP) alone or in combination with polymyxin B on biofilm formation of Pseudomonas aeruginosa. Particular attention was paid to the influence of these agents on the level of quorum sensing signal molecules (acyl-homoserine lactones) during planktonic and biofilm cultivations. Opportunistic pathogenic strains of Pseudomonas aeruginosa (DBM 3081, DBM 3777, ATCC 10145, ATCC 15442) were used as model microorganisms. Cultivations of planktonic and biofilm populations in 96-well microtiter plates on horizontal shaker were used for determination of antibiotic and anti-biofilm activity of chitosan and polymyxin B. Biofilm-growing cells on titanium alloy, which is used for preparation of joint replacement, were exposed to non-thermal plasma generated by cometary corona with a metallic grid for 15 and 30 minutes. Cultivation followed in fresh LB medium with or without chitosan or polymyxin B for next 24 h. Biofilms were quantified by crystal violet assay. Metabolic activity of the cells in biofilm was measured using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) colorimetric test based on the reduction of MTT into formazan by the dehydrogenase system of living cells. Activity of N-acyl homoserine lactones (AHLs) compounds involved in the regulation of biofilm formation was determined using Agrobacterium tumefaciens strain harboring a traG::lacZ/traR reporter gene responsive to AHLs. The experiments showed that both chitosan and non-thermal plasma reduce the AHLs level and thus the biofilm formation and stability. The effectiveness of both agents was somewhat strain dependent. During the eradication of P. aeruginosa DBM 3081 biofilm on titanium alloy induced by chitosan (45 mg / l) there was an 80% decrease in AHLs. Applying chitosan or NTP on the P. aeruginosa DBM 3777 biofilm did not cause a significant decrease in AHLs, however, in combination with both (chitosan 55 mg / l and NTP 30 min), resulted in a 70% decrease in AHLs. Combined application of NTP and polymyxin B allowed reduce antibiotic concentration to achieve the same level of AHLs inhibition in P. aeruginosa ATCC 15442. The results shown that non-thermal plasma and chitosan have considerable potential for the eradication of highly resistant P. aeruginosa biofilms, for example on medical instruments or joint implants.

Keywords: anti-biofilm activity, chitosan, non-thermal plasma, opportunistic pathogens

Procedia PDF Downloads 195
616 Determination of 1-Deoxynojirimycin and Phytochemical Profile from Mulberry Leaves Cultivated in Indonesia

Authors: Yasinta Ratna Esti Wulandari, Vivitri Dewi Prasasty, Adrianus Rio, Cindy Geniola

Abstract:

Mulberry is a plant that widely cultivated around the world, mostly for silk industry. In recent years, the study showed that the mulberry leaves have an anti-diabetic effect which mostly comes from the compound known as 1-deoxynojirimycin (DNJ). DNJ is a very potent α-glucosidase inhibitor. It will decrease the degradation rate of carbohydrates in digestive tract, leading to slower glucose absorption and reducing the post-prandial glucose level significantly. The mulberry leaves also known as the best source of DNJ. Since then, the DNJ in mulberry leaves had received a considerable attention, because of the increased number of diabetic patients and the raise of people awareness to find a more natural cure for diabetic. The DNJ content in mulberry leaves varied depend on the mulberry species, leaf’s age, and the plant’s growth environment. Few of the mulberry varieties that were cultivated in Indonesiaare Morus alba var. kanva-2, M. alba var. multicaulis, M. bombycis var. lembang, and M. cathayana. The lack of data concerning phytochemicals contained in the Indonesian mulberry leaves are restraining their use in the medicinal field. The aim of this study is to fully utilize the use of mulberry leaves cultivated in Indonesia as a medicinal herb in local, national, or global community, by determining the DNJ and other phytochemical contents in them. This study used eight leaf samples which are the young leaves and mature leaves of both Morus alba var. kanva-2, M. alba var. multicaulis, M. bombycis var. lembang, and M. cathayana. The DNJ content was analyzed using reverse phase high performance liquid chromatography (HPLC). The stationary phase was silica C18 column and the mobile phase was acetonitrile:acetic acid 0.1% 1:1 with elution rate 1 mL/min. Prior to HPLC analysis the samples were derivatized with FMOC to ensure the DNJ detectable by VWD detector at 254 nm. Results showed that the DNJ content in samples are ranging from 2.90-0.07 mg DNJ/ g leaves, with the highest content found in M. cathayana mature leaves (2.90 ± 0.57 mg DNJ/g leaves). All of the mature leaf samples also found to contain higher amount of DNJ from their respective young leaf samples. The phytochemicals in leaf samples was tested using qualitative test. Result showed that all of the eight leaf samples contain alkaloids, phenolics, flavonoids, tannins, and terpenes. The presence of this phytochemicals contribute to the therapeutic effect of mulberry leaves. The pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) analysis was also performed to the eight samples to quantitatively determine their phytochemicals content. The pyrolysis temperature was set at 400 °C, with capillary column Phase Rtx-5MS 60 × 0.25 mm ID stationary phase and helium gas mobile phase. Few of the terpenes found are known to have anticancer and antimicrobial properties. From all the results, all of four samples of mulberry leaves which are cultivated in Indonesia contain DNJ and various phytochemicals like alkaloids, phenolics, flavonoids, tannins, and terpenes which are beneficial to our health.

Keywords: Morus, 1-deoxynojirimycin, HPLC, Py-GC-MS

Procedia PDF Downloads 322
615 Financing the Welfare State in the United States: The Recent American Economic and Ideological Challenges

Authors: Rafat Fazeli, Reza Fazeli

Abstract:

This paper focuses on the study of the welfare state and social wage in the leading liberal economy of the United States. The welfare state acquired a broad acceptance as a major socioeconomic achievement of the liberal democracy in the Western industrialized countries during the postwar boom period. The modern and modified vision of capitalist democracy offered, on the one hand, the possibility of high growth rate and, on the other hand, the possibility of continued progression of a comprehensive system of social support for a wider population. The economic crises of the 1970s, provided the ground for a great shift in economic policy and ideology in several Western countries, most notably the United States and the United Kingdom (and to a lesser extent Canada under Prime Minister Brian Mulroney). In the 1980s, the free market oriented reforms undertaken under Reagan and Thatcher greatly affected the economic outlook not only of the United States and the United Kingdom, but of the whole Western world. The movement which was behind this shift in policy is often called neo-conservatism. The neoconservatives blamed the transfer programs for the decline in economic performance during the 1970s and argued that cuts in spending were required to go back to the golden age of full employment. The agenda for both Reagan and Thatcher administrations was rolling back the welfare state, and their budgets included a wide range of cuts for social programs. The question is how successful were Reagan and Thatcher’s efforts to achieve retrenchment? The paper involves an empirical study concerning the distributive role of the welfare state in the two countries. Other studies have often concentrated on the redistributive effect of fiscal policy on different income brackets. This study examines the net benefit/ burden position of the working population with respect to state expenditures and taxes in the postwar period. This measurement will enable us to find out whether the working population has received a net gain (or net social wage). This study will discuss how the expansion of social expenditures and the trend of the ‘net social wage’ can be linked to distinct forms of economic and social organizations. This study provides an empirical foundation for analyzing the growing significance of ‘social wage’ or the collectivization of consumption and the share of social or collective consumption in total consumption of the working population in the recent decades. The paper addresses three other major questions. The first question is whether the expansion of social expenditures has posed any drag on capital accumulation and economic growth. The findings of this study provide an analytical foundation to evaluate the neoconservative claim that the welfare state is itself the source of economic stagnation that leads to the crisis of the welfare state. The second question is whether the increasing ideological challenges from the right and the competitive pressures of globalization have led to retrenchment of the American welfare states in the recent decades. The third question is how social policies have performed in the presence of the rising inequalities in the recent decades.

Keywords: the welfare state, social wage, The United States, limits to growth

Procedia PDF Downloads 204
614 Alternative Fuel Production from Sewage Sludge

Authors: Jaroslav Knapek, Kamila Vavrova, Tomas Kralik, Tereza Humesova

Abstract:

The treatment and disposal of sewage sludge is one of the most important and critical problems of waste water treatment plants. Currently, 180 thousand tonnes of sludge dry matter are produced in the Czech Republic, which corresponds to approximately 17.8 kg of stabilized sludge dry matter / year per inhabitant of the Czech Republic. Due to the fact that sewage sludge contains a large amount of substances that are not beneficial for human health, the conditions for sludge management will be significantly tightened in the Czech Republic since 2023. One of the tested methods of sludge liquidation is the production of alternative fuel from sludge from sewage treatment plants and paper production. The paper presents an analysis of economic efficiency of alternative fuel production from sludge and its use for fluidized bed boiler with nominal consumption of 5 t of fuel per hour. The evaluation methodology includes the entire logistics chain from sludge extraction, through mechanical moisture reduction to about 40%, transport to the pelletizing line, moisture drying for pelleting and pelleting itself. For economic analysis of sludge pellet production, a time horizon of 10 years corresponding to the expected lifetime of the critical components of the pelletizing line is chosen. The economic analysis of pelleting projects is based on a detailed analysis of reference pelleting technologies suitable for sludge pelleting. The analysis of the economic efficiency of pellet is based on the simulation of cash flows associated with the implementation of the project over the life of the project. For the entered value of return on the invested capital, the price of the resulting product (in EUR / GJ or in EUR / t) is searched to ensure that the net present value of the project is zero over the project lifetime. The investor then realizes the return on the investment in the amount of the discount used to calculate the net present value. The calculations take place in a real business environment (taxes, tax depreciation, inflation, etc.) and the inputs work with market prices. At the same time, the opportunity cost principle is respected; waste disposal for alternative fuels includes the saved costs of waste disposal. The methodology also respects the emission allowances saved due to the displacement of coal by alternative (bio) fuel. Preliminary results of testing of pellet production from sludge show that after suitable modifications of the pelletizer it is possible to produce sufficiently high quality pellets from sludge. A mixture of sludge and paper waste has proved to be a more suitable material for pelleting. At the same time, preliminary results of the analysis of the economic efficiency of this sludge disposal method show that, despite the relatively low calorific value of the fuel produced (about 10-11 MJ / kg), this sludge disposal method is economically competitive. This work has been supported by the Czech Technology Agency within the project TN01000048 Biorefining as circulation technology.

Keywords: Alternative fuel, Economic analysis, Pelleting, Sewage sludge

Procedia PDF Downloads 127
613 The Gaps of Environmental Criminal Liability in Armed Conflicts and Its Consequences: An Analysis under Stockholm, Geneva and Rome

Authors: Vivian Caroline Koerbel Dombrowski

Abstract:

Armed conflicts have always meant the ultimate expression of power and at the same time, lack of understanding among nations. Cities were destroyed, people were killed, assets were devastated. But these are not only the loss of a war: the environmental damage comes to be considered immeasurable losses in the short, medium and long term. And this is because no nation wants to bear that cost. They invest in military equipment, training, technical equipment but the environmental account yet finds gaps in international law. Considering such a generalization in rights protection, many nations are at imminent danger in a conflict if the water will be used as a mass weapon, especially if we consider important rivers such as Jordan, Euphrates and Nile. The top three international documents were analyzed on the subject: the Stockholm Convention (1972), Additional Protocol I to the Geneva Convention (1977) and the Rome Statute (1998). Indeed, some references are researched in doctrine, especially scientific articles, to substantiate with consistent data about the extent of the damage, historical factors and decisions which have been successful. However, due to the lack of literature about this subject, the research tends to be exhaustive. From the study of the indicated material, it was noted that international law - humanitarian and environmental - calls in some of its instruments the environmental protection in war conflicts, but they are generic and vague rules that do not define exactly what is the environmental damage , nor sets standards for measure them. Taking into account the mains conflicts of the century XX: World War II, the Vietnam War and the Gulf War, one must realize that the environmental consequences were of great rides - never deactivated landmines, buried nuclear weapons, armaments and munitions destroyed in the soil, chemical weapons, not to mention the effects of some weapons when used (uranium, agent Orange, etc). Extending the search for more recent conflicts such as Afghanistan, it is proven that the effects on health of the civilian population were catastrophic: cancer, birth defects, and deformities in newborns. There are few reports of nations that, somehow, repaired the damage caused to the environment as a result of the conflict. In the pitch of contemporary conflicts, many nations fear that water resources are used as weapons of mass destruction, because once contaminated - directly or indirectly - can become a means of disguised genocide side effect of military objective. In conclusion, it appears that the main international treaties governing the subject mention the concern for environmental protection, however leave the normative specifications vacancies necessary to effectively there is a prevention of environmental damage in armed conflict and, should they occur, the repair of the same. Still, it appears that there is no protection mechanism to safeguard natural resources and avoid them to become a mass destruction weapon.

Keywords: armed conflicts, criminal liability, environmental damages, humanitarian law, mass weapon

Procedia PDF Downloads 417
612 Preliminary Design, Production and Characterization of a Coral and Alginate Composite for Bone Engineering

Authors: Sthephanie A. Colmenares, Fabio A. Rojas, Pablo A. Arbeláez, Johann F. Osma, Diana Narvaez

Abstract:

The loss of functional tissue is a ubiquitous and expensive health care problem, with very limited treatment options for these patients. The golden standard for large bone damage is a cadaveric bone as an allograft with stainless steel support; however, this solution only applies to bones with simple morphologies (long bones), has a limited material supply and presents long term problems regarding mechanical strength, integration, differentiation and induction of native bone tissue. Therefore, the fabrication of a scaffold with biological, physical and chemical properties similar to the human bone with a fabrication method for morphology manipulation is the focus of this investigation. Towards this goal, an alginate and coral matrix was created using two production techniques; the coral was chosen because of its chemical composition and the alginate due to its compatibility and mechanical properties. In order to construct the coral alginate scaffold the following methodology was employed; cleaning of the coral, its pulverization, scaffold fabrication and finally the mechanical and biological characterization. The experimental design had: mill method and proportion of alginate and coral, as the two factors, with two and three levels each, using 5 replicates. The coral was cleaned with sodium hypochlorite and hydrogen peroxide in an ultrasonic bath. Then, it was milled with both a horizontal and a ball mill in order to evaluate the morphology of the particles obtained. After this, using a combination of alginate and coral powder and water as a binder, scaffolds of 1cm3 were printed with a SpectrumTM Z510 3D printer. This resulted in solid cubes that were resistant to small compression stress. Then, using a ESQUIM DP-143 silicon mold, constructs used for the mechanical and biological assays were made. An INSTRON 2267® was implemented for the compression tests; the density and porosity were calculated with an analytical balance and the biological tests were performed using cell cultures with VERO fibroblast, and Scanning Electron Microscope (SEM) as visualization tool. The Young’s moduli were dependent of the pulverization method, the proportion of coral and alginate and the interaction between these factors. The maximum value was 5,4MPa for the 50/50 proportion of alginate and horizontally milled coral. The biological assay showed more extracellular matrix in the scaffolds consisting of more alginate and less coral. The density and porosity were proportional to the amount of coral in the powder mix. These results showed that this composite has potential as a biomaterial, but its behavior is elastic with a small Young’s Modulus, which leads to the conclusion that the application may not be for long bones but for tissues similar to cartilage.

Keywords: alginate, biomaterial, bone engineering, coral, Porites asteroids, SEM

Procedia PDF Downloads 252
611 Assessing Information Dissemination Of Group B Streptococcus In Antenatal Clinics, and Obstetricians and Midwives’ Opinions on the Importance of Doing so

Authors: Aakriti Chetan Shah, Elle Sein

Abstract:

Background/purpose: Group B Streptococcus(GBS) is the leading cause of severe early onset infection in newborns, with the incidence of Early Onset Group B Streptococcus (EOGBS) in the UK and Ireland rising from 0.48 to 0.57 per 1000 births from 2000 to 2015. A WHO study conducted in 2017, has shown that 38.5% of cases can result in stillbirth and infant deaths. This is an important problem to consider as 20% of women worldwide have GBS colonisation and can suffer from these detrimental effects. Current Royal College of Obstetricians and Midwives (RCOG) guidelines do not recommend bacteriological screening for pregnant women due to its low sensitivity in antenatal screening correlating with the neonate having GBS but advise a patient information leaflet be given to pregnant women. However, a Healthcare Safety Investigation Branch (HSIB) 2019 learning report found that only 50% of trusts and health boards reported giving GBS information leaflets to all pregnant mothers. Therefore, this audit aimed to assess current practices of information dissemination about GBS at Chelsea & Westminster (C&W) Hospital. Methodology: A quantitative cross-sectional study was carried out using a questionnaire based on the RCOG GBS guidelines and the HSIB Learning report. The study was conducted in antenatal clinics at Chelsea & Westminster Hospital, from 29th January 2021 to 14th February 2021, with twenty-two practicing obstetricians and midwives participating in the survey. The main outcome measure was the proportion of obstetricians and midwives who disseminate information about GBS to pregnant women, and the reasons behind why they do or do not. Results: 22 obstetricians and midwives responded with 18 complete responses. Of which 12 were obstetricians and 6 were midwives. Only 17% of clinical staff routinely inform all pregnant women about GBS, and do so at varying timeframes of the pregnancy, with an equal split in the first, second and third trimester. The primary reason for not informing women about GBS was influenced by three key factors: Deemed relevant only for patients at high risk of GBS, lack of time in clinic appointments and no routine NHS screening available. Interestingly 58% of staff in the antenatal clinic believe it is necessary to inform all women about GBS and its importance. Conclusion: It is vital for obstetricians and midwives to inform all pregnant women about GBS due to the high prevalence of incidental carriers in the population, and the harmful effects it can cause for neonates. Even though most clinicians believe it is important to inform all pregnant women about GBS, most do not. To ensure that RCOG and HSIB recommendations are followed, we recommend that women should be given this information at 28 weeks gestation in the antenatal clinic. Proposed implementations include an information leaflet to be incorporated into the Mum and Baby app, an informative video and end-to-end digital clinic documentation to include this information sharing prompt.

Keywords: group B Streptococcus, early onset sepsis, Antenatal care, Neonatal morbidity, GBS

Procedia PDF Downloads 173
610 Ultrasound Disintegration as a Potential Method for the Pre-Treatment of Virginia Fanpetals (Sida hermaphrodita) Biomass before Methane Fermentation Process

Authors: Marcin Dębowski, Marcin Zieliński, Mirosław Krzemieniewski

Abstract:

As methane fermentation is a complex series of successive biochemical transformations, its subsequent stages are determined, to a various extent, by physical and chemical factors. A specific state of equilibrium is being settled in the functioning fermentation system between environmental conditions and the rate of biochemical reactions and products of successive transformations. In the case of physical factors that influence the effectiveness of methane fermentation transformations, the key significance is ascribed to temperature and intensity of biomass agitation. Among the chemical factors, significant are pH value, type, and availability of the culture medium (to put it simply: the C/N ratio) as well as the presence of toxic substances. One of the important elements which influence the effectiveness of methane fermentation is the pre-treatment of organic substrates and the mode in which the organic matter is made available to anaerobes. Out of all known and described methods for organic substrate pre-treatment before methane fermentation process, the ultrasound disintegration is one of the most interesting technologies. Investigations undertaken on the ultrasound field and the use of installations operating on the existing systems result principally from very wide and universal technological possibilities offered by the sonication process. This physical factor may induce deep physicochemical changes in ultrasonicated substrates that are highly beneficial from the viewpoint of methane fermentation processes. In this case, special role is ascribed to disintegration of biomass that is further subjected to methane fermentation. Once cell walls are damaged, cytoplasm and cellular enzymes are released. The released substances – either in dissolved or colloidal form – are immediately available to anaerobic bacteria for biodegradation. To ensure the maximal release of organic matter from dead biomass cells, disintegration processes are aimed to achieve particle size below 50 μm. It has been demonstrated in many research works and in systems operating in the technical scale that immediately after substrate supersonication the content of organic matter (characterized by COD, BOD5 and TOC indices) was increasing in the dissolved phase of sedimentation water. This phenomenon points to the immediate sonolysis of solid substances contained in the biomass and to the release of cell material, and consequently to the intensification of the hydrolytic phase of fermentation. It results in a significant reduction of fermentation time and increased effectiveness of production of gaseous metabolites of anaerobic bacteria. Because disintegration of Virginia fanpetals biomass via ultrasounds applied in order to intensify its conversion is a novel technique, it is often underestimated by exploiters of agri-biogas works. It has, however, many advantages that have a direct impact on its technological and economical superiority over thus far applied methods of biomass conversion. As for now, ultrasound disintegrators for biomass conversion are not produced on the mass-scale, but by specialized groups in scientific or R&D centers. Therefore, their quality and effectiveness are to a large extent determined by their manufacturers’ knowledge and skills in the fields of acoustics and electronic engineering.

Keywords: ultrasound disintegration, biomass, methane fermentation, biogas, Virginia fanpetals

Procedia PDF Downloads 361
609 Evaluation of Alternative Approaches for Additional Damping in Dynamic Calculations of Railway Bridges under High-Speed Traffic

Authors: Lara Bettinelli, Bernhard Glatz, Josef Fink

Abstract:

Planning engineers and researchers use various calculation models with different levels of complexity, calculation efficiency and accuracy in dynamic calculations of railway bridges under high-speed traffic. When choosing a vehicle model to depict the dynamic loading on the bridge structure caused by passing high-speed trains, different goals are pursued: On the one hand, the selected vehicle models should allow the calculation of a bridge’s vibrations as realistic as possible. On the other hand, the computational efficiency and manageability of the models should be preferably high to enable a wide range of applications. The commonly adopted and straightforward vehicle model is the moving load model (MLM), which simplifies the train to a sequence of static axle loads moving at a constant speed over the structure. However, the MLM can significantly overestimate the structure vibrations, especially when resonance events occur. More complex vehicle models, which depict the train as a system of oscillating and coupled masses, can reproduce the interaction dynamics between the vehicle and the bridge superstructure to some extent and enable the calculation of more realistic bridge accelerations. At the same time, such multi-body models require significantly greater processing capacities and precise knowledge of various vehicle properties. The European standards allow for applying the so-called additional damping method when simple load models, such as the MLM, are used in dynamic calculations. An additional damping factor depending on the bridge span, which should take into account the vibration-reducing benefits of the vehicle-bridge interaction, is assigned to the supporting structure in the calculations. However, numerous studies show that when the current standard specifications are applied, the calculation results for the bridge accelerations are in many cases still too high compared to the measured bridge accelerations, while in other cases, they are not on the safe side. A proposal to calculate the additional damping based on extensive dynamic calculations for a parametric field of simply supported bridges with a ballasted track was developed to address this issue. In this contribution, several different approaches to determine the additional damping of the supporting structure considering the vehicle-bridge interaction when using the MLM are compared with one another. Besides the standard specifications, this includes the approach mentioned above and two additional recently published alternative formulations derived from analytical approaches. For a bridge catalogue of 65 existing bridges in Austria in steel, concrete or composite construction, calculations are carried out with the MLM for two different high-speed trains and the different approaches for additional damping. The results are compared with the calculation results obtained by applying a more sophisticated multi-body model of the trains used. The evaluation and comparison of the results allow assessing the benefits of different calculation concepts for the additional damping regarding their accuracy and possible applications. The evaluation shows that by applying one of the recently published redesigned additional damping methods, the calculation results can reflect the influence of the vehicle-bridge interaction on the design-relevant structural accelerations considerably more reliable than by using normative specifications.

Keywords: Additional Damping Method, Bridge Dynamics, High-Speed Railway Traffic, Vehicle-Bridge-Interaction

Procedia PDF Downloads 158
608 Association of Body Composition Parameters with Lower Limb Strength and Upper Limb Functional Capacity in Quilombola Remnants

Authors: Leonardo Costa Pereira, Frederico Santos Santana, Mauro Karnikowski, Luís Sinésio Silva Neto, Aline Oliveira Gomes, Marisete Peralta Safons, Margô Gomes De Oliveira Karnikowski

Abstract:

In Brazil, projections of population aging follow all world projections, the birth rate tends to be surpassed by the mortality rate around the year 2045. Historically, the population of Brazilian blacks suffered for several centuries from the oppression of dominant classes. A group, especially of blacks, stands out in relation to territorial, historical and social aspects, and for centuries they have isolated themselves in small communities, in order to maintain their freedom and culture. The isolation of the Quilombola communities generated socioeconomic effects as well as the health of these blacks. Thus, the objective of the present study is to verify the association of body composition parameters with lower and upper limb strength and functional capacity in Quilombola remnants. The research was approved by ethics committee (1,771,159). Anthropometric evaluations of hip and waist circumference, body mass and height were performed. In order to verify the body composition, the relationship between stature and body mass (BM) was performed, generating the body mass index (BMI), as well as the dual-energy X-ray absorptiometry (DEXA) test. The Time Up and Go (TUG) test was used to evaluate the functional capacity, and a maximum repetition test (1MR) for knee extension and handgrip (HG) was applied for strength magnitude analysis. Statistical analysis was performed using the statistical package SPSS 22.0. Shapiro Wilk's normality test was performed. For the possible correlations, the suggestions of the Pearson or Spearman tests were adopted. The results obtained after the interpretation identified that the sample (n = 18) was composed of 66.7% of female individuals with mean age of 66.07 ± 8.95 years. The sample’s body fat percentage (%BF) (35.65 ± 10.73) exceeds the recommendations for age group, as well as the anthropometric parameters of hip (90.91 ± 8.44cm) and waist circumference (80.37 ± 17.5cm). The relationship between height (1.55 ± 0.1m) and body mass (63.44 ± 11.25Kg) generated a BMI of 24.16 ± 7.09Kg/m2, that was considered normal. The TUG performance was 10.71 ± 1.85s. In the 1MR test, 46.67 ± 13.06Kg and in the HG 23.93±7.96Kgf were obtained, respectively. Correlation analyzes were characterized by the high frequency of significant correlations for height, dominant arm mass (DAM), %BF, 1MR and HG variables. In addition, correlations between HG and BM (r = 0.67, p = 0.005), height (r = 0.51, p = 0.004) and DAM (r = 0.55, p = 0.026) were also observed. The strength of the lower limbs correlates with BM (r = 0.69, p = 0.003), height (r = 0.62, p = 0.01) and DAM (r = 0.772, p = 0.001). In this way, we can conclude that not only the simple spatial relationship of mass and height can influence in predictive parameters of strength or functionality, being important the verification of the conditions of the corporal composition. For this population, height seems to be a good predictor of strength and body composition.

Keywords: African Continental Ancestry Group, body composition, functional capacity, strength

Procedia PDF Downloads 268
607 Impact of Climate Change on Crop Production: Climate Resilient Agriculture Is the Need of the Hour

Authors: Deepak Loura

Abstract:

Climate change is considered one of the major environmental problems of the 21st century and a lasting change in the statistical distribution of weather patterns over periods ranging from decades to millions of years. Agriculture and climate change are internally correlated with each other in various aspects, as the threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting a negative impact on global crop production and compromising food security worldwide. The fast pace of development and industrialization and indiscriminate destruction of the natural environment, more so in the last century, have altered the concentration of atmospheric gases that lead to global warming. Carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (NO) are important biogenic greenhouse gases (GHGs) from the agricultural sector contributing to global warming and their concentration is increasing alarmingly. Agricultural productivity can be affected by climate change in 2 ways: first, directly, by affecting plant growth development and yield due to changes in rainfall/precipitation and temperature and/or CO₂ levels, and second, indirectly, there may be considerable impact on agricultural land use due to snow melt, availability of irrigation, frequency and intensity of inter- and intra-seasonal droughts and floods, soil organic matter transformations, soil erosion, distribution and frequency of infestation by insect pests, diseases or weeds, the decline in arable areas (due to submergence of coastal lands), and availability of energy. An increase in atmospheric CO₂ promotes the growth and productivity of C3 plants. On the other hand, an increase in temperature, can reduce crop duration, increase crop respiration rates, affect the equilibrium between crops and pests, hasten nutrient mineralization in soils, decrease fertilizer- use efficiencies, and increase evapotranspiration among others. All these could considerably affect crop yield in long run. Climate resilient agriculture consisting of adaptation, mitigation, and other agriculture practices can potentially enhance the capacity of the system to withstand climate-related disturbances by resisting damage and recovering quickly. Climate resilient agriculture turns the climate change threats that have to be tackled into new business opportunities for the sector in different regions and therefore provides a triple win: mitigation, adaptation, and economic growth. Improving the soil organic carbon stock of soil is integral to any strategy towards adapting to and mitigating the abrupt climate change, advancing food security, and improving the environment. Soil carbon sequestration is one of the major mitigation strategies to achieve climate-resilient agriculture. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation before it might affect global crop production drastically. To cope with these extreme changes, future development needs to make adjustments in technology, management practices, and legislation. Adaptation and mitigation are twin approaches to bringing resilience to climate change in agriculture.

Keywords: climate change, global warming, crop production, climate resilient agriculture

Procedia PDF Downloads 68
606 A Comparison Between Different Discretization Techniques for the Doyle-Fuller-Newman Li+ Battery Model

Authors: Davide Gotti, Milan Prodanovic, Sergio Pinilla, David Muñoz-Torrero

Abstract:

Since its proposal, the Doyle-Fuller-Newman (DFN) lithium-ion battery model has gained popularity in the electrochemical field. In fact, this model provides the user with theoretical support for designing the lithium-ion battery parameters, such as the material particle or the diffusion coefficient adjustment direction. However, the model is mathematically complex as it is composed of several partial differential equations (PDEs) such as Fick’s law of diffusion, the MacInnes and Ohm’s equations, among other phenomena. Thus, to efficiently use the model in a time-domain simulation environment, the selection of the discretization technique is of a pivotal importance. There are several numerical methods available in the literature that can be used to carry out this task. In this study, a comparison between the explicit Euler, Crank-Nicolson, and Chebyshev discretization methods is proposed. These three methods are compared in terms of accuracy, stability, and computational times. Firstly, the explicit Euler discretization technique is analyzed. This method is straightforward to implement and is computationally fast. In this work, the accuracy of the method and its stability properties are shown for the electrolyte diffusion partial differential equation. Subsequently, the Crank-Nicolson method is considered. It represents a combination of the implicit and explicit Euler methods that has the advantage of being of the second order in time and is intrinsically stable, thus overcoming the disadvantages of the simpler Euler explicit method. As shown in the full paper, the Crank-Nicolson method provides accurate results when applied to the DFN model. Its stability does not depend on the integration time step, thus it is feasible for both short- and long-term tests. This last remark is particularly important as this discretization technique would allow the user to implement parameter estimation and optimization techniques such as system or genetic parameter identification methods using this model. Finally, the Chebyshev discretization technique is implemented in the DFN model. This discretization method features swift convergence properties and, as other spectral methods used to solve differential equations, achieves the same accuracy with a smaller number of discretization nodes. However, as shown in the literature, these methods are not suitable for handling sharp gradients, which are common during the first instants of the charge and discharge phases of the battery. The numerical results obtained and presented in this study aim to provide the guidelines on how to select the adequate discretization technique for the DFN model according to the type of application to be performed, highlighting the pros and cons of the three methods. Specifically, the non-eligibility of the simple Euler method for longterm tests will be presented. Afterwards, the Crank-Nicolson and the Chebyshev discretization methods will be compared in terms of accuracy and computational times under a wide range of battery operating scenarios. These include both long-term simulations for aging tests, and short- and mid-term battery charge/discharge cycles, typically relevant in battery applications like grid primary frequency and inertia control and electrical vehicle breaking and acceleration.

Keywords: Doyle-Fuller-Newman battery model, partial differential equations, discretization, numerical methods

Procedia PDF Downloads 8
605 Soybean Lecithin Based Reverse Micellar Extraction of Pectinase from Synthetic Solution

Authors: Sivananth Murugesan, I. Regupathi, B. Vishwas Prabhu, Ankit Devatwal, Vishnu Sivan Pillai

Abstract:

Pectinase is an important enzyme which has a wide range of applications including textile processing and bioscouring of cotton fibers, coffee and tea fermentation, purification of plant viruses, oil extraction etc. Selective separation and purification of pectinase from fermentation broth and recover the enzyme form process stream for reuse are cost consuming process in most of the enzyme based industries. It is difficult to identify a suitable medium to enhance enzyme activity and retain its enzyme characteristics during such processes. The cost effective, selective separation of enzymes through the modified Liquid-liquid extraction is of current research interest worldwide. Reverse micellar extraction, globally acclaimed Liquid-liquid extraction technique is well known for its separation and purification of solutes from the feed which offers higher solute specificity and partitioning, ease of operation and recycling of extractants used. Surfactant concentrations above critical micelle concentration to an apolar solvent form micelles and addition of micellar phase to water in turn forms reverse micelles or water-in-oil emulsions. Since, electrostatic interaction plays a major role in the separation/purification of solutes using reverse micelles. These interaction parameters can be altered with the change in pH, addition of cosolvent, surfactant and electrolyte and non-electrolyte. Even though many chemical based commercial surfactant had been utilized for this purpose, the biosurfactants are more suitable for the purification of enzymes which are used in food application. The present work focused on the partitioning of pectinase from the synthetic aqueous solution within the reverse micelle phase formed by a biosurfactant, Soybean Lecithin dissolved in chloroform. The critical micelle concentration of soybean lecithin/chloroform solution was identified through refractive index and density measurements. Effect of surfactant concentrations above and below the critical micelle concentration was considered to study its effect on enzyme activity, enzyme partitioning within the reverse micelle phase. The effect of pH and electrolyte salts on the partitioning behavior was studied by varying the system pH and concentration of different salts during forward and back extraction steps. It was observed that lower concentrations of soybean lecithin enhanced the enzyme activity within the water core of the reverse micelle with maximizing extraction efficiency. The maximum yield of pectinase of 85% with a partitioning coefficient of 5.7 was achieved at 4.8 pH during forward extraction and 88% yield with a partitioning coefficient of 7.1 was observed during backward extraction at a pH value of 5.0. However, addition of salt decreased the enzyme activity and especially at higher salt concentrations enzyme activity declined drastically during both forward and back extraction steps. The results proved that reverse micelles formed by Soybean Lecithin and chloroform may be used for the extraction of pectinase from aqueous solution. Further, the reverse micelles can be considered as nanoreactors to enhance enzyme activity and maximum utilization of substrate at optimized conditions, which are paving a way to process intensification and scale-down.

Keywords: pectinase, reverse micelles, soybean lecithin, selective partitioning

Procedia PDF Downloads 366
604 Trauma Scores and Outcome Prediction After Chest Trauma

Authors: Mohamed Abo El Nasr, Mohamed Shoeib, Abdelhamid Abdelkhalik, Amro Serag

Abstract:

Background: Early assessment of severity of chest trauma, either blunt or penetrating is of critical importance in prediction of patient outcome. Different trauma scoring systems are widely available and are based on anatomical or physiological parameters to expect patient morbidity or mortality. Up till now, there is no ideal, universally accepted trauma score that could be applied in all trauma centers and is suitable for assessment of severity of chest trauma patients. Aim: Our aim was to compare various trauma scoring systems regarding their predictability of morbidity and mortality in chest trauma patients. Patients and Methods: This study was a prospective study including 400 patients with chest trauma who were managed at Tanta University Emergency Hospital, Egypt during a period of 2 years (March 2014 until March 2016). The patients were divided into 2 groups according to the mode of trauma: blunt or penetrating. The collected data included age, sex, hemodynamic status on admission, intrathoracic injuries, and associated extra-thoracic injuries. The patients outcome including mortality, need of thoracotomy, need for ICU admission, need for mechanical ventilation, length of hospital stay and the development of acute respiratory distress syndrome were also recorded. The relevant data were used to calculate the following trauma scores: 1. Anatomical scores including abbreviated injury scale (AIS), Injury severity score (ISS), New injury severity score (NISS) and Chest wall injury scale (CWIS). 2. Physiological scores including revised trauma score (RTS), Acute physiology and chronic health evaluation II (APACHE II) score. 3. Combined score including Trauma and injury severity score (TRISS ) and 4. Chest-Specific score Thoracic trauma severity score (TTSS). All these scores were analyzed statistically to detect their sensitivity, specificity and compared regarding their predictive power of mortality and morbidity in blunt and penetrating chest trauma patients. Results: The incidence of mortality was 3.75% (15/400). Eleven patients (11/230) died in blunt chest trauma group, while (4/170) patients died in penetrating trauma group. The mortality rate increased more than three folds to reach 13% (13/100) in patients with severe chest trauma (ISS of >16). The physiological scores APACHE II and RTS had the highest predictive value for mortality in both blunt and penetrating chest injuries. The physiological score APACHE II followed by the combined score TRISS were more predictive for intensive care admission in penetrating injuries while RTS was more predictive in blunt trauma. Also, RTS had a higher predictive value for expectation of need for mechanical ventilation followed by the combined score TRISS. APACHE II score was more predictive for the need of thoracotomy in penetrating injuries and the Chest-Specific score TTSS was higher in blunt injuries. The anatomical score ISS and TTSS score were more predictive for prolonged hospital stay in penetrating and blunt injuries respectively. Conclusion: Trauma scores including physiological parameters have a higher predictive power for mortality in both blunt and penetrating chest trauma. They are more suitable for assessment of injury severity and prediction of patients outcome.

Keywords: chest trauma, trauma scores, blunt injuries, penetrating injuries

Procedia PDF Downloads 417
603 Catalytic Dehydrogenation of Formic Acid into H2/CO2 Gas: A Novel Approach

Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy

Abstract:

Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of biomass platform, comprising a potential pool of hydrogen energy that stands as a new energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need of in-situ H2 production, which plays a key role in the hydrogenation reactions of biomass into higher value components. It is reported elsewhere in literature that catalytic decomposition of FA is usually performed in poorly designed setup using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. it work suggests an approach that integrates designing a novel catalyst featuring magnetic property with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H2 gas from FA. Using ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under inert medium. Through a novel approach, FA is charged into the reactor via high-pressure positive displacement pump at steady state conditions. The produced gas (H2+CO2) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The novelty of this work lies in designing a very responsive catalyst, pumping consistent amount of FA into a sealed reactor running at steady state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at lower temperature range (35-50°C) yielded more gas while the catalyst loading and Pd doping wt.% were found to be the most significant factors with a P-values 0.026 & 0.031, respectively.

Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles

Procedia PDF Downloads 47
602 Automation of Finite Element Simulations for the Design Space Exploration and Optimization of Type IV Pressure Vessel

Authors: Weili Jiang, Simon Cadavid Lopera, Klaus Drechsler

Abstract:

Fuel cell vehicle has become the most competitive solution for the transportation sector in the hydrogen economy. Type IV pressure vessel is currently the most popular and widely developed technology for the on-board storage, based on their high reliability and relatively low cost. Due to the stringent requirement on mechanical performance, the pressure vessel is subject to great amount of composite material, a major cost driver for the hydrogen tanks. Evidently, the optimization of composite layup design shows great potential in reducing the overall material usage, yet requires comprehensive understanding on underlying mechanisms as well as the influence of different design parameters on mechanical performance. Given the type of materials and manufacturing processes by which the type IV pressure vessels are manufactured, the design and optimization are a nuanced subject. The manifold of stacking sequence and fiber orientation variation possibilities have an out-standing effect on vessel strength due to the anisotropic property of carbon fiber composites, which make the design space high dimensional. Each variation of design parameters requires computational resources. Using finite element analysis to evaluate different designs is the most common method, however, the model-ing, setup and simulation process can be very time consuming and result in high computational cost. For this reason, it is necessary to build a reliable automation scheme to set up and analyze the di-verse composite layups. In this research, the simulation process of different tank designs regarding various parameters is conducted and automatized in a commercial finite element analysis framework Abaqus. Worth mentioning, the modeling of the composite overwrap is automatically generated using an Abaqus-Python scripting interface. The prediction of the winding angle of each layer and corresponding thickness variation on dome region is the most crucial step of the modeling, which is calculated and implemented using analytical methods. Subsequently, these different composites layups are simulated as axisymmetric models to facilitate the computational complexity and reduce the calculation time. Finally, the results are evaluated and compared regarding the ultimate tank strength. By automatically modeling, evaluating and comparing various composites layups, this system is applicable for the optimization of the tanks structures. As mentioned above, the mechanical property of the pressure vessel is highly dependent on composites layup, which requires big amount of simulations. Consequently, to automatize the simulation process gains a rapid way to compare the various designs and provide an indication of the optimum one. Moreover, this automation process can also be operated for creating a data bank of layups and corresponding mechanical properties with few preliminary configuration steps for the further case analysis. Subsequently, using e.g. machine learning to gather the optimum by the data pool directly without the simulation process.

Keywords: type IV pressure vessels, carbon composites, finite element analy-sis, automation of simulation process

Procedia PDF Downloads 125
601 Nutritional Status of Children in a Rural Food Environment, Haryana: A Paradox for the Policy Action

Authors: Neha Gupta, Sonika Verma, Seema Puri, Nikhil Tandon, Narendra K. Arora

Abstract:

The concurrent increasing prevalence of underweight and overweight/obesity among children with changing lifestyle and the rapid transitioning society has necessitated the need for a unifying/multi-level approach to understand the determinants of the problem. The present community-based cross-sectional research study was conducted to assess the associations between lifestyle behavior and food environment of the child at household, neighborhood, and school with the BMI of children (6-12 year old) (n=612) residing in three rural clusters of Palwal district, Haryana. The study used innovative and robust methods for assessing the lifestyle and various components of food environment in the study. The three rural clusters selected for the study were located at three different locations according to their access to highways in the SOMAARTH surveillance site. These clusters were significantly different from each other in terms of their socio-demographic and socio-economic profile, living conditions, environmental hygiene, health seeking behavior and retail density. Despite of being different, the quality of living conditions and environmental hygiene was poor across three clusters. The children had higher intakes of dietary energy and sugars; one-fifth share of the energy being derived from unhealthy foods, engagement in high levels of physical activity and significantly different food environment at home, neighborhood and school level. However, despite having a high energy intake, 22.5% of the recruited children were thin/severe thin, and 3% were overweight/obese as per their BMI-for-age categories. The analysis was done using multi-variate logistic regression at three-tier hierarchy including individual, household and community level. The factors significantly explained the variability in governing the risk of getting thin/severe thin among children in rural area (p-value: 0.0001; Adjusted R2: 0.156) included age (>10years) (OR: 2.1; 95% CI: 1.0-4.4), the interaction between minority category and poor SES of the household (OR: 4.4; 95% CI: 1.6-12.1), availability of sweets (OR: 0.9; 95% CI: 0.8-0.99) and cereals (OR: 0.9; 95% CI: 0.8-1.0) in the household and poor street condition (proxy indicator of the hygiene and cleanliness in the neighborhood) (OR: 0.3; 95% CI: 0.1-1.1). The homogeneity of other factors at neighborhood and school level food environment diluted the heterogeneity in the lifestyles and home environment of the recruited children and their households. However, it is evident that when various individual factors interplay at multiple levels amplifies the risk of undernutrition in a rural community. Conclusion: These rural areas in Haryana are undergoing developmental, economic and societal transition. In correspondence, no improvements in the nutritional status of children have happened. Easy access to the unhealthy foods has become a paradox.

Keywords: transition, food environment, lifestyle, undernutrition, overnutrition

Procedia PDF Downloads 176
600 Cotton Fabrics Functionalized with Green and Commercial Ag Nanoparticles

Authors: Laura Gonzalez, Santiago Benavides, Martha Elena Londono, Ana Elisa Casas, Adriana Restrepo-Osorio

Abstract:

Cotton products are sensitive to microorganisms due to its ability to retain moisture, which might cause change into the coloration, mechanical properties reduction or foul odor generation; consequently, this represents risks to the health of users. Nowadays, have been carried out researches to give antibacterial properties to textiles using different strategies, which included the use of silver nanoparticles (AgNPs). The antibacterial behavior can be affected by laundering process reducing its effectiveness. In the other way, the environmental impact generated for the synthetic antibacterial agents has motivated to seek new and more ecological ways for produce AgNPs. The aims of this work are to determine the antibacterial activity of cotton fabric functionalized with green (G) and commercial (C) AgNPs after twenty washing cycles, also to evaluate morphological and color changes. A plain weave cotton fabric suitable for dyeing and two AgNPs solutions were use. C a commercial product and G produced using an ecological method, both solutions with 0.5 mM concentration were impregnated on cotton fabric without stabilizer, at a liquor to fabric ratio of 1:20 in constant agitation during 30min and then dried at 70 °C by 10 min. After that the samples were subjected to twenty washing cycles using phosphate-free detergent simulated on agitated flask at 150 rpm, then were centrifuged and dried on a tumble. The samples were characterized using Kirby-Bauer test determine antibacterial activity against E. coli y S. aureus microorganisms, the results were registered by photographs establishing the inhibition halo before and after the washing cycles, the tests were conducted in triplicate. Scanning electron microscope (SEM) was used to observe the morphologies of cotton fabric and treated samples. The color changes of cotton fabrics in relation to the untreated samples were obtained by spectrophotometer analysis. The images, reveals the presence of inhibition halo in the samples treated with C and G AgNPs solutions, even after twenty washing cycles, which indicated a good antibacterial activity and washing durability, with a tendency to better results against to S. aureus bacteria. The presence of AgNPs on the surface of cotton fiber and morphological changes were observed through SEM, after and before washing cycles. The own color of the cotton fiber has been significantly altered with both antibacterial solutions. According to the colorimetric results, the samples treated with C lead to yellowing while the samples modified with G to red yellowing Cotton fabrics treated AgNPs C and G from 0.5 mM solutions exhibited excellent antimicrobial activity against E. coli and S. aureus with good laundering durability effects. The surface of the cotton fibers was modified with the presence of AgNPs C and G due to the presence of NPs and its agglomerates. There are significant changes in the natural color of cotton fabric due to deposition of AgNPs C and G which were maintained after laundering process.

Keywords: antibacterial property, cotton fabric, fastness to wash, Kirby-Bauer test, silver nanoparticles

Procedia PDF Downloads 243
599 Weaving Social Development: An Exploratory Study of Adapting Traditional Textiles Using Indigenous Organic Wool for the Modern Interior Textiles Market

Authors: Seema Singh, Puja Anand, Alok Bhasin

Abstract:

The interior design profession aims to create aesthetically pleasing design solutions for human habitats but of late, growing awareness about depleting environmental resources, both tangible and intangible, and damages to the eco-system led to the quest for creating healthy and sustainable interior environments. The paper proposes adapting traditionally produced organic wool textiles for the mainstream interior design industry. This can create sustainable livelihoods whereby eco-friendly bridges can be built between Interior designers and consumers and pastoral communities. This study focuses on traditional textiles produced by two pastoral communities from India that use organic wool from indigenous sheep varieties. The Gaddi communities of Himachal Pradesh use wool from the Gaddi sheep breed to create Pattu (a multi-purpose textile). The Kurumas of Telangana weave a blanket called the Gongadi, using wool from the Black Deccani variety of sheep. These communities have traditionally reared indigenous sheep breeds for their wool and produce hand-spun and hand-woven textiles for their own consumption, using traditional processes that are chemical free. Based on data collected personally from field visits and documentation of traditional crafts of these pastoral communities, and using traditionally produced indigenous organic wool, the authors have developed innovative textile samples by including design interventions and exploring dyeing and weaving techniques. As part of the secondary research, the role of pastoralism in sustaining the eco-systems of Himachal Pradesh and Telangana was studied, and also the role of organic wool in creating healthy interior environments. The authors found that natural wool from indigenous sheep breeds can be used to create interior textiles that have the potential to be marketed to an urban audience, and this will help create earnings for pastoral communities. Literature studies have shown that organic & sustainable wool can reduce indoor pollution & toxicity levels in interiors and further help in creating healthier interior environments. Revival of indigenous breeds of sheep can further help in rejuvenating dying crafts, and promotion of these indigenous textiles can help in sustaining traditional eco-systems and the pastoral communities whose way of life is endangered today. Based on research and findings, the authors propose that adapting traditional textiles can have potential for application in Interiors, creating eco-friendly spaces. Interior textiles produced through such sustainable processes can help reduce indoor pollution, give livelihood opportunities to traditional economies, and leave almost zero carbon foot-print while being in sync with available natural resources, hence ultimately benefiting the society. The win-win situation for all the stakeholders in this eco-friendly model makes it pertinent to re-think how we design lifestyle textiles for interiors. This study illustrates a specific example from the two pastoral communities and can be used as a model that can work equally well in any community, regardless of geography.

Keywords: design intervention, eco- friendly, healthy interiors, indigenous, organic wool, pastoralism, sustainability

Procedia PDF Downloads 159