Search results for: scale invariant feature
4975 Expanding Learning Reach: Innovative VR-Enabled Retention Strategies
Authors: Bilal Ahmed, Muhammad Rafiq, Choongjae Im
Abstract:
The tech-savvy Gen Z's transfer towards interactive concept learning is hammering the demand for online collaborative learning environments, renovating conventional education approaches. The authors propose a novel approach to enhance learning outcomes to improve retention in 3D interactive education by connecting virtual reality (VR) and non-VR devices in the classroom and distance learning. The study evaluates students' experiences with VR interconnectivity devices in human anatomy lectures using real-time 3D interactive data visualization. Utilizing the renowned "Guo & Pooles Inventory" and the "Flow for Presence Questionnaires," it used an experimental research design with a control and experimental group to assess this novel connecting strategy's effectiveness and significant potential for in-person and online educational settings during the sessions. The experimental group's interactions, engagement levels, and usability experiences were assessed using the "Guo & Pooles Inventory" and "Flow for Presence Questionnaires," which measure their sense of presence, engagement, and immersion throughout the learning process using a 5-point Likert scale. At the end of the sessions, we used the "Perceived Usability Scale" to find our proposed system's overall efficiency, effectiveness, and satisfaction. By comparing both groups, the students in the experimental group used the integrated VR environment and VR to non-VR devices, and their sense of presence and attentiveness was significantly improved, allowing for increased engagement by giving students diverse technological access. Furthermore, learners' flow states demonstrated increased absorption and focus levels, improving information retention and Perceived Usability. The findings of this study can help educational institutions optimize their technology-enhanced teaching methods for traditional classroom settings as well as distance-based learning, where building a sense of connection among remote learners is critical. This study will give significant insights into educational technology and its ongoing progress by analyzing engagement, interactivity, usability, satisfaction, and presence.Keywords: interactive learning environments, human-computer interaction, virtual reality, computer- supported collaborative learning
Procedia PDF Downloads 654974 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model
Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin
Abstract:
Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.Keywords: anomaly detection, autoencoder, data centers, deep learning
Procedia PDF Downloads 1944973 Population Stereotype Production, User Factors, and Icon Design for Underserved Communities of Rural India
Authors: Avijit Sengupta, Klarissa Ting Ting Cheng, Maffee Peng-Hui Wan
Abstract:
This study investigates the influence of user factors and referent characteristics on representation types generated using the stereotype production method for designing icons. Sixty-eight participants of farming communities were asked to draw images based on sixteen feature referents. Significant statistical differences were found between the types of representations generated for contextual and context-independent referents. Strong correlations were observed between years of formal education and total number of abstract representations produced for both contextual and context-independent referents. However, representation characteristics were not influenced by other user factors such as participants’ experience with mobile phone and years of farming experience. A statistically significant tendency of making concrete representations was observed for both contextual and context-independent referents. These findings provide insights on community members’ involvement in icon design and suggest a consolidated icon design strategy based on population stereotype, particularly for under-served rural communities of India.Keywords: abstract representation, concrete representation, participatory design, population stereotype
Procedia PDF Downloads 3754972 Sensitive Detection of Nano-Scale Vibrations by the Metal-Coated Fiber Tip at the Liquid-Air Interface
Authors: A. J. Babajanyan, T. A. Abrahamyan, H. A. Minasyan, K. V. Nerkararyan
Abstract:
Optical radiation emitted from a metal-coated fiber tip apex at liquid-air interface was measured. The intensity of the output radiation was strongly depending on the relative position of the tip to a liquid-air interface and varied with surface fluctuations. This phenomenon permits in-situ real-time investigation of nano-metric vibrations of the liquid surface and provides a basis for development of various origin ultrasensitive vibration detecting sensors. The described method can be used for detection of week seismic vibrations.Keywords: fiber-tip, liquid-air interface, nano vibration, opto-mechanical sensor
Procedia PDF Downloads 4844971 Product Separation of Green Processes and Catalyst Recycling of a Homogeneous Polyoxometalate Catalyst Using Nanofiltration Membranes
Authors: Dorothea Voß, Tobias Esser, Michael Huber, Jakob Albert
Abstract:
The growing world population and the associated increase in demand for energy and consumer goods, as well as increasing waste production, requires the development of sustainable processes. In addition, the increasing environmental awareness of our society is a driving force for the requirement that processes must be as resource and energy efficient as possible. In this context, the use of polyoxometalate catalysts (POMs) has emerged as a promising approach for the development of green processes. POMs are bifunctional polynuclear metal-oxo-anion cluster characterized by a strong Brønsted acidity, a high proton mobility combined with fast multi-electron transfer and tunable redox potential. In addition, POMs are soluble in many commonly known solvents and exhibit resistance to hydrolytic and oxidative degradation. Due to their structure and excellent physicochemical properties, POMs are efficient acid and oxidation catalysts that have attracted much attention in recent years. Oxidation processes with molecular oxygen are worth mentioning here. However, the fact that the POM catalysts are homogeneous poses a challenge for downstream processing of product solutions and recycling of the catalysts. In this regard, nanofiltration membranes have gained increasing interest in recent years, particularly due to their relative sustainability advantage over other technologies and their unique properties such as increased selectivity towards multivalent ions. In order to establish an efficient downstream process for the highly selective separation of homogeneous POM catalysts from aqueous solutions using nanofiltration membranes, a laboratory-scale membrane system was designed and constructed. By varying various process parameters, a sensitivity analysis was performed on a model system to develop an optimized method for the recovery of POM catalysts. From this, process-relevant key figures such as the rejection of various system components were derived. These results form the basis for further experiments on other systems to test the transferability to serval separation tasks with different POMs and products, as well as for recycling experiments of the catalysts in processes on laboratory scale.Keywords: downstream processing, nanofiltration, polyoxometalates, homogeneous catalysis, green chemistry
Procedia PDF Downloads 894970 Developing and Testing a Questionnaire of Music Memorization and Practice
Authors: Diana Santiago, Tania Lisboa, Sophie Lee, Alexander P. Demos, Monica C. S. Vasconcelos
Abstract:
Memorization has long been recognized as an arduous and anxiety-evoking task for musicians, and yet, it is an essential aspect of performance. Research shows that musicians are often not taught how to memorize. While memorization and practice strategies of professionals have been studied, little research has been done to examine how student musicians learn to practice and memorize music in different cultural settings. We present the process of developing and testing a questionnaire of music memorization and musical practice for student musicians in the UK and Brazil. A survey was developed for a cross-cultural research project aiming at examining how young orchestral musicians (aged 7–18 years) in different learning environments and cultures engage in instrumental practice and memorization. The questionnaire development included members of a UK/US/Brazil research team of music educators and performance science researchers. A pool of items was developed for each aspect of practice and memorization identified, based on literature, personal experiences, and adapted from existing questionnaires. Item development took the varying levels of cognitive and social development of the target populations into consideration. It also considered the diverse target learning environments. Items were initially grouped in accordance with a single underlying construct/behavior. The questionnaire comprised three sections: a demographics section, a section on practice (containing 29 items), and a section on memorization (containing 40 items). Next, the response process was considered and a 5-point Likert scale ranging from ‘always’ to ‘never’ with a verbal label and an image assigned to each response option was selected, following effective questionnaire design for children and youths. Finally, a pilot study was conducted with young orchestral musicians from diverse learning environments in Brazil and the United Kingdom. Data collection took place in either one-to-one or group settings to facilitate the participants. Cognitive interviews were utilized to establish response process validity by confirming the readability and accurate comprehension of the questionnaire items or highlighting the need for item revision. Internal reliability was investigated by measuring the consistency of the item groups using the statistical test Cronbach’s alpha. The pilot study successfully relied on the questionnaire to generate data about the engagement of young musicians of different levels and instruments, across different learning and cultural environments, in instrumental practice and memorization. Interaction analysis of the cognitive interviews undertaken with these participants, however, exposed the fact that certain items, and the response scale, could be interpreted in multiple ways. The questionnaire text was, therefore, revised accordingly. The low Cronbach’s Alpha scores of many item groups indicated another issue with the original questionnaire: its low level of internal reliability. Several reasons for each poor reliability can be suggested, including the issues with item interpretation revealed through interaction analysis of the cognitive interviews, the small number of participants (34), and the elusive nature of the construct in question. The revised questionnaire measures 78 specific behaviors or opinions. It can be seen to provide an efficient means of gathering information about the engagement of young musicians in practice and memorization on a large scale.Keywords: cross-cultural, memorization, practice, questionnaire, young musicians
Procedia PDF Downloads 1234969 Ab Initio Study of Electronic Structure and Transport of Graphyne and Graphdiyne
Authors: Zeljko Crljen, Predrag Lazic
Abstract:
Graphene has attracted a tremendous interest in the field of nanoelectronics and spintronics due to its exceptional electronic properties. However, pristine graphene has no band gap, a feature needed in building some of the electronic elements. Recently, a growing attention has been given to a class of carbon allotropes of graphene with honeycomb structures, in particular to graphyne and graphdiyne. They are characterized with a single and double acetylene bonding chains respectively, connecting the nearest-neighbor hexagonal rings. With an electron density comparable to that of graphene and a prominent gap in electronic band structures they appear as promising materials for nanoelectronic components. We studied the electronic structure and transport of infinite sheets of graphyne and graphdiyne and compared them with graphene. The method based on the non-equilibrium Green functions and density functional theory has been used in order to obtain a full ab initio self-consistent description of the transport current with different electrochemical bias potentials. The current/voltage (I/V) characteristics show a semi-conducting behavior with prominent nonlinearities at higher voltages. The calculated band gaps are 0.52V and 0.59V, respectively, and the effective masses are considerably smaller compared to typical semiconductors. We analyzed the results in terms of transmission eigenchannels and showed that the difference in conductance is directly related to the difference of the internal structure of the allotropes.Keywords: electronic transport, graphene-like structures, nanoelectronics, two-dimensional materials
Procedia PDF Downloads 1894968 Insufficiency Fracture of Femoral Head in Patients Treated With Intramedullary Nailing for Proximal Femur Fracture
Authors: Jai Hyung Park, Eugene Kim, Jin Hun Park, Min Joon Oh
Abstract:
Introduction: Subchondral insufficiency fracture of the femoral head (SIF) is a rare complication; however, it has been recognized to cause femoral head collapse. Subchondral insufficiency fracture (SIF) is caused by normal or physiological stress without any trauma. It has been reported in osteoporotic patients after the fixation of the proximal femur with an Intramedullary nail. Case presentation: We reported 5 cases with SIF of the femoral head after proximal femur fracture fixation with Intra-medullary nail. All patients had osteoporosis as an underlying disease. Good reduction was achieved in all 5 patients. SIF was found from about 3 months to 4 years after the initial operation, and all the fractures were solidly united at the final diagnosis. We investigated retrospectively the feature of those cases and several factors that affected the occurrence of SIF. Discussion: There are a few discussions regarding the SIF of the femoral head. These discussions may include the predisposing risk factors, how to diagnose the SIF in osteoporotic patients, and the peri-operative factors to prevent SIF. Conclusion: Subchondral insufficiency fracture of the femoral head is a considerable complication after the internal fixation of the proximal femur. There are several factors that can be modified. If they could be controlled in the peri-operative period, SIF could be prevented or handled in advance. Other options related to arthroplasty can be considered in old osteoporotic patients.Keywords: insufficiency fracture of femoral head, intra-medullary nail, osteoporosis, proximal femur fracture
Procedia PDF Downloads 1284967 Batch and Dynamic Investigations on Magnesium Separation by Ion Exchange Adsorption: Performance and Cost Evaluation
Authors: Mohamed H. Sorour, Hayam F. Shaalan, Heba A. Hani, Eman S. Sayed
Abstract:
Ion exchange adsorption has a long standing history of success for seawater softening and selective ion removal from saline sources. Strong, weak and mixed types ion exchange systems could be designed and optimized for target separation. In this paper, different types of adsorbents comprising zeolite 13X and kaolin, in addition to, poly acrylate/zeolite (AZ), poly acrylate/kaolin (AK) and stand-alone poly acrylate (A) hydrogel types were prepared via microwave (M) and ultrasonic (U) irradiation techniques. They were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The developed adsorbents were evaluated on bench scale level and based on assessment results, a composite bed has been formulated for performance evaluation in pilot scale column investigations. Owing to the hydrogel nature of the partially crosslinked poly acrylate, the developed adsorbents manifested a swelling capacity of about 50 g/g. The pilot trials have been carried out using magnesium enriched Red Seawater to simulate Red Seawater desalination brine. Batch studies indicated varying uptake efficiencies, where Mg adsorption decreases according to the following prepared hydrogel types AU>AM>AKM>AKU>AZM>AZU, being 108, 107, 78, 69, 66 and 63 mg/g, respectively. Composite bed adsorbent tested in the up-flow mode column studies indicated good performance for Mg uptake. For an operating cycle of 12 h, the maximum uptake during the loading cycle approached 92.5-100 mg/g, which is comparable to the performance of some commercial resins. Different regenerants have been explored to maximize regeneration and minimize the quantity of regenerants including 15% NaCl, 0.1 M HCl and sodium carbonate. Best results were obtained by acidified sodium chloride solution. In conclusion, developed cation exchange adsorbents comprising clay or zeolite support indicated adequate performance for Mg recovery under saline environment. Column design operated at the up-flow mode (approaching expanded bed) is appropriate for such type of separation. Preliminary cost indicators for Mg recovery via ion exchange have been developed and analyzed.Keywords: batch and dynamic magnesium separation, seawater, polyacrylate hydrogel, cost evaluation
Procedia PDF Downloads 1354966 Friend or Foe: Decoding the Legal Challenges Posed by Artificial Intellegence in the Era of Intellectual Property
Authors: Latika Choudhary
Abstract:
“The potential benefits of Artificial Intelligence are huge, So are the dangers.” - Dave Water. Artificial intelligence is one of the facet of Information technology domain which despite several attempts does not have a clear definition or ambit. However it can be understood as technology to solve problems via automated decisions and predictions. Artificial intelligence is essentially an algorithm based technology which analyses the large amounts of data and then solves problems by detecting useful patterns. Owing to its automated feature it will not be wrong to say that humans & AI have more utility than humans alone or computers alone.1 For many decades AI experienced enthusiasm as well as setbacks, yet it has today become part and parcel of our everyday life, making it convenient or at times problematic. AI and related technology encompass Intellectual Property in multiple ways, the most important being AI technology for management of Intellectual Property, IP for protecting AI and IP as a hindrance to the transparency of AI systems. Thus the relationship between the two is of reciprocity as IP influences AI and vice versa. While AI is a recent concept, the IP laws for protection or even dealing with its challenges are relatively older, raising the need for revision to keep up with the pace of technological advancements. This paper will analyze the relationship between AI and IP to determine how beneficial or conflictual the same is, address how the old concepts of IP are being stretched to its maximum limits so as to accommodate the unwanted consequences of the Artificial Intelligence and propose ways to mitigate the situation so that AI becomes the friend it is and not turn into a potential foe it appears to be.Keywords: intellectual property rights, information technology, algorithm, artificial intelligence
Procedia PDF Downloads 874965 Development of a Fire Analysis Drone for Smoke Toxicity Measurement for Fire Prediction and Management
Authors: Gabrielle Peck, Ryan Hayes
Abstract:
This research presents the design and creation of a drone gas analyser, aimed at addressing the need for independent data collection and analysis of gas emissions during large-scale fires, particularly wasteland fires. The analyser drone, comprising a lightweight gas analysis system attached to a remote-controlled drone, enables the real-time assessment of smoke toxicity and the monitoring of gases released into the atmosphere during such incidents. The key components of the analyser unit included two gas line inlets connected to glass wool filters, a pump with regulated flow controlled by a mass flow controller, and electrochemical cells for detecting nitrogen oxides, hydrogen cyanide, and oxygen levels. Additionally, a non-dispersive infrared (NDIR) analyser is employed to monitor carbon monoxide (CO), carbon dioxide (CO₂), and hydrocarbon concentrations. Thermocouples can be attached to the analyser to monitor temperature, as well as McCaffrey probes combined with pressure transducers to monitor air velocity and wind direction. These additions allow for monitoring of the large fire and can be used for predictions of fire spread. The innovative system not only provides crucial data for assessing smoke toxicity but also contributes to fire prediction and management. The remote-controlled drone's mobility allows for safe and efficient data collection in proximity to the fire source, reducing the need for human exposure to hazardous conditions. The data obtained from the gas analyser unit facilitates informed decision-making by emergency responders, aiding in the protection of both human health and the environment. This abstract highlights the successful development of a drone gas analyser, illustrating its potential for enhancing smoke toxicity analysis and fire prediction capabilities. The integration of this technology into fire management strategies offers a promising solution for addressing the challenges associated with wildfires and other large-scale fire incidents. The project's methodology and results contribute to the growing body of knowledge in the field of environmental monitoring and safety, emphasizing the practical utility of drones for critical applications.Keywords: fire prediction, drone, smoke toxicity, analyser, fire management
Procedia PDF Downloads 894964 Bianchi Type- I Viscous Fluid Cosmological Models with Stiff Matter and Time Dependent Λ- Term
Authors: Rajendra Kumar Dubey
Abstract:
Einstein’s field equations with variable cosmological term Λ are considered in the presence of viscous fluid for Bianchi type I space time. Exact solutions of Einstein’s field equations are obtained by assuming cosmological term Λ Proportional to (R is a scale factor and m is constant). We observed that the shear viscosity is found to be responsible for faster removal of initial anisotropy in the universe. The physical significance of the cosmological models has also been discussed.Keywords: bianchi type, I cosmological model, viscous fluid, cosmological constant Λ
Procedia PDF Downloads 5284963 Compilation of Islamic Law as Law Applied Religious Courts in Indonesia (Responding to Changes in Religious Courts Authority)
Authors: Hamdan Arief Hanif, Rahmat Sidiq
Abstract:
Indonesia is a country of law, the legal system adopted by Indonesia is a civil law system. A major feature of the civil law is the codified legislation. Meanwhile the majority of society Indonesia are Muslims, whilst Islamic law itself having the sources written in Qur'an, Sunnah and the opinion of Muslim scholars, generally not codified in book form of legislation that is easy on the set as a reference. in Indonesia, many scholars have different opinions in decisions so that there is no legal certainty in Muslim civil cases, so the need for legal codification, which, as the source of the judges in deciding a case, especially a case in religious courts. This paper raised the topic of discussion which offers a solution to the application of the codification of the Islamic Law which became the core resources in delivering a verdict against Islamic civil related issue; codification usually called a compilation of Islamic Law. Compilation of Islamic Law is highly recommended as a core reference for the judges in religious courts in Indonesia. This compilation which includes a collection of large number of opinions scholars (book of fiqh) that existed previously and are ripened in deduce in order to unify the existing differences. This paper also discusses how the early formation of the compilation and as the right solution in order to create legal certainty and justice especially for the muslim community in Indonesia.Keywords: Islamic law, compilation, law applied core, religious court
Procedia PDF Downloads 3554962 Analysis Model for the Relationship of Users, Products, and Stores on Online Marketplace Based on Distributed Representation
Authors: Ke He, Wumaier Parezhati, Haruka Yamashita
Abstract:
Recently, online marketplaces in the e-commerce industry, such as Rakuten and Alibaba, have become some of the most popular online marketplaces in Asia. In these shopping websites, consumers can select purchase products from a large number of stores. Additionally, consumers of the e-commerce site have to register their name, age, gender, and other information in advance, to access their registered account. Therefore, establishing a method for analyzing consumer preferences from both the store and the product side is required. This study uses the Doc2Vec method, which has been studied in the field of natural language processing. Doc2Vec has been used in many cases to analyze the extraction of semantic relationships between documents (represented as consumers) and words (represented as products) in the field of document classification. This concept is applicable to represent the relationship between users and items; however, the problem is that one more factor (i.e., shops) needs to be considered in Doc2Vec. More precisely, a method for analyzing the relationship between consumers, stores, and products is required. The purpose of our study is to combine the analysis of the Doc2vec model for users and shops, and for users and items in the same feature space. This method enables the calculation of similar shops and items for each user. In this study, we derive the real data analysis accumulated in the online marketplace and demonstrate the efficiency of the proposal.Keywords: Doc2Vec, online marketplace, marketing, recommendation systems
Procedia PDF Downloads 1124961 Understanding Hydrodynamic in Lake Victoria Basin in a Catchment Scale: A Literature Review
Authors: Seema Paul, John Mango Magero, Prosun Bhattacharya, Zahra Kalantari, Steve W. Lyon
Abstract:
The purpose of this review paper is to develop an understanding of lake hydrodynamics and the potential climate impact on the Lake Victoria (LV) catchment scale. This paper briefly discusses the main problems of lake hydrodynamics and its’ solutions that are related to quality assessment and climate effect. An empirical methodology in modeling and mapping have considered for understanding lake hydrodynamic and visualizing the long-term observational daily, monthly, and yearly mean dataset results by using geographical information system (GIS) and Comsol techniques. Data were obtained for the whole lake and five different meteorological stations, and several geoprocessing tools with spatial analysis are considered to produce results. The linear regression analyses were developed to build climate scenarios and a linear trend on lake rainfall data for a long period. A potential evapotranspiration rate has been described by the MODIS and the Thornthwaite method. The rainfall effect on lake water level observed by Partial Differential Equations (PDE), and water quality has manifested by a few nutrients parameters. The study revealed monthly and yearly rainfall varies with monthly and yearly maximum and minimum temperatures, and the rainfall is high during cool years and the temperature is high associated with below and average rainfall patterns. Rising temperatures are likely to accelerate evapotranspiration rates and more evapotranspiration is likely to lead to more rainfall, drought is more correlated with temperature and cloud is more correlated with rainfall. There is a trend in lake rainfall and long-time rainfall on the lake water surface has affected the lake level. The onshore and offshore have been concentrated by initial literature nutrients data. The study recommended that further studies should consider fully lake bathymetry development with flow analysis and its’ water balance, hydro-meteorological processes, solute transport, wind hydrodynamics, pollution and eutrophication these are crucial for lake water quality, climate impact assessment, and water sustainability.Keywords: climograph, climate scenarios, evapotranspiration, linear trend flow, rainfall event on LV, concentration
Procedia PDF Downloads 994960 Predicting Stack Overflow Accepted Answers Using Features and Models with Varying Degrees of Complexity
Authors: Osayande Pascal Omondiagbe, Sherlock a Licorish
Abstract:
Stack Overflow is a popular community question and answer portal which is used by practitioners to solve technology-related challenges during software development. Previous studies have shown that this forum is becoming a substitute for official software programming languages documentation. While tools have looked to aid developers by presenting interfaces to explore Stack Overflow, developers often face challenges searching through many possible answers to their questions, and this extends the development time. To this end, researchers have provided ways of predicting acceptable Stack Overflow answers by using various modeling techniques. However, less interest is dedicated to examining the performance and quality of typically used modeling methods, and especially in relation to models’ and features’ complexity. Such insights could be of practical significance to the many practitioners that use Stack Overflow. This study examines the performance and quality of various modeling methods that are used for predicting acceptable answers on Stack Overflow, drawn from 2014, 2015 and 2016. Our findings reveal significant differences in models’ performance and quality given the type of features and complexity of models used. Researchers examining classifiers’ performance and quality and features’ complexity may leverage these findings in selecting suitable techniques when developing prediction models.Keywords: feature selection, modeling and prediction, neural network, random forest, stack overflow
Procedia PDF Downloads 1324959 The Use of Neuter in Oedipus Lines to Refer to Antigone in Phoenissae of Seneca
Authors: Cíntia Martins Sanches
Abstract:
In the first part of Phoenissae of Seneca, Antigone is a guide to Oedipus, and they leave Thebes: he is blind searching for death (inflicting the punishment himself wished on the killer of Laius, ie exile and death); she is trying to convince him to give up such punishment and bring him back to Thebes. Concerning Oedipus lines, we observed a high frequency of Latin neuter in the treatment the protagonist gave to his daughter Antigone. We considered in this study that such frequency may be related to the sanctification of the daughter, who is seen by him as an enlightened being and without defects, free of the human condition (which takes on the existence of failures by essence). This study, thus, puts forward an analysis of the passages the said feature is present, relating them to the effect of meaning found in each occurrence. As part of a doctorate, this study investigates the stylistic idiom of Seneca in the Oedipus and Phoenissae tragedies, aiming at translating both tragedies expressively. The concept of stylistic idiom concerns the stylistic affinity required for a translation to be equivalent to the source text. In this wise, this study inquires into how the Latin text is organized poetically, pointing out the expressive features frequently appearing in both dramas. The method we used is based on the Semiotics theory — observing how connotation, ie a language use in which prevails the poetic function, naturally polysemous, acts to achieve each expressive effect.Keywords: antigone, neuter, Oedipus, Phoenissae, Seneca
Procedia PDF Downloads 2884958 Transforming Breast Density Measurement with Artificial Intelligence: Population-Level Insights from BreastScreen NSW
Authors: Douglas Dunn, Ricahrd Walton, Matthew Warner-Smith, Chirag Mistry, Kan Ren, David Roder
Abstract:
Introduction: Breast density is a risk factor for breast cancer, both due to increased fibro glandular tissue that can harbor malignancy and the masking of lesions on mammography. Therefore, evaluation of breast density measurement is useful for risk stratification on an individual and population level. This study investigates the performance of Lunit INSIGHT MMG for automated breast density measurement. We analyze the reliability of Lunit compared to breast radiologists, explore density variations across the BreastScreen NSW population, and examine the impact of breast implants on density measurements. Methods: 15,518 mammograms were utilized for a comparative analysis of intra- and inter-reader reliability between Lunit INSIGHT MMG and breast radiologists. Subsequently, Lunit was used to evaluate 624,113 mammograms for investigation of density variations according to age and birth country, providing insights into diverse population subgroups. Finally, we compared breast density in 4,047 clients with implants to clients without implants, controlling for age and birth country. Results: Inter-reader variability between Lunit and Breast Radiologists weighted kappa coefficient was 0.72 (95%CI 0.71-0.73). Highest breast densities were seen in women with a North-East Asia background, whilst those of Aboriginal background had the lowest density. Across all backgrounds, density was demonstrated to reduce with age, though at different rates according to country of birth. Clients with implants had higher density relative to the age-matched no-implant strata. Conclusion: Lunit INSIGHT MMG demonstrates reasonable inter- and intra-observer reliability for automated breast density measurement. The scale of this study is significantly larger than any previous study assessing breast density due to the ability to process large volumes of data using AI. As a result, it provides valuable insights into population-level density variations. Our findings highlight the influence of age, birth country, and breast implants on density, emphasizing the need for personalized risk assessment and screening approaches. The large-scale and diverse nature of this study enhances the generalisability of our results, offering valuable information for breast cancer screening programs internationally.Keywords: breast cancer, screening, breast density, artificial intelligence, mammography
Procedia PDF Downloads 44957 A New Approach for Solving Fractional Coupled Pdes
Authors: Prashant Pandey
Abstract:
In the present article, an effective Laguerre collocation method is used to obtain the approximate solution of a system of coupled fractional-order non-linear reaction-advection-diffusion equation with prescribed initial and boundary conditions. In the proposed scheme, Laguerre polynomials are used together with an operational matrix and collocation method to obtain approximate solutions of the coupled system, so that our proposed model is converted into a system of algebraic equations which can be solved employing the Newton method. The solution profiles of the coupled system are presented graphically for different particular cases. The salient feature of the present article is finding the stability analysis of the proposed method and also the demonstration of the lower variation of solute concentrations with respect to the column length in the fractional-order system compared to the integer-order system. To show the higher efficiency, reliability, and accuracy of the proposed scheme, a comparison between the numerical results of Burger’s coupled system and its existing analytical result is reported. There are high compatibility and consistency between the approximate solution and its exact solution to a higher order of accuracy. The exhibition of error analysis for each case through tables and graphs confirms the super-linearly convergence rate of the proposed method.Keywords: fractional coupled PDE, stability and convergence analysis, diffusion equation, Laguerre polynomials, spectral method
Procedia PDF Downloads 1454956 Investigation of Adaptable Winglets for Improved UAV Control and Performance
Abstract:
An investigation of adaptable winglets for morphing aircraft control and performance is described in this paper. The concepts investigated consist of various winglet configurations fundamentally centred on a baseline swept wing. The impetus for the work was to identify and optimize winglets to enhance controllability and the aerodynamic efficiency of a small unmanned aerial vehicle. All computations were performed with Athena Vortex Lattice modelling with varying degrees of twist, swept, and dihedral angle considered. The results from this work indicate that if adaptable winglets were employed on small scale UAV’s improvements in both aircraft control and performance could be achieved.Keywords: aircraft, rolling, wing, winglet
Procedia PDF Downloads 4634955 Strawberry Productivity of Peri-Urban and Urban Locations across Southeast Michigan, USA
Authors: Maria E. Laconi, Kyla D. Scherr, Mary A. Jamieson
Abstract:
Human populations in urban environments have rapidly grown in recent decades. Consequently, the intensity of land-use and development has also increased in many urban and peri-urban environments. Some cities, such as Detroit, Michigan, USA, have embraced urban agriculture and local food production. Little is known, however, about how the local and landscape scale environmental factors influence crop productivity on urban farms. Our study aims to evaluate factors influencing the productivity of strawberries on community farms and gardens in the Detroit metropolitan area. Strawberries are one of few fruits that can provide an abundant harvest just after the first season of being planted, which is ideal for urban gardeners in developed areas. In the spring of 2016, we planted six different strawberry cultivars (three everbearing and three June bearing varieties) at five farm sites in Wayne and Oakland County (six replicate plants per cultivar per site). We surveyed flower and fruit phenology and production for everbearing varieties weekly (flowers for June bearing varieties were removed to enhance productivity in the coming growing season). Additionally, we conducted one initial 36hr pollinator survey in mid-September during peak fruit production and characterized local and landscape scale land-cover data. Preliminary results and observations from this first year of our study revealed that strawberry production varied significantly by site. Specifically, productivity at our most northern site appeared to suffer from delayed phenology and early frost damage to ripening strawberries. Bee abundance and diversity also differed among farms, though further surveys are needed to adequately inventory the pollinator community. Finally, strawberry cultivars demonstrated significant differences in the number and size of fruits produced. We plan to continue this study in the coming years, increasing the number of sites surveyed and number of pollinator sampling events. Our study aims to inform strategies for enhancing crop productivity on urban and peri-urban farms.Keywords: insect pollination, strawberry productivity, sustainable agriculture, urban gardening
Procedia PDF Downloads 2744954 A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network
Authors: Bowei Yuan, Shi Li, Liuyang Song, Huaqing Wang, Lingli Cui
Abstract:
Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance.Keywords: fault diagnosis, vibration signal down-sampling, 1D-CNN
Procedia PDF Downloads 1314953 Equation for Predicting Inferior Vena Cava Diameter as a Potential Pointer for Heart Failure Diagnosis among Adult in Azare, Bauchi State, Nigeria
Authors: M. K. Yusuf, W. O. Hamman, U. E. Umana, S. B. Oladele
Abstract:
Background: Dilatation of the inferior vena cava (IVC) is used as the ultrasonic diagnostic feature in patients suspected of congestive heart failure. The IVC diameter has been reported to vary among the various body mass indexes (BMI) and body shape indexes (ABSI). Knowledge of these variations is useful in precision diagnoses of CHF by imaging scientists. Aim: The study aimed to establish an equation for predicting the ultrasonic mean diameter of the IVC among the various BMI/ABSI of inhabitants of Azare, Bauchi State-Nigeria. Methodology: Two hundred physically healthy adult subjects of both sexes were classified into under, normal, over, and obese weights using their BMIs after selection using a structured questionnaire following their informed consent for an abdominal ultrasound scan. The probe was placed on the midline of the body, halfway between the xiphoid process and the umbilicus, with the marker on the probe directed towards the patient's head to obtain a longitudinal view of the IVC. The maximum IVC diameter was measured from the subcostal view using the electronic caliper of the scan machine. The mean value of each group was obtained, and the results were analysed. Results: A novel equation {(IVC Diameter = 1.04 +0.01(X) where X= BMI} has been generated for determining the IVC diameter among the populace. Conclusion: An equation for predicting the IVC diameter from individual BMI values in apparently healthy subjects has been established.Keywords: equation, ultrasonic, IVC diameter, body adiposities
Procedia PDF Downloads 724952 Detecting Music Enjoyment Level Using Electroencephalogram Signals and Machine Learning Techniques
Authors: Raymond Feng, Shadi Ghiasi
Abstract:
An electroencephalogram (EEG) is a non-invasive technique that records electrical activity in the brain using scalp electrodes. Researchers have studied the use of EEG to detect emotions and moods by collecting signals from participants and analyzing how those signals correlate with their activities. In this study, researchers investigated the relationship between EEG signals and music enjoyment. Participants listened to music while data was collected. During the signal-processing phase, power spectral densities (PSDs) were computed from the signals, and dominant brainwave frequencies were extracted from the PSDs to form a comprehensive feature matrix. A machine learning approach was then taken to find correlations between the processed data and the music enjoyment level indicated by the participants. To improve on previous research, multiple machine learning models were employed, including K-Nearest Neighbors Classifier, Support Vector Classifier, and Decision Tree Classifier. Hyperparameters were used to fine-tune each model to further increase its performance. The experiments showed that a strong correlation exists, with the Decision Tree Classifier with hyperparameters yielding 85% accuracy. This study proves that EEG is a reliable means to detect music enjoyment and has future applications, including personalized music recommendation, mood adjustment, and mental health therapy.Keywords: EEG, electroencephalogram, machine learning, mood, music enjoyment, physiological signals
Procedia PDF Downloads 624951 Developing a Place-Name Gazetteer for Singapore by Mining Historical Planning Archives and Selective Crowd-Sourcing
Authors: Kevin F. Hsu, Alvin Chua, Sarah X. Lin
Abstract:
As a multilingual society, Singaporean names for different parts of the city have changed over time. Residents included Indigenous Malays, dialect-speakers from China, European settler-colonists, and Tamil-speakers from South India. Each group would name locations in their own languages. Today, as ancestral tongues are increasingly supplanted by English, contemporary Singaporeans’ understanding of once-common place names is disappearing. After demolition or redevelopment, some urban places will only exist in archival records or in human memory. United Nations conferences on the standardization of geographic names have called attention to how place names relate to identity, well-being, and a sense of belonging. The Singapore Place-Naming Project responds to these imperatives by capturing past and present place names through digitizing historical maps, mining archival records, and applying selective crowd-sourcing to trace the evolution of place names throughout the city. The project ensures that both formal and vernacular geographical names remain accessible to historians, city planners, and the public. The project is compiling a gazetteer, a geospatial archive of placenames, with streets, buildings, landmarks, and other points of interest (POI) appearing in the historic maps and planning documents of Singapore, currently held by the National Archives of Singapore, the National Library Board, university departments, and the Urban Redevelopment Authority. To create a spatial layer of information, the project links each place name to either a geo-referenced point, line segment, or polygon, along with the original source material in which the name appears. This record is supplemented by crowd-sourced contributions from civil service officers and heritage specialists, drawing from their collective memory to (1) define geospatial boundaries of historic places that appear in past documents, but maybe unfamiliar to users today, and (2) identify and record vernacular place names not captured in formal planning documents. An intuitive interface allows participants to demarcate feature classes, vernacular phrasings, time periods, and other knowledge related to historical or forgotten spaces. Participants are stratified into age bands and ethnicity to improve representativeness. Future iterations could allow additional public contributions. Names reveal meanings that communities assign to each place. While existing historical maps of Singapore allow users to toggle between present-day and historical raster files, this project goes a step further by adding layers of social understanding and planning documents. Tracking place names illuminates linguistic, cultural, commercial, and demographic shifts in Singapore, in the context of transformations of the urban environment. The project also demonstrates how a moderated, selectively crowd-sourced effort can solicit useful geospatial data at scale, sourced from different generations, and at higher granularity than traditional surveys, while mitigating negative impacts of unmoderated crowd-sourcing. Stakeholder agencies believe the project will achieve several objectives, including Supporting heritage conservation and public education; Safeguarding intangible cultural heritage; Providing historical context for street, place or development-renaming requests; Enhancing place-making with deeper historical knowledge; Facilitating emergency and social services by tagging legal addresses to vernacular place names; Encouraging public engagement with heritage by eliciting multi-stakeholder input.Keywords: collective memory, crowd-sourced, digital heritage, geospatial, geographical names, linguistic heritage, place-naming, Singapore, Southeast Asia
Procedia PDF Downloads 1294950 Barriers to Health and Safety Practices in South African Construction Industry: Subcontractors Perspective
Authors: Kenneth O. Otasowie, Matthew Ikuabe, Clinton Aigbavboa, Ayodeji Oke
Abstract:
Subcontracting has become a fundamental feature in the construction industry, particularly as most projects in South Africa (SA) are executed by subcontractors. However, the sector in SA contributes to the high level of occupational hazards and injuries recorded, despite Health and Safety (H&S) regulations being enforced in the industry. Hence, this study aims to evaluate the barriers to health and safety practices by subcontractors in SA Construction Industry. A survey design was adopted. A total number of one hundred and forty-four (144) questionnaires were administered to quantity surveyors, construction managers, construction project managers, project managers, architects, and civil and structural engineers, who are owners or work in small and medium enterprises in Guateng Province, SA and eighty-three (83) were returned and found suitable for analysis. Collected data were analysed using percentage, mean item score, standard deviation, and one-sample t-test. The findings show that lack of skilled workers, lack of safety training, and insufficient safety awareness are the most significant barriers to health and safety practices in SA Construction Industry. Therefore, the study recommends the improvement in skills of staff and adequate training for the safe execution of work be provided to all employees and supervisors in these subcontracting firms. These will mitigate the rate of accident occurrence on construction sites.Keywords: barriers, health and safety, subcontractors, South Africa
Procedia PDF Downloads 1034949 When Bad News Are Good News: Ambivalent Feelings Towards Firms Adversity
Authors: Jacob Hornik, Matti Rachamim, Ori Grossman
Abstract:
Schadenfreude, a bittersweet phenomenon, is considered atypical and complicated state that might reflect ambivalent types of sentiments -a mixed of both positive and negative reactions towards others misfortunes. This brief note reports a study that examined the association between trait ambivalence, using the Trait Mixed Emotions Scale (TMES), and four different consumer schadenfreude affairs. Results propose that trait ambivalence offers a novel explanation for schadenfreude responses. Showing that trait ambivalence enhances schadenfreude, when consumers encounter misfortune type of information about a disliked or rival marketplace entity.Keywords: schadenfreude, consumer behavior, mixed emotions, sentiments, ambivalence
Procedia PDF Downloads 1304948 CFD Analysis of an Aft Sweep Wing in Subsonic Flow and Making Analogy with Roskam Methods
Authors: Ehsan Sakhaei, Ali Taherabadi
Abstract:
In this study, an aft sweep wing with specific characteristic feature was analysis with CFD method in Fluent software. In this analysis wings aerodynamic coefficient was calculated in different rake angle and wing lift curve slope to rake angle was achieved. Wing section was selected among NACA airfoils version 6. The sweep angle of wing is 15 degree, aspect ratio 8 and taper ratios 0.4. Designing and modeling this wing was done in CATIA software. This model was meshed in Gambit software and its three dimensional analysis was done in Fluent software. CFD methods used here were based on pressure base algorithm. SIMPLE technique was used for solving Navier-Stokes equation and Spalart-Allmaras model was utilized to simulate three dimensional wing in air. Roskam method is one of the common and most used methods for determining aerodynamics parameters in the field of airplane designing. In this study besides CFD analysis, an advanced aircraft analysis was used for calculating aerodynamic coefficient using Roskam method. The results of CFD were compared with measured data acquired from Roskam method and authenticity of relation was evaluated. The results and comparison showed that in linear region of lift curve there is a minor difference between aerodynamics parameter acquired from CFD to relation present by Roskam.Keywords: aft sweep wing, CFD method, fluent, Roskam, Spalart-Allmaras model
Procedia PDF Downloads 5044947 How Does Ethics Impact Marketing Decision Making of a Company: An Evidence from the Telecommunication Sector of Pakistan
Authors: Mohammad Daud Ali
Abstract:
For the past decade, marketing ethics has been a central point for academic researchers and practitioners. In particular, the development of frameworks and models to help in the analysis of marketing decisions are the focus of research. The current study aims at finding whether ethical decisions (honesty, fairness, responsibility, and respect) affect organizational marketing decisions. A selection of 250 respondents was purposely made from the telecommunication industry of Pakistan, out of which 204 responses were induced at an acceptable rate of 81.6%. A five-point Likert Scale, itemized with 12 items, was adopted from Taylor-Dunlop & Lester (2000) and used to draw responses regarding ethics.Keywords: marketing, ethics, decisions making, telecommunication, Pakistan
Procedia PDF Downloads 974946 High Resolution Image Generation Algorithm for Archaeology Drawings
Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu
Abstract:
Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.Keywords: archaeology drawings, digital heritage, image generation, deep learning
Procedia PDF Downloads 59