Search results for: landscape evolution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2754

Search results for: landscape evolution

204 Oxalate Method for Assessing the Electrochemical Surface Area for Ni-Based Nanoelectrodes Used in Formaldehyde Sensing Applications

Authors: S. Trafela, X. Xua, K. Zuzek Rozmana

Abstract:

In this study, we used an accurate and precise method to measure the electrochemically active surface areas (Aecsa) of nickel electrodes. Calculated Aecsa is really important for the evaluation of an electro-catalyst’s activity in electrochemical reaction of different organic compounds. The method involves the electrochemical formation of Ni(OH)₂ and NiOOH in the presence of adsorbed oxalate in alkaline media. The studies were carried out using cyclic voltammetry with polycrystalline nickel as a reference material and electrodeposited nickel nanowires, homogeneous and heterogeneous nickel films. From cyclic voltammograms, the charge (Q) values for the formation of Ni(OH)₂ and NiOOH surface oxides were calculated under various conditions. At sufficiently fast potential scan rates (200 mV s⁻¹), the adsorbed oxalate limits the growth of the surface hydroxides to a monolayer. Although the Ni(OH)₂/NiOOH oxidation peak overlaps with the oxygen evolution reaction, in the reverse scan, the NiOOH/ Ni(OH)₂ reduction peak is well-separated from other electrochemical processes and can be easily integrated. The values of these integrals were used to correlate experimentally measured charge density with an electrochemically active surface layer. The Aecsa of the nickel nanowires, homogeneous and heterogeneous nickel films were calculated to be Aecsa-NiNWs = 4.2066 ± 0.0472 cm², Aecsa-homNi = 1.7175 ± 0.0503 cm² and Aecsa-hetNi = 2.1862 ± 0.0154 cm². These valuable results were expanded and used in electrochemical studies of formaldehyde oxidation. As mentioned nickel nanowires, heterogeneous and homogeneous nickel films were used as simple and efficient sensor for formaldehyde detection. For this purpose, electrodeposited nickel electrodes were modified in 0.1 mol L⁻¹ solution of KOH in order to expect electrochemical activity towards formaldehyde. The investigation of the electrochemical behavior of formaldehyde oxidation in 0.1 mol L⁻¹ NaOH solution at the surface of modified nickel nanowires, homogeneous and heterogeneous nickel films were carried out by means of electrochemical techniques such as cyclic voltammetric and chronoamperometric methods. From investigations of effect of different formaldehyde concentrations (from 0.001 to 0.1 mol L⁻¹) on electrochemical signal - current we provided catalysis mechanism of formaldehyde oxidation, detection limit and sensitivity of nickel electrodes. The results indicated that nickel electrodes participate directly in the electrocatalytic oxidation of formaldehyde. In the overall reaction, formaldehyde in alkaline aqueous solution exists predominantly in form of CH₂(OH)O⁻, which is oxidized to CH₂(O)O⁻. Taking into account the determined (Aecsa) values we have been able to calculate the sensitivities: 7 mA mol L⁻¹ cm⁻² for nickel nanowires, 3.5 mA mol L⁻¹ cm⁻² for heterogeneous nickel film and 2 mA mol L⁻¹ cm⁻² for heterogeneous nickel film. The detection limit was 0.2 mM for nickel nanowires, 0.5 mM for porous Ni film and 0.8 mM for homogeneous Ni film. All of these results make nickel electrodes capable for further applications.

Keywords: electrochemically active surface areas, nickel electrodes, formaldehyde, electrocatalytic oxidation

Procedia PDF Downloads 138
203 Semiconductor Properties of Natural Phosphate Application to Photodegradation of Basic Dyes in Single and Binary Systems

Authors: Y. Roumila, D. Meziani, R. Bagtache, K. Abdmeziem, M. Trari

Abstract:

Heterogeneous photocatalysis over semiconductors has proved its effectiveness in the treatment of wastewaters since it works under soft conditions. It has emerged as a promising technique, giving rise to less toxic effluents and offering the opportunity of using sunlight as a sustainable and renewable source of energy. Many compounds have been used as photocatalysts. Though synthesized ones are intensively used, they remain expensive, and their synthesis involves special conditions. We thus thought of implementing a natural material, a phosphate ore, due to its low cost and great availability. Our work is devoted to the removal of hazardous organic pollutants, which cause several environmental problems and health risks. Among them, dye pollutants occupy a large place. This work relates to the study of the photodegradation of methyl violet (MV) and rhodamine B (RhB), in single and binary systems, under UV light and sunlight irradiation. Methyl violet is a triarylmethane dye, while RhB is a heteropolyaromatic dye belonging to the Xanthene family. In the first part of this work, the natural compound was characterized using several physicochemical and photo-electrochemical (PEC) techniques: X-Ray diffraction, chemical, and thermal analyses scanning electron microscopy, UV-Vis diffuse reflectance measurements, and FTIR spectroscopy. The electrochemical and photoelectrochemical studies were performed with a Voltalab PGZ 301 potentiostat/galvanostat at room temperature. The structure of the phosphate material was well characterized. The photo-electrochemical (PEC) properties are crucial for drawing the energy band diagram, in order to suggest the formation of radicals and the reactions involved in the dyes photo-oxidation mechanism. The PEC characterization of the natural phosphate was investigated in neutral solution (Na₂SO₄, 0.5 M). The study revealed the semiconducting behavior of the phosphate rock. Indeed, the thermal evolution of the electrical conductivity was well fitted by an exponential type law, and the electrical conductivity increases with raising the temperature. The Mott–Schottky plot and current-potential J(V) curves recorded in the dark and under illumination clearly indicate n-type behavior. From the results of photocatalysis, in single solutions, the changes in MV and RhB absorbance in the function of time show that practically all of the MV was removed after 240 mn irradiation. For RhB, the complete degradation was achieved after 330 mn. This is due to its complex and resistant structure. In binary systems, it is only after 120 mn that RhB begins to be slowly removed, while about 60% of MV is already degraded. Once nearly all of the content of MV in the solution has disappeared (after about 250 mn), the remaining RhB is degraded rapidly. This behaviour is different from that observed in single solutions where both dyes are degraded since the first minutes of irradiation.

Keywords: environment, organic pollutant, phosphate ore, photodegradation

Procedia PDF Downloads 108
202 Pivoting to Fortify our Digital Self: Revealing the Need for Personal Cyber Insurance

Authors: Richard McGregor, Carmen Reaiche, Stephen Boyle

Abstract:

Cyber threats are a relatively recent phenomenon and offer cyber insurers a dynamic and intelligent peril. As individuals en mass become increasingly digitally dependent, Personal Cyber Insurance (PCI) offers an attractive option to mitigate cyber risk at a personal level. This abstract proposes a literature review that conceptualises a framework for siting Personal Cyber Insurance (PCI) within the context of cyberspace. The lack of empirical research within this domain demonstrates an immediate need to define the scope of PCI to allow cyber insurers to understand personal cyber risk threats and vectors, customer awareness, capabilities, and their associated needs. Additionally, this will allow cyber insurers to conceptualise appropriate frameworks allowing effective management and distribution of PCI products and services within a landscape often in-congruent with risk attributes commonly associated with traditional personal line insurance products. Cyberspace has provided significant improvement to the quality of social connectivity and productivity during past decades and allowed enormous capability uplift of information sharing and communication between people and communities. Conversely, personal digital dependency furnish ample opportunities for adverse cyber events such as data breaches and cyber-attacksthus introducing a continuous and insidious threat of omnipresent cyber risk–particularly since the advent of the COVID-19 pandemic and wide-spread adoption of ‘work-from-home’ practices. Recognition of escalating inter-dependencies, vulnerabilities and inadequate personal cyber behaviours have prompted efforts by businesses and individuals alike to investigate strategies and tactics to mitigate cyber risk – of which cyber insurance is a viable, cost-effective option. It is argued that, ceteris parabus, the nature of cyberspace intrinsically provides characteristic peculiarities that pose significant and bespoke challenges to cyber insurers, often in-congruent with risk attributes commonly associated with traditional personal line insurance products. These challenges include (inter alia) a paucity of historical claim/loss data for underwriting and pricing purposes, interdependencies of cyber architecture promoting high correlation of cyber risk, difficulties in evaluating cyber risk, intangibility of risk assets (such as data, reputation), lack of standardisation across the industry, high and undetermined tail risks, and moral hazard among others. This study proposes a thematic overview of the literature deemed necessary to conceptualise the challenges to issuing personal cyber coverage. There is an evident absence of empirical research appertaining to PCI and the design of operational business models for this business domain, especially qualitative initiatives that (1) attempt to define the scope of the peril, (2) secure an understanding of the needs of both cyber insurer and customer, and (3) to identify elements pivotal to effective management and profitable distribution of PCI - leading to an argument proposed by the author that postulates that the traditional general insurance customer journey and business model are ill-suited for the lineaments of cyberspace. The findings of the review confirm significant gaps in contemporary research within the domain of personal cyber insurance.

Keywords: cyberspace, personal cyber risk, personal cyber insurance, customer journey, business model

Procedia PDF Downloads 81
201 Equity And Inclusivity In Sustainable Urban Planning: Addressing Social Disparities In Eco-City Development

Authors: Olayeye Olubunmi Shola

Abstract:

Amidst increasing global environmental concerns, sustainable urban planning has emerged as a vital strategy in counteracting the negative impacts of urbanization on the environment. However, the emphasis on sustainability often disregards crucial elements of fairness and equal participation within urban settings. This abstract presents a comprehensive overview of the challenges, objectives, significance, and methodologies for addressing social inequalities in the development of eco-cities, with a specific focus on Abuja, Nigeria. Sustainable urban planning, particularly in the context of developing eco-cities, aims to construct cities prioritizing environmental sustainability and resilience. Nonetheless, a significant gap exists in addressing the enduring social disparities within these initiatives. Equitable distribution of resources, access to services, and social inclusivity are essential components that must be integrated into urban planning frameworks for cities that are genuinely sustainable and habitable. Abuja, the capital city of Nigeria, provides a distinctive case for examining the intersection of sustainability and social justice in urban planning. Despite the urban development, Abuja grapples with challenges such as socio-economic disparities, unequal access to essential services, and inadequate housing among its residents. Recognizing and redressing these disparities within the framework of eco-city development is critical for nurturing an inclusive and sustainable urban environment. The primary aim of this study is to scrutinize and pinpoint the social discrepancies within Abuja's initiatives for eco-city development. Specific objectives include: Evaluating the current socio-economic landscape of Abuja to identify disparities in resource, service, and infrastructure access. Comprehending the existing sustainable urban planning initiatives and their influence on social fairness. Suggesting strategies and recommendations to improve fairness and inclusivity within Abuja's plans for eco-city development. This research holds substantial importance for urban planning practices and policy formulation, not only in Abuja but also on a global scale. By highlighting the crucial role of social equity and inclusivity in the development of eco-cities, this study aims to provide insights that can steer more comprehensive, people-centered urban planning practices. Addressing social disparities within sustainability initiatives is crucial for achieving genuinely sustainable and fair urban spaces. The study will employ qualitative and quantitative methodologies. Data collection will involve surveys, interviews, and observations to capture the diverse experiences and perspectives of various social groups within Abuja. Furthermore, quantitative data on infrastructure, service access, and socio-economic indicators will be collated from government reports, academic sources, and non-governmental organizations. Analytical tools such as Geographic Information Systems (GIS) will be utilized to map and visualize spatial disparities in resource allocation and service access. Comparative analyses and case studies of successful interventions in other cities will be conducted to derive applicable strategies for Abuja's context. In conclusion, this study aims to contribute to the discourse on sustainable urban planning by advocating for equity and inclusivity in the development of eco-cities. By centering on Abuja as a case study, it aims to provide practical insights and solutions for the creation of more fair and sustainable urban environments.

Keywords: fairness, sustainability, geographical information system, equity

Procedia PDF Downloads 45
200 The Impact of HKUST-1 Metal-Organic Framework Pretreatment on Dynamic Acetaldehyde Adsorption

Authors: M. François, L. Sigot, C. Vallières

Abstract:

Volatile Organic Compounds (VOCs) are a real health issue, particularly in domestic indoor environments. Among these VOCs, acetaldehyde is frequently monitored in dwellings ‘air, especially due to smoking and spontaneous emissions from the new wall and soil coverings. It is responsible for respiratory complaints and is classified as possibly carcinogenic to humans. Adsorption processes are commonly used to remove VOCs from the air. Metal-Organic Frameworks (MOFs) are a promising type of material for high adsorption performance. These hybrid porous materials composed of metal inorganic clusters and organic ligands are interesting thanks to their high porosity and surface area. The HKUST-1 (also referred to as MOF-199) is a copper-based MOF with the formula [Cu₃(BTC)₂(H₂O)₃]n (BTC = benzene-1,3,5-tricarboxylate) and exhibits unsaturated metal sites that can be attractive sites for adsorption. The objective of this study is to investigate the impact of HKUST-1 pretreatment on acetaldehyde adsorption. Thus, dynamic adsorption experiments were conducted in 1 cm diameter glass column packed with 2 cm MOF bed height. MOF were sieved to 630 µm - 1 mm. The feed gas (Co = 460 ppmv ± 5 ppmv) was obtained by diluting a 1000 ppmv acetaldehyde gas cylinder in air. The gas flow rate was set to 0.7 L/min (to guarantee a suitable linear velocity). Acetaldehyde concentration was monitored online by gas chromatography coupled with a flame ionization detector (GC-FID). Breakthrough curves must allow to understand the interactions between the MOF and the pollutant as well as the impact of the HKUST-1 humidity in the adsorption process. Consequently, different MOF water content conditions were tested, from a dry material with 7 % water content (dark blue color) to water saturated state with approximately 35 % water content (turquoise color). The rough material – without any pretreatment – containing 30 % water serves as a reference. First, conclusions can be drawn from the comparison of the evolution of the ratio of the column outlet concentration (C) on the inlet concentration (Co) as a function of time for different HKUST-1 pretreatments. The shape of the breakthrough curves is significantly different. The saturation of the rough material is slower (20 h to reach saturation) than that of the dried material (2 h). However, the breakthrough time defined for C/Co = 10 % appears earlier in the case of the rough material (0.75 h) compared to the dried HKUST-1 (1.4 h). Another notable difference is the shape of the curve before the breakthrough at 10 %. An abrupt increase of the outlet concentration is observed for the material with the lower humidity in comparison to a smooth increase for the rough material. Thus, the water content plays a significant role on the breakthrough kinetics. This study aims to understand what can explain the shape of the breakthrough curves associated to the pretreatments of HKUST-1 and which mechanisms take place in the adsorption process between the MOF, the pollutant, and the water.

Keywords: acetaldehyde, dynamic adsorption, HKUST-1, pretreatment influence

Procedia PDF Downloads 216
199 Unpacking the Spatial Outcomes of Public Transportation in a Developing Country Context: The Case of Johannesburg

Authors: Adedayo B. Adegbaju, Carel B. Schoeman, Ilse M. Schoeman

Abstract:

The unique urban contexts that emanated from the apartheid history of South Africa informed the transport landscape of the City of Johannesburg. Apartheid‘s divisive spatial planning and land use management policies promoted sprawling and separated workers from job opportunities. This was further exacerbated by poor funding of public transport and road designs that encouraged the use of private cars. However, the democratization of the country in 1994 and the hosting of the 2010 FIFA World Cup provided a new impetus to the city’s public transport-oriented urban planning inputs. At the same time, the state’s new approach to policy formulations that entails the provision of public transport as one of the tools to end years of marginalization and inequalities soon began to largely reflect in planning decisions of other spheres of government. The Rea Vaya BRT and the Gautrain were respectively implemented by the municipal and provincial governments to demonstrate strong political will and commitment to the new policy direction. While the Gautrain was implemented to facilitate elite movement within Gauteng and to crowd investments and economic growths around station nodes, the BRT was provided for previously marginalized public transport users to provide a sustainable alternative to the dominant minibus taxi. The aim of this research is to evaluate the spatial impacts of the Gautrain and Rea Vaya BRT on the City of Johannesburg and to inform future outcomes by determining the existing potentials. By using the case study approach with a focus on the BRT and fast rail in a metropolitan context, the triangulation research method, which combines various data collection methods, was used to determine the research outcomes. The use of interviews, questionnaires, field observation, and databases such as REX, Quantec, StatsSA, GCRO observatory, national and provincial household travel surveys, and the quality of life surveys provided the basis for data collection. The research concludes that the Gautrain has demonstrated that viable alternatives to the private car can be provided, with its satisfactory feedbacks from users; while some of its station nodes (Sandton, Rosebank) have shown promises of transit-oriented development, one of the project‘s key objectives. The other stations have been unable to stimulate growth due to reasons like non-implementation of their urban design frameworks and lack of public sector investment required to attract private investors. The Rea Vaya BRT continues to be expanded in spite of both its inability to induce modal change and its low ridership figures. The research identifies factors like the low peak to base ratio, pricing, and the city‘s disjointed urban fabric as some of the reasons for its below-average performance. By drawing from the highlights and limitations, the study recommends that public transport provision should be institutionally integrated across and within spheres of government. Similarly, harmonization of the funding structure, better understanding of users’ needs, and travel patterns, underlined with continuity of policy direction and objectives, will equally promote optimal outcomes.

Keywords: bus rapid transit, Gautrain, Rea Vaya, sustainable transport, spatial and transport planning, transit oriented development

Procedia PDF Downloads 92
198 Fatigue Influence on the Residual Stress State in Shot Peened Duplex Stainless Steel

Authors: P. D. Pedrosa, J. M. A. Rebello, M. P. Cindra Fonseca

Abstract:

Duplex stainless steels (DSS) exhibit a biphasic microstructure consisting of austenite and delta ferrite. Their high resistance to oxidation, and corrosion, even in H2S containing environments, allied to low cost when compared to conventional stainless steel, are some properties which make this material very attractive for several industrial applications. However, several of these industrial applications imposes cyclic loading to the equipments and in consequence fatigue damage needs to be a concern. A well-known way of improving the fatigue life of a component is by introducing compressive residual stress in its surface. Shot peening is an industrial working process which brings the material directly beneath component surface in a high mechanical compressive state, so inhibiting fatigue crack initiation. However, one must take into account the fact that the cyclic loading itself can reduce and even suppress these residual stresses, thus having undesirable consequences in the process of improving fatigue life by the introduction of compressive residual stresses. In the present work, shot peening was used to introduce residual stresses in several DSS samples. These were thereafter submitted to three different fatigue regimes: low, medium and high cycle fatigue. The evolution of the residual stress during loading were then examined on both surface and subsurface of the samples. It was used the DSS UNS S31803, with microstructure composed of 49% austenite and 51% ferrite. The treatment of shot peening was accomplished by the application of blasting in two Almen intensities of 0.25 and 0.39A. The residual stresses were measured by X-ray diffraction using the double exposure method and a portable equipment with CrK radiation and the (211) diffracting plane for the austenite phase and the (220) plane for the ferrite phase. It is known that residual stresses may arise when two regions of the same material experienced different degrees of plastic deformation. When these regions are separated in respect to each other on a scale that is large compared to the material's microstructure they are called macro stresses. In contrast, microstresses can largely vary over distances which are small comparable to the scale of the material's microstructure and must balance zero between the phases present. In the present work, special attention will be paid to the measurement of residual microstresses. Residual stress measurements were carried out in test pieces submitted to low, medium and high-cycle fatigue, in both longitudinal and transverse direction of the test pieces. It was found that after shot peening, the residual microstress is tensile in the austenite and compressive in the ferrite phases. It was hypothesized that the hardening behavior of the austenite after shot peening was probably due to its higher nitrogen content. Fatigue cycling can effectively change this stress state but this effect was found to be dependent of the shot peening intensity was well as the fatigue range.

Keywords: residual stresses, fatigue, duplex steel, shot peening

Procedia PDF Downloads 197
197 Tectonic Setting of Hinterland and Foreland Basins According to Tectonic Vergence in Eastern Iran

Authors: Shahriyar Keshtgar, Mahmoud Reza Heyhat, Sasan Bagheri, Ebrahim Gholami, Seyed Naser Raiisosadat

Abstract:

Various tectonic interpretations have been presented by different researchers to explain the geological evolution of eastern Iran, but there are still many ambiguities and many disagreements about the geodynamic nature of the Paleogene mountain range of eastern Iran. The purpose of this research is to clarify and discuss the tectonic position of the foreland and hinterland regions of eastern Iran from the tectonic perspective of sedimentary basins. In the tectonic model of oceanic subduction crust under the Afghan block, the hinterland is located to the east and on the Afghan block, and the foreland is located on the passive margin of the Sistan open ocean in the west. After the collision of the two microcontinents, the foreland basin must be located somewhere on the passive margin of the Lut block. This basin can deposit thick Paleocene to Oligocene sediments on the Cretaceous and older sediments. Thrust faults here will move towards the west. If we accept the subduction model of the Sistan Ocean under the Lut Block, the hinterland is located to the west towards the Lut Block, and the foreland basin is located towards the Sistan Ocean in the east. After the collision of the two microcontinents, the foreland basin with Paleogene sediments should expand on the Sefidaba basin. Thrust faults here will move towards the east. If we consider the two-sided subduction model of the ocean crust under both Lut and Afghan continental blocks, the tectonic position of the foreland and hinterland basins will not change and will be similar to the one-sided subduction models. After the collision of two microcontinents, the foreland basin should develop in the central part of the eastern Iranian orogen. In the oroclinic buckling model, the foreland basin will continue not only in the east and west but continuously in the north as well. In this model, since there is practically no collision, the foreland basin is not developed, and the remnants of the Sistan Ocean ophiolites and their deep turbidite sediments appear in the axial part of the mountain range, where the Neh and Khash complexes are located. The structural data from this research in the northern border of the Sistan belt and the Lut block indicate the convergence of the tectonic vergence directions towards the interior of the Sistan belt (in the Ahangaran area towards the southwest, in the north of Birjand towards the south-southeast, in the Sechengi area to the southeast). According to this research, not only the general movement of thrust sheets do not follow the linear orogeny models, but the expected active foreland basins have not been formed in the mentioned places in eastern Iran. Therefore, these results do not follow previous tectonic models for eastern Iran (i.e., rifting of eastern Iran continental crust and subsequent linear collision of the Lut and Afghan blocks), but it seems that was caused by buckling model in the Late Eocene-Oligocene.

Keywords: foreland, hinterland, tectonic vergence, orocline buckling, eastern Iran

Procedia PDF Downloads 35
196 Exploring Type V Hydrogen Storage Tanks: Shape Analysis and Material Evaluation for Enhanced Safety and Efficiency Focusing on Drop Test Performance

Authors: Mariam Jaber, Abdullah Yahya, Mohammad Alkhedher

Abstract:

The shift toward sustainable energy solutions increasingly focuses on hydrogen, recognized for its potential as a clean energy carrier. Despite its benefits, hydrogen storage poses significant challenges, primarily due to its low energy density and high volatility. Among the various solutions, pressure vessels designed for hydrogen storage range from Type I to Type V, each tailored for specific needs and benefits. Notably, Type V vessels, with their all-composite, liner-less design, significantly reduce weight and costs while optimizing space and decreasing maintenance demands. This study focuses on optimizing Type V hydrogen storage tanks by examining how different shapes affect performance in drop tests—a crucial aspect of achieving ISO 15869 certification. This certification ensures that if a tank is dropped, it will fail in a controlled manner, ideally by leaking before bursting. While cylindrical vessels are predominant in mobile applications due to their manufacturability and efficient use of space, spherical vessels offer superior stress distribution and require significantly less material thickness for the same pressure tolerance, making them advantageous for high-pressure scenarios. However, spherical tanks are less efficient in terms of packing and more complex to manufacture. Additionally, this study introduces toroidal vessels to assess their performance relative to the more traditional shapes, noting that the toroidal shape offers a more space-efficient option. The research evaluates how different shapes—spherical, cylindrical, and toroidal—affect drop test outcomes when combined with various composite materials and layup configurations. The ultimate goal is to identify optimal vessel geometries that enhance the safety and efficiency of hydrogen storage systems. For our materials, we selected high-performance composites such as Carbon T-700/Epoxy, Kevlar/Epoxy, E-Glass Fiber/Epoxy, and Basalt/Epoxy, configured in various orientations like [0,90]s, [45,-45]s, and [54,-54]. Our tests involved dropping tanks from different angles—horizontal, vertical, and 45 degrees—with an internal pressure of 35 MPa to replicate real-world scenarios as closely as possible. We used finite element analysis and first-order shear deformation theory, conducting tests with the Abaqus Explicit Dynamics software, which is ideal for handling the quick, intense stresses of an impact. The results from these simulations will provide valuable insights into how different designs and materials can enhance the durability and safety of hydrogen storage tanks. Our findings aim to guide future designs, making them more effective at withstanding impacts and safer overall. Ultimately, this research will contribute to the broader field of lightweight composite materials and polymers, advancing more innovative and practical approaches to hydrogen storage. By refining how we design these tanks, we are moving toward more reliable and economically feasible hydrogen storage solutions, further emphasizing hydrogen's role in the landscape of sustainable energy carriers.

Keywords: hydrogen storage, drop test, composite materials, type V tanks, finite element analysis

Procedia PDF Downloads 19
195 (Re)Processing of ND-Fe-B Permanent Magnets Using Electrochemical and Physical Approaches

Authors: Kristina Zuzek, Xuan Xu, Awais Ikram, Richard Sheridan, Allan Walton, Saso Sturm

Abstract:

Recycling of end-of-life REEs based Nd-Fe-B magnets is an important strategy for reducing the environmental dangers associated with rare-earth mining and overcoming the well-documented supply risks related to the REEs. However, challenges on their reprocessing still remain. We report on the possibility of direct electrochemical recycling and reprocessing of Nd-Fe(B)-based magnets. In this investigation, we were able first to electrochemically leach the end-of-life NdFeB magnet and to electrodeposit Nd–Fe using a 1-ethyl-3-methyl imidazolium dicyanamide ([EMIM][DCA]) ionic liquid-based electrolyte. We observed that Nd(III) could not be reduced independently. However, it can be co-deposited on a substrate with the addition of Fe(II). Using advanced TEM techniques of electron-energy-loss spectroscopy (EELS) it was shown that Nd(III) is reduced to Nd(0) during the electrodeposition process. This gave a new insight into determining the Nd oxidation state, as X-ray photoelectron spectroscopy (XPS) has certain limitations. This is because the binding energies of metallic Nd (Nd0) and neodymium oxide (Nd₂O₃) are very close, i. e., 980.5-981.5 eV and 981.7-982.3 eV, respectively, making it almost impossible to differentiate between the two states. These new insights into the electrodeposition process represent an important step closer to efficient recycling of rare piles of earth in metallic form at mild temperatures, thus providing an alternative to high-temperature molten-salt electrolysis and a step closer to deposit Nd-Fe-based magnetic materials. Further, we propose a new concept of recycling the sintered Nd-Fe-B magnets by direct recovering the 2:14:1 matrix phase. Via an electrochemical etching method, we are able to recover pure individual 2:14:1 grains that can be re-used for new types of magnet production. In the frame of physical reprocessing, we have successfully synthesized new magnets out of hydrogen (HDDR)-recycled stocks with a contemporary technique of pulsed electric current sintering (PECS). The optimal PECS conditions yielded fully dense Nd-Fe-B magnets with the coercivity Hc = 1060 kA/m, which was boosted to 1160 kA/m after the post-PECS thermal treatment. The Br and Hc were tackled further and increased applied pressures of 100 – 150 MPa resulted in Br = 1.01 T. We showed that with a fine tune of the PECS and post-annealing it is possible to revitalize the Nd-Fe-B end-of-life magnets. By applying advanced TEM, i.e. atomic-scale Z-contrast STEM combined with EDXS and EELS, the resulting magnetic properties were critically assessed against various types of structural and compositional discontinuities down to atomic-scale, which we believe control the microstructure evolution during the PECS processing route.

Keywords: electrochemistry, Nd-Fe-B, pulsed electric current sintering, recycling, reprocessing

Procedia PDF Downloads 135
194 Computational Homogenization of Thin Walled Structures: On the Influence of the Global vs Local Applied Plane Stress Condition

Authors: M. Beusink, E. W. C. Coenen

Abstract:

The increased application of novel structural materials, such as high grade asphalt, concrete and laminated composites, has sparked the need for a better understanding of the often complex, non-linear mechanical behavior of such materials. The effective macroscopic mechanical response is generally dependent on the applied load path. Moreover, it is also significantly influenced by the microstructure of the material, e.g. embedded fibers, voids and/or grain morphology. At present, multiscale techniques are widely adopted to assess micro-macro interactions in a numerically efficient way. Computational homogenization techniques have been successfully applied over a wide range of engineering cases, e.g. cases involving first order and second order continua, thin shells and cohesive zone models. Most of these homogenization methods rely on Representative Volume Elements (RVE), which model the relevant microstructural details in a confined volume. Imposed through kinematical constraints or boundary conditions, a RVE can be subjected to a microscopic load sequence. This provides the RVE's effective stress-strain response, which can serve as constitutive input for macroscale analyses. Simultaneously, such a study of a RVE gives insight into fine scale phenomena such as microstructural damage and its evolution. It has been reported by several authors that the type of boundary conditions applied to the RVE affect the resulting homogenized stress-strain response. As a consequence, dedicated boundary conditions have been proposed to appropriately deal with this concern. For the specific case of a planar assumption for the analyzed structure, e.g. plane strain, axisymmetric or plane stress, this assumption needs to be addressed consistently in all considered scales. Although in many multiscale studies a planar condition has been employed, the related impact on the multiscale solution has not been explicitly investigated. This work therefore focuses on the influence of the planar assumption for multiscale modeling. In particular the plane stress case is highlighted, by proposing three different implementation strategies which are compatible with a first-order computational homogenization framework. The first method consists of applying classical plane stress theory at the microscale, whereas with the second method a generalized plane stress condition is assumed at the RVE level. For the third method, the plane stress condition is applied at the macroscale by requiring that the resulting macroscopic out-of-plane forces are equal to zero. These strategies are assessed through a numerical study of a thin walled structure and the resulting effective macroscale stress-strain response is compared. It is shown that there is a clear influence of the length scale at which the planar condition is applied.

Keywords: first-order computational homogenization, planar analysis, multiscale, microstrucutures

Procedia PDF Downloads 209
193 Validating the Micro-Dynamic Rule in Opinion Dynamics Models

Authors: Dino Carpentras, Paul Maher, Caoimhe O'Reilly, Michael Quayle

Abstract:

Opinion dynamics is dedicated to modeling the dynamic evolution of people's opinions. Models in this field are based on a micro-dynamic rule, which determines how people update their opinion when interacting. Despite the high number of new models (many of them based on new rules), little research has been dedicated to experimentally validate the rule. A few studies started bridging this literature gap by experimentally testing the rule. However, in these studies, participants are forced to express their opinion as a number instead of using natural language. Furthermore, some of these studies average data from experimental questions, without testing if differences existed between them. Indeed, it is possible that different topics could show different dynamics. For example, people may be more prone to accepting someone's else opinion regarding less polarized topics. In this work, we collected data from 200 participants on 5 unpolarized topics. Participants expressed their opinions using natural language ('agree' or 'disagree') and the certainty of their answer, expressed as a number between 1 and 10. To keep the interaction based on natural language, certainty was not shown to other participants. We then showed to the participant someone else's opinion on the same topic and, after a distraction task, we repeated the measurement. To produce data compatible with standard opinion dynamics models, we multiplied the opinion (encoded as agree=1 and disagree=-1) with the certainty to obtain a single 'continuous opinion' ranging from -10 to 10. By analyzing the topics independently, we observed that each one shows a different initial distribution. However, the dynamics (i.e., the properties of the opinion change) appear to be similar between all topics. This suggested that the same micro-dynamic rule could be applied to unpolarized topics. Another important result is that participants that change opinion tend to maintain similar levels of certainty. This is in contrast with typical micro-dynamics rules, where agents move to an average point instead of directly jumping to the opposite continuous opinion. As expected, in the data, we also observed the effect of social influence. This means that exposing someone with 'agree' or 'disagree' influenced participants to respectively higher or lower values of the continuous opinion. However, we also observed random variations whose effect was stronger than the social influence’s one. We even observed cases of people that changed from 'agree' to 'disagree,' even if they were exposed to 'agree.' This phenomenon is surprising, as, in the standard literature, the strength of the noise is usually smaller than the strength of social influence. Finally, we also built an opinion dynamics model from the data. The model was able to explain more than 80% of the data variance. Furthermore, by iterating the model, we were able to produce polarized states even starting from an unpolarized population. This experimental approach offers a way to test the micro-dynamic rule. This also allows us to build models which are directly grounded on experimental results.

Keywords: experimental validation, micro-dynamic rule, opinion dynamics, update rule

Procedia PDF Downloads 134
192 Investigation of a Single Feedstock Particle during Pyrolysis in Fluidized Bed Reactors via X-Ray Imaging Technique

Authors: Stefano Iannello, Massimiliano Materazzi

Abstract:

Fluidized bed reactor technologies are one of the most valuable pathways for thermochemical conversions of biogenic fuels due to their good operating flexibility. Nevertheless, there are still issues related to the mixing and separation of heterogeneous phases during operation with highly volatile feedstocks, including biomass and waste. At high temperatures, the volatile content of the feedstock is released in the form of the so-called endogenous bubbles, which generally exert a “lift” effect on the particle itself by dragging it up to the bed surface. Such phenomenon leads to high release of volatile matter into the freeboard and limited mass and heat transfer with particles of the bed inventory. The aim of this work is to get a better understanding of the behaviour of a single reacting particle in a hot fluidized bed reactor during the devolatilization stage. The analysis has been undertaken at different fluidization regimes and temperatures to closely mirror the operating conditions of waste-to-energy processes. Beechwood and polypropylene particles were used to resemble the biomass and plastic fractions present in waste materials, respectively. The non-invasive X-ray technique was coupled to particle tracking algorithms to characterize the motion of a single feedstock particle during the devolatilization with high resolution. A high-energy X-ray beam passes through the vessel where absorption occurs, depending on the distribution and amount of solids and fluids along the beam path. A high-speed video camera is synchronised to the beam and provides frame-by-frame imaging of the flow patterns of fluids and solids within the fluidized bed up to 72 fps (frames per second). A comprehensive mathematical model has been developed in order to validate the experimental results. Beech wood and polypropylene particles have shown a very different dynamic behaviour during the pyrolysis stage. When the feedstock is fed from the bottom, the plastic material tends to spend more time within the bed than the biomass. This behaviour can be attributed to the presence of the endogenous bubbles, which drag effect is more pronounced during the devolatilization of biomass, resulting in a lower residence time of the particle within the bed. At the typical operating temperatures of thermochemical conversions, the synthetic polymer softens and melts, and the bed particles attach on its outer surface, generating a wet plastic-sand agglomerate. Consequently, this additional layer of sand may hinder the rapid evolution of volatiles in the form of endogenous bubbles, and therefore the establishment of a poor drag effect acting on the feedstock itself. Information about the mixing and segregation of solid feedstock is of prime importance for the design and development of more efficient industrial-scale operations.

Keywords: fluidized bed, pyrolysis, waste feedstock, X-ray

Procedia PDF Downloads 149
191 Phylogenetic Inferences based on Morphoanatomical Characters in Plectranthus esculentus N. E. Br. (Lamiaceae) from Nigeria

Authors: Otuwose E. Agyeno, Adeniyi A. Jayeola, Bashir A. Ajala

Abstract:

P. esculentus is indigenous to Nigeria yet no wild relation has been encountered or reported. This has made it difficult to establish proper lineages between the varieties and landraces under cultivation. The present work is the first to determine the apormophy of 135 morphoanatomical characters in organs of 46 accessions drawn from 23 populations of this species based on dicta. The character states were coded in accession x character-state matrices and only 83 were informative and utilised for neighbour joining clustering based on euclidean values, and heuristic search in parsimony analysis using PAST ver. 3.15 software. Compatibility and evolutionary trends between accessions were then explored from values and diagrams produced. The low consistency indices (CI) recorded support monophyly and low homoplasy in this taxon. Agglomerative schedules based on character type and source data sets divided the accessions into mainly 3 clades, each of complexes of accessions. Solenostemon rotundifolius (Poir) J.K Morton was the outgroup (OG) used, and it occurred within the largest clades except when the characters were combined in a data set. The OG showed better compatibility with accessions of populations of landrace Isci, and varieties Riyum and Long’at. Otherwise, its aerial parts are more consistent with those of accessions of variety Bebot. The highly polytomous clades produced due to anatomical data set may be an indication of how stable such characters are in this species. Strict consensus trees with more than 60 nodes outputted showed that the basal nodes were strongly supported by 3 to 17 characters across the data sets, suggesting that populations of this species are more alike. The OG was clearly the first diverging lineage and closely related to accessions of landrace Gwe and variety Bebot morphologically, but different from them anatomically. It was also distantly related to landrace Fina and variety Long’at in terms of root, stem and leaf structural attributes. There were at least 5 other clades with each comprising of complexes of accessions from different localities and terrains within the study area. Spherical stem in cross section, size of vascular bundles at the stem corners as well as the alternate and whorl phyllotaxy are attributes which may have facilitated each other’s evolution in all accessions of the landrace Gwe, and they may be innovative since such states are not characteristic of the larger Lamiaceae, and Plectranthus L’Her in particular. In conclusion, this study has provided valuable information about infraspecific diversity in this taxon. It supports recognition of the varietal statuses accorded to populations of P. esculentus, as well as the hypothesis that the wild gene might have been distributed on the Jos Plateau. However, molecular characterisation of accessions of populations of this species would resolve this problem better.

Keywords: clustering, lineage, morphoanatomical characters, Nigeria, phylogenetics, Plectranthus esculentus, population

Procedia PDF Downloads 116
190 Exploring Participatory Research Approaches in Agricultural Settings: Analyzing Pathways to Enhance Innovation in Production

Authors: Michele Paleologo, Marta Acampora, Serena Barello, Guendalina Graffigna

Abstract:

Introduction: In the face of increasing demands for higher agricultural productivity with minimal environmental impact, participatory research approaches emerge as promising means to promote innovation. However, the complexities and ambiguities surrounding these approaches in both theory and practice present challenges. This Scoping Review seeks to bridge these gaps by mapping participatory approaches in agricultural contexts, analyzing their characteristics, and identifying indicators of success. Methods: Following PRISMA guidelines, we conducted a systematic Scoping Review, searching Scopus and Web of Science databases. Our review encompassed 34 projects from diverse geographical regions and farming contexts. Thematic analysis was employed to explore the types of innovation promoted and the categories of participants involved. Results: The identified innovation types encompass technological advancements, sustainable farming practices, and market integration, forming 5 main themes: climate change, cultivar, irrigation, pest and herbicide, and technical improvement. These themes represent critical areas where participatory research drives innovation to address pressing agricultural challenges. Participants were categorized as citizens, experts, NGOs, private companies, and public bodies. Understanding their roles is vital for designing effective participatory initiatives that embrace diverse stakeholders. The review also highlighted 27 theoretical frameworks underpinning participatory projects. Clearer guidelines and reporting standards are crucial for facilitating the comparison and synthesis of findings across studies, thereby enhancing the robustness of future participatory endeavors. Furthermore, we identified three main categories of barriers and facilitators: pragmatic/behavioral, emotional/relational, and cognitive. These insights underscore the significance of participant engagement and collaborative decision-making for project success beyond theoretical considerations. Regarding participation, projects were classified as contributory (5 cases), where stakeholders contributed insights; collaborative (10 cases), with active co-designing of solutions; and co-created (19 cases), featuring deep stakeholder involvement from ideation to implementation, resulting in joint ownership of outcomes. Such diverse participation modes highlight the adaptability of participatory approaches to varying agricultural contexts. Discussion: In conclusion, this Scoping Review demonstrates the potential of participatory research in driving transformative changes in farmers' practices, fostering sustainability and innovation in agriculture. Understanding the diverse landscape of participatory approaches, theoretical frameworks, and participant engagement strategies is essential for designing effective and context-specific interventions. Collaborative efforts among researchers, practitioners, and stakeholders are pivotal in harnessing the full potential of participatory approaches and driving positive change in agricultural settings worldwide. The identified themes of innovation and participation modes provide valuable insights for future research and targeted interventions in agricultural innovation.

Keywords: participatory research, co-creation, agricultural innovation, stakeholders' engagement

Procedia PDF Downloads 34
189 India's Geothermal Energy Landscape and Role of Geophysical Methods in Unravelling Untapped Reserves

Authors: Satya Narayan

Abstract:

India, a rapidly growing economy with a burgeoning population, grapples with the dual challenge of meeting rising energy demands and reducing its carbon footprint. Geothermal energy, an often overlooked and underutilized renewable source, holds immense potential for addressing this challenge. Geothermal resources offer a valuable, consistent, and sustainable energy source, and may significantly contribute to India's energy. This paper discusses the importance of geothermal exploration in India, emphasizing its role in achieving sustainable energy production while mitigating environmental impacts. It also delves into the methodology employed to assess geothermal resource feasibility, including geophysical surveys and borehole drilling. The results and discussion sections highlight promising geothermal sites across India, illuminating the nation's vast geothermal potential. It detects potential geothermal reservoirs, characterizes subsurface structures, maps temperature gradients, monitors fluid flow, and estimates key reservoir parameters. Globally, geothermal energy falls into high and low enthalpy categories, with India mainly having low enthalpy resources, especially in hot springs. The northwestern Himalayan region boasts high-temperature geothermal resources due to geological factors. Promising sites, like Puga Valley, Chhumthang, and others, feature hot springs suitable for various applications. The Son-Narmada-Tapti lineament intersects regions rich in geological history, contributing to geothermal resources. Southern India, including the Godavari Valley, has thermal springs suitable for power generation. The Andaman-Nicobar region, linked to subduction and volcanic activity, holds high-temperature geothermal potential. Geophysical surveys, utilizing gravity, magnetic, seismic, magnetotelluric, and electrical resistivity techniques, offer vital information on subsurface conditions essential for detecting, evaluating, and exploiting geothermal resources. The gravity and magnetic methods map the depth of the mantle boundary (high-temperature) and later accurately determine the Curie depth. Electrical methods indicate the presence of subsurface fluids. Seismic surveys create detailed sub-surface images, revealing faults and fractures and establishing possible connections to aquifers. Borehole drilling is crucial for assessing geothermal parameters at different depths. Detailed geochemical analysis and geophysical surveys in Dholera, Gujarat, reveal untapped geothermal potential in India, aligning with renewable energy goals. In conclusion, geophysical surveys and borehole drilling play a pivotal role in economically viable geothermal site selection and feasibility assessments. With ongoing exploration and innovative technology, these surveys effectively minimize drilling risks, optimize borehole placement, aid in environmental impact evaluations, and facilitate remote resource exploration. Their cost-effectiveness informs decisions regarding geothermal resource location and extent, ultimately promoting sustainable energy and reducing India's reliance on conventional fossil fuels.

Keywords: geothermal resources, geophysical methods, exploration, exploitation

Procedia PDF Downloads 51
188 Predictive Pathogen Biology: Genome-Based Prediction of Pathogenic Potential and Countermeasures Targets

Authors: Debjit Ray

Abstract:

Horizontal gene transfer (HGT) and recombination leads to the emergence of bacterial antibiotic resistance and pathogenic traits. HGT events can be identified by comparing a large number of fully sequenced genomes across a species or genus, define the phylogenetic range of HGT, and find potential sources of new resistance genes. In-depth comparative phylogenomics can also identify subtle genome or plasmid structural changes or mutations associated with phenotypic changes. Comparative phylogenomics requires that accurately sequenced, complete and properly annotated genomes of the organism. Assembling closed genomes requires additional mate-pair reads or “long read” sequencing data to accompany short-read paired-end data. To bring down the cost and time required of producing assembled genomes and annotating genome features that inform drug resistance and pathogenicity, we are analyzing the performance for genome assembly of data from the Illumina NextSeq, which has faster throughput than the Illumina HiSeq (~1-2 days versus ~1 week), and shorter reads (150bp paired-end versus 300bp paired end) but higher capacity (150-400M reads per run versus ~5-15M) compared to the Illumina MiSeq. Bioinformatics improvements are also needed to make rapid, routine production of complete genomes a reality. Modern assemblers such as SPAdes 3.6.0 running on a standard Linux blade are capable in a few hours of converting mixes of reads from different library preps into high-quality assemblies with only a few gaps. Remaining breaks in scaffolds are generally due to repeats (e.g., rRNA genes) are addressed by our software for gap closure techniques, that avoid custom PCR or targeted sequencing. Our goal is to improve the understanding of emergence of pathogenesis using sequencing, comparative genomics, and machine learning analysis of ~1000 pathogen genomes. Machine learning algorithms will be used to digest the diverse features (change in virulence genes, recombination, horizontal gene transfer, patient diagnostics). Temporal data and evolutionary models can thus determine whether the origin of a particular isolate is likely to have been from the environment (could it have evolved from previous isolates). It can be useful for comparing differences in virulence along or across the tree. More intriguing, it can test whether there is a direction to virulence strength. This would open new avenues in the prediction of uncharacterized clinical bugs and multidrug resistance evolution and pathogen emergence.

Keywords: genomics, pathogens, genome assembly, superbugs

Procedia PDF Downloads 175
187 Sea Level Rise and Sediment Supply Explain Large-Scale Patterns of Saltmarsh Expansion and Erosion

Authors: Cai J. T. Ladd, Mollie F. Duggan-Edwards, Tjeerd J. Bouma, Jordi F. Pages, Martin W. Skov

Abstract:

Salt marshes are valued for their role in coastal flood protection, carbon storage, and for supporting biodiverse ecosystems. As a biogeomorphic landscape, marshes evolve through the complex interactions between sea level rise, sediment supply and wave/current forcing, as well as and socio-economic factors. Climate change and direct human modification could lead to a global decline marsh extent if left unchecked. Whilst the processes of saltmarsh erosion and expansion are well understood, empirical evidence on the key drivers of long-term lateral marsh dynamics is lacking. In a GIS, saltmarsh areal extent in 25 estuaries across Great Britain was calculated from historical maps and aerial photographs, at intervals of approximately 30 years between 1846 and 2016. Data on the key perceived drivers of lateral marsh change (namely sea level rise rates, suspended sediment concentration, bedload sediment flux rates, and frequency of both river flood and storm events) were collated from national monitoring centres. Continuous datasets did not extend beyond 1970, therefore predictor variables that best explained rate change of marsh extent between 1970 and 2016 was calculated using a Partial Least Squares Regression model. Information about the spread of Spartina anglica (an invasive marsh plant responsible for marsh expansion around the globe) and coastal engineering works that may have impacted on marsh extent, were also recorded from historical documents and their impacts assessed on long-term, large-scale marsh extent change. Results showed that salt marshes in the northern regions of Great Britain expanded an average of 2.0 ha/yr, whilst marshes in the south eroded an average of -5.3 ha/yr. Spartina invasion and coastal engineering works could not explain these trends since a trend of either expansion or erosion preceded these events. Results from the Partial Least Squares Regression model indicated that the rate of relative sea level rise (RSLR) and availability of suspended sediment concentration (SSC) best explained the patterns of marsh change. RSLR increased from 1.6 to 2.8 mm/yr, as SSC decreased from 404.2 to 78.56 mg/l along the north-to-south gradient of Great Britain, resulting in the shift from marsh expansion to erosion. Regional differences in RSLR and SSC are due to isostatic rebound since deglaciation, and tidal amplitudes respectively. Marshes exposed to low RSLR and high SSC likely leads to sediment accumulation at the coast suitable for colonisation by marsh plants and thus lateral expansion. In contrast, high RSLR with are likely not offset deposition under low SSC, thus average water depth at the marsh edge increases, allowing larger wind-waves to trigger marsh erosion. Current global declines in sediment flux to the coast are likely to diminish the resilience of salt marshes to RSLR. Monitoring and managing suspended sediment supply is not common-place, but may be critical to mitigating coastal impacts from climate change.

Keywords: lateral saltmarsh dynamics, sea level rise, sediment supply, wave forcing

Procedia PDF Downloads 113
186 Two Houses in the Arabian Desert: Assessing the Built Work of RCR Architects in the UAE

Authors: Igor Peraza Curiel, Suzanne Strum

Abstract:

Today, when many foreign architects are receiving commissions in the United Arab Emirates, it is essential to analyze how their designs are influenced by the region's culture, environment, and building traditions. This study examines the approach to siting, geometry, construction methods, and material choices in two private homes for a family in Dubai, a project being constructed on adjacent sites by the acclaimed Spanish team of RCR Architects. Their third project in Dubai, the houses mark a turning point in their design approach to the desert. The Pritzker Prize-winning architects of RCR gained renown for building works deeply responsive to the history, landscape, and customs of their hometown in a volcanic area of the Catalonia region of Spain. Key formative projects and their entry to practice in UAE will be analyzed according to the concepts of place identity, the poetics of construction, and material imagination. The poetics of construction, a theoretical position with a long practical tradition, was revived by the British critic Kenneth Frampton. The idea of architecture as a constructional craft is related to the concepts of material imagination and place identity--phenomenological concerns with the creative engagement with local matter and topography that are at the very essence of RCR's way of designing, detailing, and making. Our study situates RCR within the challenges of building in the region, where western forms and means have largely replaced the ingenious responsiveness of indigenous architecture to the climate and material scarcity. The dwellings, iterations of the same steel and concrete vaulting system, highlight the conceptual framework of RCR's design approach to offer a study in contemporary critical regionalism. The Kama House evokes Bedouin tents, while the Alwah House takes the form of desert dunes in response to the temporality of the winds. Metal mesh screens designed to capture the shifting sands will complete the forms. The original research draws on interviews with the architects and unique documentation provided by them and collected by the authors during on-site visits. By examining the two houses in-depth, this paper foregrounds a series of timely questions: 1) What is the impact of the local climatic, cultural, and material conditions on their project in the UAE? 2) How does this work further their experiences in the region? 3) How has RCR adapted their construction techniques as their work expands beyond familiar settings? The investigation seeks to understand how the design methodology developed for more than 20 years and enmeshed in the regional milieu of their hometown can transform as the architects encounter unique characteristics and values in the Middle East. By focusing on the contemporary interpretation of Arabic geometry and elements, the houses reveal the role of geometry, tectonics, and material specificity in the realization from conceptual sketches to built form. In emphasizing the importance of regional responsiveness, the dynamics of international construction practice, and detailing this study highlights essential issues for professionals and students looking to practice in an increasingly global market.

Keywords: material imagination, regional responsiveness, place identity, poetics of construction

Procedia PDF Downloads 105
185 Approach on Conceptual Design and Dimensional Synthesis of the Linear Delta Robot for Additive Manufacturing

Authors: Efrain Rodriguez, Cristhian Riano, Alberto Alvares

Abstract:

In recent years, robots manipulators with parallel architectures are used in additive manufacturing processes – 3D printing. These robots have advantages such as speed and lightness that make them suitable to help with the efficiency and productivity of these processes. Consequently, the interest for the development of parallel robots for additive manufacturing applications has increased. This article deals with the conceptual design and dimensional synthesis of the linear delta robot for additive manufacturing. Firstly, a methodology based on structured processes for the development of products through the phases of informational design, conceptual design and detailed design is adopted: a) In the informational design phase the Mudge diagram and the QFD matrix are used to aid a set of technical requirements, to define the form, functions and features of the robot. b) In the conceptual design phase, the functional modeling of the system through of an IDEF0 diagram is performed, and the solution principles for the requirements are formulated using a morphological matrix. This phase includes the description of the mechanical, electro-electronic and computational subsystems that constitute the general architecture of the robot. c) In the detailed design phase, a digital model of the robot is drawn on CAD software. A list of commercial and manufactured parts is detailed. Tolerances and adjustments are defined for some parts of the robot structure. The necessary manufacturing processes and tools are also listed, including: milling, turning and 3D printing. Secondly, a dimensional synthesis method applied on design of the linear delta robot is presented. One of the most important key factors in the design of a parallel robot is the useful workspace, which strongly depends on the joint space, the dimensions of the mechanism bodies and the possible interferences between these bodies. The objective function is based on the verification of the kinematic model for a prescribed cylindrical workspace, considering geometric constraints that possibly lead to singularities of the mechanism. The aim is to determine the minimum dimensional parameters of the mechanism bodies for the proposed workspace. A method based on genetic algorithms was used to solve this problem. The method uses a cloud of points with the cylindrical shape of the workspace and checks the kinematic model for each of the points within the cloud. The evolution of the population (point cloud) provides the optimal parameters for the design of the delta robot. The development process of the linear delta robot with optimal dimensions for additive manufacture is presented. The dimensional synthesis enabled to design the mechanism of the delta robot in function of the prescribed workspace. Finally, the implementation of the robotic platform developed based on a linear delta robot in an additive manufacturing application using the Fused Deposition Modeling (FDM) technique is presented.

Keywords: additive manufacturing, delta parallel robot, dimensional synthesis, genetic algorithms

Procedia PDF Downloads 166
184 Electron Bernstein Wave Heating in the Toroidally Magnetized System

Authors: Johan Buermans, Kristel Crombé, Niek Desmet, Laura Dittrich, Andrei Goriaev, Yurii Kovtun, Daniel López-Rodriguez, Sören Möller, Per Petersson, Maja Verstraeten

Abstract:

The International Thermonuclear Experimental Reactor (ITER) will rely on three sources of external heating to produce and sustain a plasma; Neutral Beam Injection (NBI), Ion Cyclotron Resonance Heating (ICRH), and Electron Cyclotron Resonance Heating (ECRH). ECRH is a way to heat the electrons in a plasma by resonant absorption of electromagnetic waves. The energy of the electrons is transferred indirectly to the ions by collisions. The electron cyclotron heating system can be directed to deposit heat in particular regions in the plasma (https://www.iter.org/mach/Heating). Electron Cyclotron Resonance Heating (ECRH) at the fundamental resonance in X-mode is limited by a low cut-off density. Electromagnetic waves cannot propagate in the region between this cut-off and the Upper Hybrid Resonance (UHR) and cannot reach the Electron Cyclotron Resonance (ECR) position. Higher harmonic heating is hence preferred in heating scenarios nowadays to overcome this problem. Additional power deposition mechanisms can occur above this threshold to increase the plasma density. This includes collisional losses in the evanescent region, resonant power coupling at the UHR, tunneling of the X-wave with resonant coupling at the ECR, and conversion to the Electron Bernstein Wave (EBW) with resonant coupling at the ECR. A more profound knowledge of these deposition mechanisms can help determine the optimal plasma production scenarios. Several ECRH experiments are performed on the TOroidally MAgnetized System (TOMAS) to identify the conditions for Electron Bernstein Wave (EBW) heating. Density and temperature profiles are measured with movable Triple Langmuir Probes in the horizontal and vertical directions. Measurements of the forwarded and reflected power allow evaluation of the coupling efficiency. Optical emission spectroscopy and camera images also contribute to plasma characterization. The influence of the injected power, magnetic field, gas pressure, and wave polarization on the different deposition mechanisms is studied, and the contribution of the Electron Bernstein Wave is evaluated. The TOMATOR 1D hydrogen-helium plasma simulator numerically describes the evolution of current less magnetized Radio Frequency plasmas in a tokamak based on Braginskii’s legal continuity and heat balance equations. This code was initially benchmarked with experimental data from TCV to determine the transport coefficients. The code is used to model the plasma parameters and the power deposition profiles. The modeling is compared with the data from the experiments.

Keywords: electron Bernstein wave, Langmuir probe, plasma characterization, TOMAS

Procedia PDF Downloads 70
183 Air–Water Two-Phase Flow Patterns in PEMFC Microchannels

Authors: Ibrahim Rassoul, A. Serir, E-K. Si Ahmed, J. Legrand

Abstract:

The acronym PEM refers to Proton Exchange Membrane or alternatively Polymer Electrolyte Membrane. Due to its high efficiency, low operating temperature (30–80 °C), and rapid evolution over the past decade, PEMFCs are increasingly emerging as a viable alternative clean power source for automobile and stationary applications. Before PEMFCs can be employed to power automobiles and homes, several key technical challenges must be properly addressed. One technical challenge is elucidating the mechanisms underlying water transport in and removal from PEMFCs. On one hand, sufficient water is needed in the polymer electrolyte membrane or PEM to maintain sufficiently high proton conductivity. On the other hand, too much liquid water present in the cathode can cause “flooding” (that is, pore space is filled with excessive liquid water) and hinder the transport of the oxygen reactant from the gas flow channel (GFC) to the three-phase reaction sites. The experimental transparent fuel cell used in this work was designed to represent actual full scale of fuel cell geometry. According to the operating conditions, a number of flow regimes may appear in the microchannel: droplet flow, blockage water liquid bridge /plug (concave and convex forms), slug/plug flow and film flow. Some of flow patterns are new, while others have been already observed in PEMFC microchannels. An algorithm in MATLAB was developed to automatically determine the flow structure (e.g. slug, droplet, plug, and film) of detected liquid water in the test microchannels and yield information pertaining to the distribution of water among the different flow structures. A video processing algorithm was developed to automatically detect dynamic and static liquid water present in the gas channels and generate relevant quantitative information. The potential benefit of this software allows the user to obtain a more precise and systematic way to obtain measurements from images of small objects. The void fractions are also determined based on images analysis. The aim of this work is to provide a comprehensive characterization of two-phase flow in an operating fuel cell which can be used towards the optimization of water management and informs design guidelines for gas delivery microchannels for fuel cells and its essential in the design and control of diverse applications. The approach will combine numerical modeling with experimental visualization and measurements.

Keywords: polymer electrolyte fuel cell, air-water two phase flow, gas diffusion layer, microchannels, advancing contact angle, receding contact angle, void fraction, surface tension, image processing

Procedia PDF Downloads 284
182 From Mimetic to Mnemonic: On the Simultaneous Rise of Language and Religion

Authors: Dmitry Usenco

Abstract:

The greatest paradox about the origin of language is the fact that, while language is always taught by adults to children, it can never be learnt properly unless its acquisition occurs during childhood. The question that naturally arises in that respect is as follows: How could language be taught for the first time by a non-speaker, i.e., by someone who did not have the opportunity to master it as a child? Yet the above paradox will appear less unresolvable if we hypothesise that language was originally introduced not as a means of communication but as a relatively modest training/playing technique that was used to develop the learners’ mimetic skills. Its communicative and expressive properties could have been discovered and exploited later – upon the learners’ reaching their adulthood. The importance of mimesis in children’s development is universally recognised. The most common forms of it are onomatopoeia and mime, which consist in reproducing sounds and imitating shapes/movements of externally observed objects. However, in some cases, neither of these exercises can be adequate to the task. An object, especially an inanimate one, may emit no characteristic sounds, making onomatopoeia problematic. In other cases, it may have no easily reproduceable shape, while its movements may depend on the specific way of our interacting with it. On such occasions, onomatopoeia and mime can perhaps be supplemented, or even replaced, by movements of the tongue which can metonymically represent certain aspects of our interaction with the object. This is especially evident with consonants: e.g., a fricative sound can designate the subject’s relatively slow approach to the object or vice versa, while a plosive one can express the relatively abrupt process of grabbing/sticking or parrying/bouncing. From that point of view, a protoword can be regarded as a sophisticated gesture of the tongue but also as a mnemonic sequence that contains encoded instructions about the way to handle the object. When this originally subjective link between the object and its mimetic/mnemonic representation eventually installs itself in the collective mind (however small at first the community might be), the initially nameless object acquires a name, and the first word is created. (Discussing the difference between proper and common names is out of the scope of this paper). In its very beginning, this word has two major applications. It can be used for interhuman communication because it allows us to invoke the presence of a currently absent object. It can also be used for designing, expressing, and memorising our interaction with the object itself. The first usage gives rise to language, the second to religion. By the act of naming, we attach to the object a mental (‘spiritual’) dimension which has an independent existence in our collective mind. By referring to the name (idea/demon/soul) of the object, we perform our first act of spirituality, our first religious observance. This is the beginning of animism – arguably, the most ancient form of religion. To conclude: the rise of religion is simultaneous with the the emergence of language in human evolution.

Keywords: language, religion, origin, acquisition, childhood, adulthood, play, represntation, onomatopoeia, mime, gesture, consonant, simultaneity, spirituality, animism

Procedia PDF Downloads 53
181 'Sextually' Active: Teens, 'Sexting' and Gendered Double Standards in the Digital Age

Authors: Annalise Weckesser, Alex Wade, Clara Joergensen, Jerome Turner

Abstract:

Introduction: Digital mobile technologies afford Generation M a number of opportunities in terms of communication, creativity and connectivity in their social interactions. Yet these young people’s use of such technologies is often the source of moral panic with accordant social anxiety especially prevalent in media representations of teen ‘sexting,’ or the sending of sexually explicit images via smartphones. Thus far, most responses to youth sexting have largely been ineffective or unjust with adult authorities sometimes blaming victims of non-consensual sexting, using child pornography laws to paradoxically criminalise those they are designed to protect, and/or advising teenagers to simply abstain from the practice. Prevention strategies are further skewed, with sex education initiatives often targeted at girls, implying that they shoulder the responsibility of minimising the risks associated with sexting (e.g. revenge porn and sexual predation). Purpose of Study: Despite increasing public interest and concern about ‘teen sexting,’ there remains a dearth of research with young people regarding their experiences of navigating sex and relationships in the current digital media landscape. Furthermore, young people's views on sexting are rarely solicited in the policy and educational strategies aimed at them. To address this research-policy-education gap, an interdisciplinary team of four researchers (from anthropology, media, sociology and education) have undertaken a peer-to-peer research project to co-create a sexual health intervention. Methods: In the winter of 2015-2016, the research team conducted serial group interviews with four cohorts of students (aged 13 to 15) from a secondary school in the West Midlands, UK. To facilitate open dialogue, girls and boys were interviewed separately, and each group consisted of no more than four pupils. The team employed a range of participatory techniques to elicit young people’s views on sexting, its consequences, and its interventions. A final focus group session was conducted with all 14 male and female participants to explore developing a peer-to-peer ‘safe sexting’ education intervention. Findings: This presentation will highlight the ongoing, ‘old school’ sexual double standards at work within this new digital frontier. In the sharing of ‘nudes’ (teens’ preferred term to ‘sexting’) via social media apps (e.g. Snapchat and WhatsApp), girls felt sharing images was inherently risky and feared being blamed and ‘slut-shamed.’ In contrast, boys were seen to gain in social status if they accumulated nudes of female peers. Further, if boys had nudes of themselves shared without consent, they felt they were expected to simply ‘tough it out.’ The presentation will also explore what forms of supports teens desire to help them in their day-to-day navigation of these digitally mediated, heteronormative performances of teen femininity and masculinity expected of them. Conclusion: This is the first research project, within UK, conducted with rather than about teens and the phenomenon of sexting. It marks a timely and important contribution to the nascent, but growing body of knowledge on gender, sexual politics and the digital mobility of sexual images created by and circulated amongst young people.

Keywords: teens, sexting, gender, sexual politics

Procedia PDF Downloads 211
180 The Role of Social Media in the Rise of Islamic State in India: An Analytical Overview

Authors: Yasmeen Cheema, Parvinder Singh

Abstract:

The evolution of Islamic State (acronym IS) has an ultimate goal of restoring the caliphate. IS threat to the global security is main concern of international community but has also raised a factual concern for India about the regular radicalization of IS ideology among Indian youth. The incident of joining Arif Ejaz Majeed, an Indian as ‘jihadist’ in IS has set strident alarm in law & enforcement agencies. On 07.03.2017, many people were injured in an Improvised Explosive Device (IED) blast on-board of Bhopal Ujjain Express. One perpetrator of this incident was killed in encounter with police. But, the biggest shock is that the conspiracy was pre-planned and the assailants who carried out the blast were influenced by the ideology perpetrated by the Islamic State. This is the first time name of IS has cropped up in a terror attack in India. It is a red indicator of violent presence of IS in India, which is spreading through social media. The IS have the capacity to influence the younger Muslim generation in India through its brutal and aggressive propaganda videos, social media apps and hatred speeches. It is a well known fact that India is on the radar of IS, as well on its ‘Caliphate Map’. IS uses Twitter, Facebook and other social media platforms constantly. Islamic State has used enticing videos, graphics, and articles on social media and try to influence persons from India & globally that their jihad is worthy. According to arrested perpetrator of IS in different cases in India, the most of Indian youths are victims to the daydreams which are fondly shown by IS. The dreams that the Muslim empire as it was before 1920 can come back with all its power and also that the Caliph and its caliphate can be re-established are shown by the IS. Indian Muslim Youth gets attracted towards these euphemistic ideologies. Islamic State has used social media for disseminating its poisonous ideology, recruitment, operational activities and for future direction of attacks. IS through social media inspired its recruits & lone wolfs to continue to rely on local networks to identify targets and access weaponry and explosives. Recently, a pro-IS media group on its Telegram platform shows Taj Mahal as the target and suggested mode of attack as a Vehicle Born Improvised Explosive Attack (VBIED). Islamic State definitely has the potential to destroy the Indian national security & peace, if timely steps are not taken. No doubt, IS has used social media as a critical mechanism for recruitment, planning and executing of terror attacks. This paper will therefore examine the specific characteristics of social media that have made it such a successful weapon for Islamic State. The rise of IS in India should be viewed as a national crisis and handled at the central level with efficient use of modern technology.

Keywords: ideology, India, Islamic State, national security, recruitment, social media, terror attack

Procedia PDF Downloads 205
179 Quantum Conductance Based Mechanical Sensors Fabricated with Closely Spaced Metallic Nanoparticle Arrays

Authors: Min Han, Di Wu, Lin Yuan, Fei Liu

Abstract:

Mechanical sensors have undergone a continuous evolution and have become an important part of many industries, ranging from manufacturing to process, chemicals, machinery, health-care, environmental monitoring, automotive, avionics, and household appliances. Concurrently, the microelectronics and microfabrication technology have provided us with the means of producing mechanical microsensors characterized by high sensitivity, small size, integrated electronics, on board calibration, and low cost. Here we report a new kind of mechanical sensors based on the quantum transport process of electrons in the closely spaced nanoparticle films covering a flexible polymer sheet. The nanoparticle films were fabricated by gas phase depositing of preformed metal nanoparticles with a controlled coverage on the electrodes. To amplify the conductance of the nanoparticle array, we fabricated silver interdigital electrodes on polyethylene terephthalate(PET) by mask evaporation deposition. The gaps of the electrodes ranged from 3 to 30μm. Metal nanoparticles were generated from a magnetron plasma gas aggregation cluster source and deposited on the interdigital electrodes. Closely spaced nanoparticle arrays with different coverage could be gained through real-time monitoring the conductance. In the film coulomb blockade and quantum, tunneling/hopping dominate the electronic conduction mechanism. The basic principle of the mechanical sensors relies on the mechanical deformation of the fabricated devices which are translated into electrical signals. Several kinds of sensing devices have been explored. As a strain sensor, the device showed a high sensitivity as well as a very wide dynamic range. A gauge factor as large as 100 or more was demonstrated, which can be at least one order of magnitude higher than that of the conventional metal foil gauges or even better than that of the semiconductor-based gauges with a workable maximum applied strain beyond 3%. And the strain sensors have a workable maximum applied strain larger than 3%. They provide the potential to be a new generation of strain sensors with performance superior to that of the currently existing strain sensors including metallic strain gauges and semiconductor strain gauges. When integrated into a pressure gauge, the devices demonstrated the ability to measure tiny pressure change as small as 20Pa near the atmospheric pressure. Quantitative vibration measurements were realized on a free-standing cantilever structure fabricated with closely-spaced nanoparticle array sensing element. What is more, the mechanical sensor elements can be easily scaled down, which is feasible for MEMS and NEMS applications.

Keywords: gas phase deposition, mechanical sensors, metallic nanoparticle arrays, quantum conductance

Procedia PDF Downloads 256
178 A Comparison of Videography Tools and Techniques in African and International Contexts

Authors: Enoch Ocran

Abstract:

Film Pertinence maintains consistency in storytelling by sustaining the natural flow of action while evoking a particular feeling or emotion from the viewers with selected motion pictures. This study presents a thorough investigation of "Film Pertinence" in videography that examines its influence in Africa and around the world. This research delves into the dynamic realm of visual storytelling through film, with a specific focus on the concept of Film Pertinence (FP). The study’s primary objectives are to conduct a comparative analysis of videography tools and techniques employed in both African and international contexts, examining how they contribute to the achievement of organizational goals and the enhancement of cultural awareness. The research methodology includes a comprehensive literature review, interviews with videographers from diverse backgrounds in Africa and the international arena, and the examination of pertinent case studies. The investigation aims to elucidate the multifaceted nature of videographic practices, with particular attention to equipment choices, visual storytelling techniques, cultural sensitivity, and adaptability. This study explores the impact of cultural differences on videography choices, aiming to promote understanding between African and foreign filmmakers and create more culturally sensitive films. It also explores the role of technology in advancing videography practices, resource allocation, and the influence of globalization on local filmmaking practices. The research also contributes to film studies by analyzing videography's impact on storytelling, guiding filmmakers to create more compelling narratives. The findings can inform film education, tailoring curricula to regional needs and opportunities. The study also encourages cross-cultural collaboration in the film industry by highlighting convergence and divergence in videography practices. At its core, this study seeks to explore the implications of film pertinence as a framework for videographic practice. It scrutinizes how cultural expression, education, and storytelling transcend geographical boundaries on a global scale. By analyzing the interplay between tools, techniques, and context, the research illuminates the ways in which videographers in Africa and worldwide apply film Pertinence principles to achieve cross-cultural communication and effectively capture the objectives of their clients. One notable focus of this paper is on the techniques employed by videographers in West Africa to emphasize storytelling and participant engagement, showcasing the relevance of FP in highlighting cultural awareness in visual storytelling. Additionally, the study highlights the prevalence of film pertinence in African agricultural documentaries produced for esteemed organizations such as the Roundtable on Sustainable Palm Oil (RSPO), Proforest, World Food Program, Fidelity Bank Ghana, Instituto BVRio, Aflatoun International, and the Solidaridad Network. These documentaries serve to promote prosperity, resilience, human rights, sustainable farming practices, community respect, and environmental preservation, underlining the vital role of film in conveying these critical messages. In summary, this research offers valuable insights into the evolving landscape of videography in different contexts, emphasizing the significance of film pertinence as a unifying principle in the pursuit of effective visual storytelling and cross-cultural communication.

Keywords: film pertinence, Africa, cultural awareness, videography tools

Procedia PDF Downloads 46
177 The Use of Artificial Intelligence in the Context of a Space Traffic Management System: Legal Aspects

Authors: George Kyriakopoulos, Photini Pazartzis, Anthi Koskina, Crystalie Bourcha

Abstract:

The need for securing safe access to and return from outer space, as well as ensuring the viability of outer space operations, maintains vivid the debate over the promotion of organization of space traffic through a Space Traffic Management System (STM). The proliferation of outer space activities in recent years as well as the dynamic emergence of the private sector has gradually resulted in a diverse universe of actors operating in outer space. The said developments created an increased adverse impact on outer space sustainability as the case of the growing number of space debris clearly demonstrates. The above landscape sustains considerable threats to outer space environment and its operators that need to be addressed by a combination of scientific-technological measures and regulatory interventions. In this context, recourse to recent technological advancements and, in particular, to Artificial Intelligence (AI) and machine learning systems, could achieve exponential results in promoting space traffic management with respect to collision avoidance as well as launch and re-entry procedures/phases. New technologies can support the prospects of a successful space traffic management system at an international scale by enabling, inter alia, timely, accurate and analytical processing of large data sets and rapid decision-making, more precise space debris identification and tracking and overall minimization of collision risks and reduction of operational costs. What is more, a significant part of space activities (i.e. launch and/or re-entry phase) takes place in airspace rather than in outer space, hence the overall discussion also involves the highly developed, both technically and legally, international (and national) Air Traffic Management System (ATM). Nonetheless, from a regulatory perspective, the use of AI for the purposes of space traffic management puts forward implications that merit particular attention. Key issues in this regard include the delimitation of AI-based activities as space activities, the designation of the applicable legal regime (international space or air law, national law), the assessment of the nature and extent of international legal obligations regarding space traffic coordination, as well as the appropriate liability regime applicable to AI-based technologies when operating for space traffic coordination, taking into particular consideration the dense regulatory developments at EU level. In addition, the prospects of institutionalizing international cooperation and promoting an international governance system, together with the challenges of establishment of a comprehensive international STM regime are revisited in the light of intervention of AI technologies. This paper aims at examining regulatory implications advanced by the use of AI technology in the context of space traffic management operations and its key correlating concepts (SSA, space debris mitigation) drawing in particular on international and regional considerations in the field of STM (e.g. UNCOPUOS, International Academy of Astronautics, European Space Agency, among other actors), the promising advancements of the EU approach to AI regulation and, last but not least, national approaches regarding the use of AI in the context of space traffic management, in toto. Acknowledgment: The present work was co-funded by the European Union and Greek national funds through the Operational Program "Human Resources Development, Education and Lifelong Learning " (NSRF 2014-2020), under the call "Supporting Researchers with an Emphasis on Young Researchers – Cycle B" (MIS: 5048145).

Keywords: artificial intelligence, space traffic management, space situational awareness, space debris

Procedia PDF Downloads 222
176 Acquisition of Murcian Lexicon and Morphology by L2 Spanish Immigrants: The Role of Social Networks

Authors: Andrea Hernandez Hurtado

Abstract:

Research on social networks (SNs) -- the interactions individuals share with others has shed important light in helping to explain differential use of variable linguistic forms, both in L1s and L2s. Nevertheless, the acquisition of nonstandard L2 Spanish in the Region of Murcia, Spain, and how learners interact with other speakers while sojourning there have received little attention. Murcian Spanish (MuSp) was widely influenced by Panocho, a divergent evolution of Hispanic Latin, and differs from the more standard Peninsular Spanish (StSp) in phonology, morphology, and lexicon. For instance, speakers from this area will most likely palatalize diminutive endings, producing animalico [̩a.ni.ma.ˈli.ko] instead of animalito [̩a.ni.ma.ˈli.to] ‘little animal’. Because L1 speakers of the area produce and prefer salient regional lexicon and morphology (particularly the palatalized diminutive -ico) in their speech, the current research focuses on how international residents in the Region of Murcia use Spanish: (1) whether or not they acquire (perceptively and/or productively) any of the salient regional features of MuSp, and (2) how their SNs explain such acquisition. This study triangulates across three tasks -recognition, production, and preference- addressing both lexicon and morphology, with each task specifically created for the investigation of MuSp features. Among other variables, the effects of L1, residence, and identity are considered. As an ongoing dissertation research, data are currently being gathered through an online questionnaire. So far, 7 participants from multiple nationalities have completed the survey, although a minimum of 25 are expected to be included in the coming months. Preliminary results revealed that MuSp lexicon and morphology were successfully recognized by participants (p<.001). In terms of regional lexicon production (10.0%) and preference (47.5%), although participants showed higher percentages of StSp, results showed that international residents become aware of stigmatized lexicon and may incorporate it into their language use. Similarly, palatalized diminutives (production 14.2%, preference 19.0%) were present in their responses. The Social Network Analysis provided information about participants’ relationships with their interactants, as well as among them. Results indicated that, generally, when residents were more immersed in the culture (i.e., had more Murcian alters) they produced and preferred more regional features. This project contributes to the knowledge of language variation acquisition in L2 speakers, focusing on a stigmatized Spanish dialect and exploring how stigmatized varieties may affect L2 development. Results will show how L2 Spanish speakers’ language is affected by their stay in Murcia. This, in turn, will shed light on the role of SNs in language acquisition, the acquisition of understudied and marginalized varieties, and the role of immersion on language acquisition. As the first systematic account on the acquisition of L2 Spanish lexicon and morphology in the Region of Murcia, it lays important groundwork for further research on the connection between SNs and the acquisition of regional variants, applicable to Murcia and beyond.

Keywords: international residents, L2 Spanish, lexicon, morphology, nonstandard language acquisition, social networks

Procedia PDF Downloads 51
175 Re-Designing Community Foodscapes to Enhance Social Inclusion in Sustainable Urban Environments

Authors: Carles Martinez-Almoyna Gual, Jiwon Choi

Abstract:

Urban communities face risks of disintegration and segregation as a consequence of globalised migration processes towards urban environments. Linking social and cultural components with environmental and economic dimensions becomes the goal of all the disciplines that aim to shape more sustainable urban environments. Solutions require interdisciplinary approaches and the use of a complex array of tools. One of these tools is the implementation of urban farming, which provides a wide range of advantages for creating more inclusive spaces and integrated communities. Since food is strongly related to the values and identities of any cultural group, it can be used as a medium to promote social inclusion in the context of urban multicultural societies. By bringing people together into specific urban sites, food production can be integrated into multifunctional spaces while addressing social, economic and ecological goals. The goal of this research is to assess different approaches to urban agriculture by analysing three existing community gardens located in Newtown, a suburb of Wellington, New Zealand. As a context for developing research, Newtown offers different approaches to urban farming and is really valuable for observing current trends of socialization in diverse and multicultural societies. All three spaces are located on public land owned by Wellington City Council and confined to a small, complex and progressively denser urban area. The developed analysis was focused on social, cultural and physical dimensions, combining community engagement with different techniques of spatial assessment. At the same time, a detailed investigation of each community garden was conducted with comparative analysis methodologies. This multidirectional setting of the analysis was established for extracting from the case studies both specific and typological knowledge. Each site was analysed and categorised under three broad themes: people, space and food. The analysis revealed that all three case studies had really different spatial settings, different approaches to food production and varying profiles of supportive communities. The main differences identified were demographics, values, objectives, internal organization, appropriation, and perception of the space. The community gardens were approached as case studies for developing design research. Following participatory design processes with the different communities, the knowledge gained from the analysis was used for proposing changes in the physical environment. The end goal of the design research was to improve the capacity of the spaces to facilitate social inclusiveness. In order to generate tangible changes, a range of small, strategic and feasible spatial interventions was explored. The smallness of the proposed interventions facilitates implementation by reducing time frames, technical resources, funding needs, and legal processes, working within the community´s own realm. These small interventions are expected to be implemented over time as part of an ongoing collaboration between the different communities, the university, and the local council. The applied research methodology showcases the capacity of universities to develop civic engagement by working with real communities that have concrete needs and face overall threats of disintegration and segregation.

Keywords: community gardening, landscape architecture, participatory design, placemaking, social inclusion

Procedia PDF Downloads 104