Search results for: high performance concrete (HPC)
27594 12x12 MIMO Terminal Antennas Covering the Whole LTE and WiFi Spectrum
Authors: Mohamed Sanad, Noha Hassan
Abstract:
A broadband resonant terminal antenna has been developed. It can be used in different MIMO arrangements such as 2x2, 4x4, 8x8, or even 12x12 MIMO configurations. The antenna covers the whole LTE and WiFi bands besides the existing 2G/3G bands (700-5800 MHz), without using any matching/tuning circuits. Matching circuits significantly reduce the efficiency of any antenna and reduce the battery life. They also reduce the bandwidth because they are frequency dependent. The antenna can be implemented in smartphone handsets, tablets, laptops, notebooks or any other terminal. It is also suitable for different IoT and vehicle applications. The antenna is manufactured from a flexible material and can be bent or folded and shaped in any form to fit any available space in any terminal. It is self-contained and does not need to use the ground plane, the chassis or any other component of the terminal. Hence, it can be mounted on any terminal at different positions and configurations. Its performance does not get affected by the terminal, regardless of its type, shape or size. Moreover, its performance does not get affected by the human body of the terminal’s users. Because of all these unique features of the antenna, multiples of them can be simultaneously used for MIMO diversity coverage in any terminal device with a high isolation and a low correlation factor between them.Keywords: IOT, LTE, MIMO, terminal antenna, WiFi
Procedia PDF Downloads 18827593 High-Speed Electrical Drives and Applications: A Review
Authors: Vaishnavi Patil, K. M. Kurundkar
Abstract:
Electrical Drives play a vital role in industry development and applications. Drives have an inevitable part in the needs of various fields such as industry, commercial, and domestic applications. The development of material technology, Power Electronics devices, and accompanying applications led to the focus of industry and researchers on high-speed electrical drives. Numerous articles charted the applications of electrical machines and various converters for high-speed applications. The choice depends on the application under study. This paper goals to highlight high-speed applications, main challenges, and some applications of electrical drives in the field.Keywords: high-speed, electrical machines, drives, applications
Procedia PDF Downloads 6927592 Investigating the Influence of Potassium Ion Doping on Lithium-Ion Battery Performance
Authors: Liyew Yizengaw Yitayih
Abstract:
This nanotechnology study focuses on how potassium ions (K+) affect lithium-ion (Li-ion) battery performance. By adding potassium ions (K+) to the lithium tin oxide (LiSnO) anode and employing styrene-butadiene rubber (SBR) as a binder, the doping of K+ was specifically studied. The methods employed in this study include computer modeling and simulation, material fabrication, and electrochemical characterization. The potassium ions (Li+) were successfully doped into the LiSnO lattice during charge/discharge cycles, which increased the lithium-ion diffusivity and electrical conductivity within the anode. However, it was found that internal doping of potassium ions (K+) into the LiSnO lattice occurred at high potassium ion concentrations (>16.6%), which hampered lithium ion transfer because of repulsion and physical blockage. The electrochemical efficiency of lithium-ion batteries was improved by this comprehensive study's presentation of potassium ions' (K+) potential advantages when present in the appropriate concentrations in electrode materials.Keywords: lithium-ion battery, LiSnO anode, potassium doping, lithium-ion diffusivity, electronic conductivity
Procedia PDF Downloads 6627591 A Low-Power, Low-Noise and High Linearity 60 GHz LNA for WPAN Applications
Authors: Noha Al Majid, Said Mazer, Moulhime El Bekkali, Catherine Algani, Mahmoud Mehdi
Abstract:
A low noise figure (NF) and high linearity V-band Low Noise Amplifier (LNA) is reported in this article. The LNA compromises a three-stage cascode configuration. This LNA will be used as a part of a WPAN (Wireless Personal Area Network) receiver in the millimeter-wave band at 60 GHz. It is designed according to the MMIC technology (Monolithic Microwave Integrated Circuit) in PH 15 process from UMS foundry and uses a 0.15 μm GaAs PHEMT (Pseudomorphic High Electron Mobility Transistor). The particularity of this LNA compared to other LNAs in literature is its very low noise figure which is equal to 1 dB and its high linearity (IIP3 is about 22 dB). The LNA consumes 0.24 Watts, achieving a high gain which is about 23 dB, an input return loss better than -10 dB and an output return loss better than -8 dB.Keywords: low noise amplifier, V-band, MMIC technology, LNA, amplifier, cascode, pseudomorphic high electron mobility transistor (PHEMT), high linearity
Procedia PDF Downloads 51727590 Operation System for Aluminium-Air Cell: A Strategy to Harvest the Energy from Secondary Aluminium
Authors: Binbin Chen, Dennis Y. C. Leung
Abstract:
Aluminium (Al) -air cell holds a high volumetric capacity density of 8.05 Ah cm-3, benefit from the trivalence of Al ions. Additional benefits of Al-air cell are low price and environmental friendliness. Furthermore, the Al energy conversion process is characterized of 100% recyclability in theory. Along with a large base of raw material reserve, Al attracts considerable attentions as a promising material to be integrated within the global energy system. However, despite the early successful applications in military services, several problems exist that prevent the Al-air cells from widely civilian use. The most serious issue is the parasitic corrosion of Al when contacts with electrolyte. To overcome this problem, super-pure Al alloyed with various traces of metal elements are used to increase the corrosion resistance. Nevertheless, high-purity Al alloys are costly and require high energy consumption during production process. An alternative approach is to add inexpensive inhibitors directly into the electrolyte. However, such additives would increase the internal ohmic resistance and hamper the cell performance. So far these methods have not provided satisfactory solutions for the problem within Al-air cells. For the operation of alkaline Al-air cell, there are still other minor problems. One of them is the formation of aluminium hydroxide in the electrolyte. This process decreases ionic conductivity of electrolyte. Another one is the carbonation process within the gas diffusion layer of cathode, blocking the porosity of gas diffusion. Both these would hinder the performance of cells. The present work optimizes the above problems by building an Al-air cell operation system, consisting of four components. A top electrolyte tank containing fresh electrolyte is located at a high level, so that it can drive the electrolyte flow by gravity force. A mechanical rechargeable Al-air cell is fabricated with low-cost materials including low grade Al, carbon paper, and PMMA plates. An electrolyte waste tank with elaborate channel is designed to separate the hydrogen generated from the corrosion, which would be collected by gas collection device. In the first section of the research work, we investigated the performance of the mechanical rechargeable Al-air cell with a constant flow rate of electrolyte, to ensure the repeatability experiments. Then the whole system was assembled together and the feasibility of operating was demonstrated. During experiment, pure hydrogen is collected by collection device, which holds potential for various applications. By collecting this by-product, high utilization efficiency of aluminum is achieved. Considering both electricity and hydrogen generated, an overall utilization efficiency of around 90 % or even higher under different working voltages are achieved. Fluidic electrolyte could remove aluminum hydroxide precipitate and solve the electrolyte deterioration problem. This operation system provides a low-cost strategy for harvesting energy from the abundant secondary Al. The system could also be applied into other metal-air cells and is suitable for emergency power supply, power plant and other applications. The low cost feature implies great potential for commercialization. Further optimization, such as scaling up and optimization of fabrication, will help to refine the technology into practical market offerings.Keywords: aluminium-air cell, high efficiency, hydrogen, mechanical recharge
Procedia PDF Downloads 28427589 Structural Insulated Panels
Authors: R. Padmini, G. V. Manoj Kumar
Abstract:
Structural insulated panels (SIPs) are a high-performance building system for residential and light commercial construction. The panels consist of an insulating foam core sandwiched between two structural facings, typically oriented strand board (OSB). SIPs are manufactured under factory controlled conditions and can be fabricated to fit nearly any building design. The result is a building system that is extremely strong, energy efficient and cost effective. Building with SIPs will save you time, money and labor. Building with SIPs generally costs about the same as building with wood frame construction when you factor in the labor savings resulting from shorter construction time and less job-site waste. Other savings are realized because smaller heating and cooling systems are required with SIP construction. Structural insulated panels (SIPs) are one of the most airtight and well-insulated building systems available, making them an inherently green product. An airtight SIP building will use less energy to heat and cool, allow for better control over indoor environmental conditions, and reduce construction waste. Green buildings use less energy, reducing carbon dioxide emissions and playing an important role in combating global climate change. Buildings also use a tremendous amount of natural resources to construct and operate. Constructing green buildings that use these resources more efficiently, while minimizing pollution that can harm renewable natural resources, is crucial to a sustainable future.Keywords: high performance, under factory controlled, wood frame, carbon dioxide emissions, natural resources
Procedia PDF Downloads 43727588 Fostering Organizational Learning across the Canadian Sport System through Leadership and Mentorship Development of Sport Science Leaders
Authors: Jennifer Walinga, Samantha Heron
Abstract:
The goal of the study was to inform the design of effective leadership and mentorship development programming for sport science leaders within the network of Canadian sport institutes and centers. The LEAD (Learn, Engage, Accelerate, Develop) program was implemented to equip sport science leaders with the leadership knowledge, skills, and practice to foster a high - performance culture, enhance the daily training environment, and contribute to optimal performance in sport. After two years of delivery, this analysis of LEAD’s effect on individual and organizational health and performance factors informs the quality of future deliveries and identifies best practice for leadership development across the Canadian sport system and beyond. A larger goal for this project was to inform the public sector more broadly and position sport as a source of best practice for human and social health, development, and performance. The objectives of this study were to review and refine the LEAD program in collaboration with Canadian Sport Institute and Centre leaders, 40-50 participants from three cohorts, and the LEAD program advisory committee, and to trace the effects of the LEAD leadership development program on key leadership mentorship and organizational health indicators across the Canadian sport institutes and centers so as to capture best practice. The study followed a participatory action research framework (PAR) using semi structured interviews with sport scientist participants, program and institute leaders inquiring into impact on specific individual and organizational health and performance factors. Findings included a strong increase in self-reported leadership knowledge, skill, language and confidence, enhancement of human and organizational health factors, and the opportunity to explore more deeply issues of diversity and inclusion, psychological safety, team dynamics, and performance management. The study was significant in building sport leadership and mentorship development strategies for managing change efforts, addressing inequalities, and building personal and operational resilience amidst challenges of uncertainty, pressure, and constraint in real time.Keywords: sport leadership, sport science leader, leadership development, professional development, sport education, mentorship
Procedia PDF Downloads 2727587 Buck Boost Inverter to Improve the Efficiency and Performance of E-Motor by Reducing the Influence of Voltage Sag of Battery on the Performance of E-Motor
Authors: Shefeen Maliyakkal, Pranav Satheesh, Steve Simon, Sharath Kuruppath
Abstract:
This paper researches the impact of battery voltage sag on the performance and efficiency of E-motor in electric cars. Terminal voltage of battery reduces with the S.o.C. This results in the downward shift of torque-speed curve of E-motor and increased copper losses in E-motor. By introducing a buck-boost inverter between the battery and E-motor, an additional degree of freedom was achieved. By boosting the AC voltage, the dependency of voltage sag on the performance of E-motor was eliminated. A strategy was also proposed for the operation of the buck-boost inverter to minimize copper and iron losses in E-motor to maximize efficiency. MATLAB-SIMULINK model of E-drive was used to obtain simulation results. The temperature rise in the E-motor was reduced by 14% for a 10% increase in AC voltage. From the results, it was observed that a 20% increase in AC voltage can result in improvement of running torque and maximum torque of E-motor by 44%. Hence it was concluded that using a buck-boost inverter for E-drive significantly improves both performance and efficiency of E-motor.Keywords: buck-boost, E-motor, battery, voltage sag
Procedia PDF Downloads 40027586 Demographic Diversity in the Boardroom and Firm Performance: Empirical Evidence in the French Context
Authors: Elhem Zaatir, Taher Hamza
Abstract:
Several governments seek to implement gender parity on boards, but the results of doing so are not clear and could harm corporations and economies. The present paper aims to investigate the relationship between women’s presence on boards and firms’ performance in the context of the French listed firms during the quota period. A dynamic panel generalized method of moment estimation is applied to control the endogenous effect of board structure and reverse the causality impact of the financial performance. Our results show that the impact of gender diversity manifests in conflicting directions, positively affecting accounting performance and negatively influencing market performance. These results suggest that female directors create economic value, but the market discounts their impact. Apparently, they are subject to a biased evaluation by the market, which undervalues their presence on boards. Added to that, our results confirm a twofold nature of female representation in the French market. The effect of female directorship on firm performance varies with the affiliation of the directors. In other words, the positive impact of gender diversity on return on assets primarily originates from the positive effect of non-family-affiliated women directors on market performance rather than on the effect of family-affiliated women directors on ROA. Finally, according to our results, women’s demographic attributes namely the level of education and multiple directorships strongly and positively impact firm performance as measured by return on assets (ROA). Obviously, women directors seem to be appointed to the business case rather than as token directors.Keywords: corporate governance, board of directors, women, gender diversity, demographic attributes, firm performance
Procedia PDF Downloads 12927585 Prediction of the Performance of a Bar-Type Piezoelectric Vibration Actuator Depending on the Frequency Using an Equivalent Circuit Analysis
Authors: J. H. Kim, J. H. Kwon, J. S. Park, K. J. Lim
Abstract:
This paper has investigated a technique that predicts the performance of a bar-type unimorph piezoelectric vibration actuator depending on the frequency. This paper has been proposed an equivalent circuit that can be easily analyzed for the bar-type unimorph piezoelectric vibration actuator. In the dynamic analysis, rigidity and resonance frequency, which are important mechanical elements, were derived using the basic beam theory. In the equivalent circuit analysis, the displacement and bandwidth of the piezoelectric vibration actuator depending on the frequency were predicted. Also, for the reliability of the derived equations, the predicted performance depending on the shape change was compared with the result of a finite element analysis program.Keywords: actuator, piezoelectric, performance, unimorph
Procedia PDF Downloads 46527584 Performance Evaluation of Different Technologies of PV Modules in Algeria
Authors: Amira Balaska, Ali Tahri, Amine Boudghene Stambouli, Takashi Oozeki
Abstract:
This paper is dealing with the evaluation of photovoltaic modules as part of the Sahara Solar Breeder project (SSB), five different photovoltaic module technologies which are: m-si, CIS, HIT, Back Contact, a-si_μc -si and a weather station recently installed at the University of Saida (Tahar Moulay) in Saida city located at the gate of the great southern Algeria’s Sahara. The objective of the present work is the study of solar photovoltaic capacity and performance parameters of each PV module technology. The goal of the study is to compare the five different PV technologies in order to find which technologies are suitable for the climate conditions of Algeria’s desert. Measurements of various parameters as irradiance, temperature, humidity and so on by the weather station and I-V curves were performed outdoors at the location without shadow. Finally performance parameters as performance ratio, energy yield and temperature losses are given and analyzed.Keywords: photovoltaic modules, performance ratio, energy yield, sahara solar breeder, outdoor conditions
Procedia PDF Downloads 66227583 Numerical Simulation of the Dynamic Behavior of a LaNi5 Water Pumping System
Authors: Miled Amel, Ben Maad Hatem, Askri Faouzi, Ben Nasrallah Sassi
Abstract:
Metal hydride water pumping system uses hydrogen as working fluid to pump water for low head and high discharge. The principal operation of this pump is based on the desorption of hydrogen at high pressure and its absorption at low pressure by a metal hydride. This work is devoted to study a concept of the dynamic behavior of a metal hydride pump using unsteady model and LaNi5 as hydriding alloy. This study shows that with MHP, it is possible to pump 340l/kg-cycle of water in 15 000s using 1 Kg of LaNi5 at a desorption temperature of 360 K, a pumping head equal to 5 m and a desorption gear ratio equal to 33. This study reveals also that the error given by the steady model, using LaNi5 is about 2%.A dimensional mathematical model and the governing equations of the pump were presented to predict the coupled heat and mass transfer within the MHP. Then, a numerical simulation is carried out to present the time evolution of the specific water discharge and to test the effect of different parameters (desorption temperature, absorption temperature, desorption gear ratio) on the performance of the water pumping system (specific water discharge, pumping efficiency and pumping time). In addition, a comparison between results obtained with steady and unsteady model is performed with different hydride mass. Finally, a geometric configuration of the reactor is simulated to optimize the pumping time.Keywords: dynamic behavior, LaNi5, performance of water pumping system, unsteady model
Procedia PDF Downloads 20827582 Additive White Gaussian Noise Filtering from ECG by Wiener Filter and Median Filter: A Comparative Study
Authors: Hossein Javidnia, Salehe Taheri
Abstract:
The Electrocardiogram (ECG) is the recording of the heart’s electrical potential versus time. ECG signals are often contaminated with noise such as baseline wander and muscle noise. As these signals have been widely used in clinical studies to detect heart diseases, it is essential to filter these noises. In this paper we compare performance of Wiener Filtering and Median Filtering methods to filter Additive White Gaussian (AWG) noise with the determined signal to noise ratio (SNR) ranging from 3 to 5 dB applied to long-term ECG recordings samples. Root mean square error (RMSE) and coefficient of determination (R2) between the filtered ECG and original ECG was used as the filter performance indicator. Experimental results show that Wiener filter has better noise filtering performance than Median filter.Keywords: ECG noise filtering, Wiener filtering, median filtering, Gaussian noise, filtering performance
Procedia PDF Downloads 53027581 Effect of Color on Anagram Solving Ability
Authors: Khushi Chhajed
Abstract:
Context: Color has been found to have an impact on cognitive performance. Due to the negative connotation associated with red, it has been found to impair performance on intellectual tasks. Aim: This study aims to assess the effect of color on individuals' anagram solving ability. Methodology: An experimental study was conducted on 66 participants in the age group of 18–24 years. A self-made anagram assessment tool was administered. Participants were expected to solve the tool in three colors- red, blue and grey. Results: A lower score was found when presented with the color blue as compared to red. The study also found that participants took relatively greater time to solve the red colored sheet. However these results are inconsistent with pre-existing literature. Conclusion: Hence, an association between color and performance on cognitive tasks can be seen. Future directions and potential limitations are discussed.Keywords: color psychology, experiment, anagram, performance
Procedia PDF Downloads 8927580 The Effects of Planting Date on the Yield and Yield Components of Corn (Zea mays L.) Cultivar, Single Cross 704
Authors: Mehranoosh Gholipoor
Abstract:
The effects of planting date on performance and yield components of maize single cross 704 was carried out in 2003.this experiment was designed in randomized complete block pattern with 3 replications in the field of College campus of Agricultural Sciences and Natural Resources in Gorgan. Treatments consisted of four planting dates (May5, May19, June4 and June19) respectively. The results showed that the planting on June4 were the best time for planting date in the field of seed performance and many other measurement qualities while planting date on June19 had the lowest seed performance in corn, due to a severe reduction in seed numbers had the highest In 1000 seed weight. Between the planting date on May 5 and May19 were observed no significant differencesKeywords: corn, planting date, performance and yield components
Procedia PDF Downloads 35927579 Study on Hydrogen Isotope Permeability of High Entropy Alloy Coating
Authors: Long Wang, Yongjin Feng, Xiaofang Luo
Abstract:
Tritium permeation through structural materials is a significant issue for fusion demonstration (DEMO) reactor blankets in terms of fuel cycle efficiency and radiological safety. Reduced activation ferritic (RAFM) steel CLF-1 is a prime candidate for the China’s CFETR blanket structural material, facing high permeability of hydrogen isotopes at reactor operational temperature. To confine tritium as much as possible in the reactor, surface modification of the steels including fabrication of tritium permeation barrier (TPB) attracts much attention. As a new alloy system, high entropy alloy (HEA) contains at least five principal elements, each of which ranges from 5 at% to 35 at%. This high mixing effect entitles HEA extraordinary comprehensive performance. So it is attractive to lead HEA into surface alloying for protective use. At present, studies on the hydrogen isotope permeability of HEA coatings is still insufficient and corresponding mechanism isn’t clear. In our study, we prepared three kinds of HEA coatings, including AlCrTaTiZr, (AlCrTaTiZr)N and (AlCrTaTiZr)O. After comprehensive characterization of SEM, XPS, AFM, XRD and TEM, the structure and composition of the HEA coatings were obtained. Deuterium permeation tests were conducted to evaluate the hydrogen isotope permeability of AlCrTaTiZr, (AlCrTaTiZr)N and (AlCrTaTiZr)O HEA coatings. Results proved that the (AlCrTaTiZr)N and (AlCrTaTiZr)O HEA coatings had better hydrogen isotope permeation resistance. Through analyzing and characterizing the hydrogen isotope permeation results of the corroded samples, an internal link between hydrogen isotope permeation behavior and structure of HEA coatings was established. The results provide valuable reference in engineering design of structural and TPB materials for future fusion device.Keywords: high entropy alloy, hydrogen isotope permeability, tritium permeation barrier, fusion demonstration reactor
Procedia PDF Downloads 17327578 Low Power CNFET SRAM Design
Authors: Pejman Hosseiniun, Rose Shayeghi, Iman Rahbari, Mohamad Reza Kalhor
Abstract:
CNFET has emerged as an alternative material to silicon for high performance, high stability and low power SRAM design in recent years. SRAM functions as cache memory in computers and many portable devices. In this paper, a new SRAM cell design based on CNFET technology is proposed. The proposed SRAM cell design for CNFET is compared with SRAM cell designs implemented with the conventional CMOS and FinFET in terms of speed, power consumption, stability, and leakage current. The HSPICE simulation and analysis show that the dynamic power consumption of the proposed 8T CNFET SRAM cell’s is reduced about 48% and the SNM is widened up to 56% compared to the conventional CMOS SRAM structure at the expense of 2% leakage power and 3% write delay increase.Keywords: SRAM cell, CNFET, low power, HSPICE
Procedia PDF Downloads 41627577 Performance Evaluation of Iar Multi Crop Thresher
Authors: Idris Idris Sunusi, U.S. Muhammed, N.A. Sale, I.B. Dalha, N.A. Adam
Abstract:
Threshing efficiency and mechanical grain damages are among the important parameters used in rating the performance of agricultural threshers. To be acceptable to farmers, threshers should have high threshing efficiency and low grain. The objective of the research is to evaluate the performances of the thresher using sorghum and millet, the performances parameters considered are; threshing efficiency and mechanical grain damage. For millet, four drum speed levels; 700, 800, 900 and 1000 rpm were considered while for sorghum; 600, 700, 800 and 900 rpm were considered. The feed rate levels were 3, 4, 5 and 6 kg/min for both sorghum and millet; the levels of moisture content were 8.93 and 10.38% for sorghum and 9.21 and 10.81% for millet. For millet the test result showed a maximum of 98.37 threshing efficiencies and a minimum of 0.24% mechanical grain damage while for sorghum the test result indicated a maximum of 99.38 threshing efficiencies, and a minimum of 0.75% mechanical grain damage. In comparison to the previous thresher, the threshing efficiency and mechanical grain damage of the modified machine has improved by 2.01% and 330.56% for millet and 5.31%, 287.64% for sorghum. Also analysis of variance (ANOVA) showed that, the effect of drum speed, feed rate and moisture content were significant on the performance parameters.Keywords: Threshing Efficiency, Mechanical Grain Damages, Sorghum and Millet, Multi Crop Thresher
Procedia PDF Downloads 35227576 Interaction Effects of Vitamin D Supplementation and Aerobic Exercises on Balance and Physical Performance in Children with Down Syndrome
Authors: Mohamed A. Eid, Sobhy M. Aly, Marwa M. Ibrahim, Nadia L. Radwan
Abstract:
To investigate the interaction effects of vitamin D supplementation combined with aerobic exercises (AE) and conventional physical therapy program (CPTP) on balance and physical performance in children with Down syndrome (DS).Methods: A randomized controlled trial was conducted for 38 children with DS, with ages ranging from 8 to 12 years. They were divided randomly to two groups. The control group (n=19) received the CPTP, while the study group (n=19) received the CPTP, AE, and vitamin D in the form of an oral daily dose of vitamin D3 400 IU (Cholecalciferol). Evaluation of balance by using the Biodex Stability System and physical performance by using the six-minute walk test (6MWT)was performed before and after 12 weeks of the treatment program. Findings: All groups showed a significant improvement in balance and physical performance after treatment (p < 0.05). The study group showed a significant improvement in balance and physical performancecompared with that of the control group (p < 0.05). Conclusion: Vitamin D supplementation combined with AE and CPTP could improve balance and physical performance in children with DS. Therefore, vitamin D and AEshould be considered as adjunctive to the rehabilitation program of these children.Keywords: aerobic exercises, balance, down syndrome, physical performance, vitamin D
Procedia PDF Downloads 23927575 Influence of Superplasticizer and Alkali Activator Concentration on Slag-Fly Ash Based Geopolymer
Authors: Sulaem Musaddiq Laskar, Sudip Talukdar
Abstract:
Sustainable supplementary cementitious material is the prime need in the construction industry. Geopolymer has strong potential for replacing the conventional Portland cement used in mortar and concrete in the industry. This study deals with experimental investigations performed on geopolymer mixes prepared from both ultra-fine ground granulated blast furnace slag and fly ash in a certain proportion. Geopolymer mixes were prepared with alkali activator composed of sodium hydroxide solution and varying amount of superplasticizer. The mixes were tested to study fresh and hardened state properties such as setting time, workability and compressive strength. Influence of concentration of alkali activator on effectiveness of superplasticizer in modifying the properties of geopolymer mixes was also investigated. Results indicated that addition of superplasticizer to ultra-fine slag-fly ash based geopolymer is advantageous in terms of setting time, workability and strength performance but up to certain dosage level. Higher concentration of alkali activator renders ineffectiveness in superplasticizer in improving the fresh and hardened state properties of geopolymer mixes.Keywords: ultra-fine slag, fly ash, superplasticizer, setting time, workability, compressive strength
Procedia PDF Downloads 18627574 Troubleshooting and Resolution of High Vibration Issue in a Gas Compressor
Authors: Mohamad Rizal Mohamad Yatim
Abstract:
This paper presents a case study on the troubleshooting and resolution of a high-vibration issue in a gas compressor. The compressor, a critical component in Khurais Producing Department Saudi Aramco, experienced elevated vibration levels on the drive end side, posing a significant risk of equipment failure and production downtime. Through a detailed investigation, the root cause of the high vibration was identified as liquid carryover from the knockout drum and inadequate pre-startup draining. To address the issue, a field balancing procedure was performed on the drive end side of the compressor. This corrective action effectively reduced vibration levels to acceptable limits, restoring the equipment to optimal operating conditions. The successful resolution of this issue has resulted in significant benefits, including the prevention of catastrophic failures, optimized equipment performance, reduced maintenance costs, enhanced production reliability and demonstrated technical expertise. The lessons learned from this case study can be applied to similar industrial equipment to improve reliability and minimize operational disruptions.Keywords: gas compressor, vibration analysis, root cause analysis, mechanical engineering
Procedia PDF Downloads 1227573 Effect of Design Parameters on Porpoising Instability of a High Speed Planing Craft
Authors: Lokeswara Rao P., Naga Venkata Rakesh N., V. Anantha Subramanian
Abstract:
It is important to estimate, predict, and avoid the dynamic instability of high speed planing crafts. It is known that design parameters like relative location of center of gravity with respect to the dynamic lift centre and length to beam ratio of the craft have influence on the tendency to porpoise. This paper analyzes the hydrodynamic performance on the basis of the semi-empirical Savitsky method and also estimates the same by numerical simulations based on Reynolds Averaged Navier Stokes (RANS) equations using a commercial code namely, STAR- CCM+. The paper examines through the same numerical simulation considering dynamic equilibrium, the changing running trim, which results in porpoising. Some interesting results emerge from the study and this leads to early detection of the instability.Keywords: CFD, planing hull, porpoising, Savitsky method
Procedia PDF Downloads 18227572 Total Quality Management in Companies Manufacturing
Authors: Malki Nadia Fatima Zahra, Kellal Cheimaa, Brahimi Houria
Abstract:
Aim of the study is to show the role of total Quality Management on firm performance; the research relied on the views of sample managers working in the Marinel pharmaceutical company. The research aims to achieve many objectives, including increasing awareness of the concepts of Total Quality Management on Firm Performance, especially in the manufacturing firm, providing a future vision of the possibility of success, and the actual application of the Principles of Total Quality Management in the manufacturing company. The research adopted a default model was built after a review and analysis of the literature review in the context of one hypothesis main points at the origin of a group of sub-hypotheses. The research presented a set of conclusions, and the most important of these conclusions was there is a relationship between the Principles of TQM and Firm Performance.Keywords: total quality management, TQM dimension, firm performance, strategies
Procedia PDF Downloads 7227571 Students Perceptions on the Relevance of High School Mathematics in University Education in South Africa
Authors: Gilbert Makanda, Roelf Sypkens
Abstract:
In this study we investigated the relevance of high school mathematics in university education. The paper particularly focused on whether the concepts taught in high school are enough for engineering courses at diploma level. The study identified particular concepts that are required in engineering courses whether they were adequately covered in high school. A questionnaire was used to investigate whether relevant topics were covered in high school. The respondents were 228 first year students at the Central University of Technology in the Faculty of Engineering and Information Technology. The study indicates that there are some topics such as integration, complex numbers and matrices that are not done at high schools and are required in engineering courses at university. It is further observed that some students did not cover the topics that are in the current syllabus. Female students enter the university less prepared than their male counterparts. More than 30% of the respondents in this study felt that high school mathematics was not useful for them to be able to do engineering courses.Keywords: high school mathematics, university education, SPSS package, students' perceptions
Procedia PDF Downloads 28727570 Assessing Project Performance through Work Sampling and Earned Value Analysis
Authors: Shobha Ramalingam
Abstract:
The majority of the infrastructure projects are affected by time overrun, resulting in project delays and subsequently cost overruns. Time overrun may vary from a few months to as high as five or more years, placing the project viability at risk. One of the probable reasons noted in the literature for this outcome in projects is due to poor productivity. Researchers contend that productivity in construction has only marginally increased over the years. While studies in the literature have extensively focused on time and cost parameters in projects, there are limited studies that integrate time and cost with productivity to assess project performance. To this end, a study was conducted to understand the project delay factors concerning cost, time and productivity. A case-study approach was adopted to collect rich data from a nuclear power plant project site for two months through observation, interviews and document review. The data were analyzed using three different approaches for a comprehensive understanding. Foremost, a root-cause analysis was performed on the data using Ishikawa’s fish-bone diagram technique to identify the various factors impacting the delay concerning time. Based on it, a questionnaire was designed and circulated to concerned executives, including project engineers and contractors to determine the frequency of occurrence of the delay, which was then compiled and presented to the management for a possible solution to mitigate. Second, a productivity analysis was performed on select activities, including rebar bending and concreting through a time-motion study to analyze product performance. Third, data on cost of construction for three years allowed analyzing the cost performance using earned value management technique. All three techniques allowed to systematically and comprehensively identify the key factors that deter project performance and productivity loss in the construction of the nuclear power plant project. The findings showed that improper planning and coordination between multiple trades, concurrent operations, improper workforce and material management, fatigue due to overtime were some of the key factors that led to delays and poor productivity. The findings are expected to act as a stepping stone for further research and have implications for practitioners.Keywords: earned value analysis, time performance, project costs, project delays, construction productivity
Procedia PDF Downloads 9827569 Implementing a Neural Network on a Low-Power and Mobile Cluster to Aide Drivers with Predictive AI for Traffic Behavior
Authors: Christopher Lama, Alix Rieser, Aleksandra Molchanova, Charles Thangaraj
Abstract:
New technologies like Tesla’s Dojo have made high-performance embedded computing more available. Although automobile computing has developed and benefited enormously from these more recent technologies, the costs are still high, prohibitively high in some cases for broader adaptation, particularly for the after-market and enthusiast markets. This project aims to implement a Raspberry Pi-based low-power (under one hundred Watts) highly mobile computing cluster for a neural network. The computing cluster built from off-the-shelf components is more affordable and, therefore, makes wider adoption possible. The paper describes the design of the neural network, Raspberry Pi-based cluster, and applications the cluster will run. The neural network will use input data from sensors and cameras to project a live view of the road state as the user drives. The neural network will be trained to predict traffic behavior and generate warnings when potentially dangerous situations are predicted. The significant outcomes of this study will be two folds, firstly, to implement and test the low-cost cluster, and secondly, to ascertain the effectiveness of the predictive AI implemented on the cluster.Keywords: CS pedagogy, student research, cluster computing, machine learning
Procedia PDF Downloads 10327568 The Impact of Child Maltreatment on School Performance in Saudi Arabia
Authors: Al Muneef Maha, Al Tamimi Dana
Abstract:
Introduction: Child maltreatment was proven to negatively impact children’s and adolescent’s academic performances; showing less academic achievements, problems completing homework assignments, and was marginally associated with being frequently absent from school (1). Objectives: To identify the impact of child maltreatment on school performance among adolescents in National Guard Schools. Materials and Methods: The study was conducted at National Guard schools in Riyadh. Students aged 12-19 years were invited to participate. Participants (N=674) completed the survey instrument which included demographics, exposure to different types of abuse, and overall level of academic performance. Results: Participants’ mean age was 15.6±1.6 years and males (53%). Ninety-five percent lived with both parents, 2% with single parent, and 3% with step parents. Four percent lived with alcoholic parents or guardians, and 7% have lived with a family member who has been arrested or imprisoned. Poor performance (failure in exam) were more likely among the students who lived with alcoholics vs. non-alcoholics (33% vs. 11%, p<0.01), imprisoned family member vs. non-imprisoned (26% vs. 11%, p<0.01), psychologically abused vs. not abused (21% vs. 10%, p<0.01), physically abused vs. not abused (19% vs. 9%, p<0.01). Predisposing factors to poor performance in school included living with alcoholic parents or guardians (OR=2.8, CI=1.1-6.7), psychologically abused (OR=1.7, CI=1.0-3.0), and physically abused (OR=1.7, CI=1.0-2.8). Conclusions: The results suggest that child maltreatment may adversely impact school performance. These findings highlight the importance of increasing the awareness about the impact of child maltreatment on school performance among families, schools, and the community. Recommend to the Ministry of Education to consider counseling of students with poor performance due to adverse child experiences or maltreatment.Keywords: child abuse, child maltreatment, school performance, Saudi Arabia
Procedia PDF Downloads 32727567 Sunlight-Activated Graphene Heterostructure Transparent Cathodes for High-Performance Graphene/Si Schottky Junction Photovoltaics
Authors: Po-Sun Ho, Chun-Wei Chen
Abstract:
This work demonstrated a “sunlight-activated” graphene-heterostructure transparent electrode in which photogenerated charges from a light-absorbing material are transferred to graphene, resulting in the modulation of electrical properties of the graphene transparent electrode caused by a strong light–matter interaction at graphene-heterostructure interfaces. A photoactive graphene/TiOx-heterostructure transparent cathode was used to fabricate an n-graphene/p-Si Schottky junction solar cell, achieving a record-high power conversion efficiency (>10%). The photoactive graphene-heterostructure transparent electrode, which exhibits excellent tunable electrical properties under sunlight illumination, has great potential for use in the future development of graphene-based photovoltaics and optoelectronics.Keywords: graphene, transparent electrode, graphene/Si Schottky junction, solar cells
Procedia PDF Downloads 31227566 Using 3D Satellite Imagery to Generate a High Precision Canopy Height Model
Authors: M. Varin, A. M. Dubois, R. Gadbois-Langevin, B. Chalghaf
Abstract:
Good knowledge of the physical environment is essential for an integrated forest planning. This information enables better forecasting of operating costs, determination of cutting volumes, and preservation of ecologically sensitive areas. The use of satellite images in stereoscopic pairs gives the capacity to generate high precision 3D models, which are scale-adapted for harvesting operations. These models could represent an alternative to 3D LiDAR data, thanks to their advantageous cost of acquisition. The objective of the study was to assess the quality of stereo-derived canopy height models (CHM) in comparison to a traditional LiDAR CHM and ground tree-height samples. Two study sites harboring two different forest stand types (broadleaf and conifer) were analyzed using stereo pairs and tri-stereo images from the WorldView-3 satellite to calculate CHM. Acquisition of multispectral images from an Unmanned Aerial Vehicle (UAV) was also realized on a smaller part of the broadleaf study site. Different algorithms using two softwares (PCI Geomatica and Correlator3D) with various spatial resolutions and band selections were tested to select the 3D modeling technique, which offered the best performance when compared with LiDAR. In the conifer study site, the CHM produced with Corelator3D using only the 50-cm resolution panchromatic band was the one with the smallest Root-mean-square deviation (RMSE: 1.31 m). In the broadleaf study site, the tri-stereo model provided slightly better performance, with an RMSE of 1.2 m. The tri-stereo model was also compared to the UAV, which resulted in an RMSE of 1.3 m. At individual tree level, when ground samples were compared to satellite, lidar, and UAV CHM, RMSE were 2.8, 2.0, and 2.0 m, respectively. Advanced analysis was done for all of these cases, and it has been noted that RMSE is reduced when the canopy cover is higher when shadow and slopes are lower and when clouds are distant from the analyzed site.Keywords: very high spatial resolution, satellite imagery, WorlView-3, canopy height models, CHM, LiDAR, unmanned aerial vehicle, UAV
Procedia PDF Downloads 13027565 A High Performance Piano Note Recognition Scheme via Precise Onset Detection and Segmented Short-Time Fourier Transform
Authors: Sonali Banrjee, Swarup Kumar Mitra, Aritra Acharyya
Abstract:
A piano note recognition method has been proposed by the authors in this paper. The authors have used a comprehensive method for onset detection of each note present in a piano piece followed by segmented short-time Fourier transform (STFT) for the identification of piano notes. The performance evaluation of the proposed method has been carried out in different harsh noisy environments by adding different levels of additive white Gaussian noise (AWGN) having different signal-to-noise ratio (SNR) in the original signal and evaluating the note detection error rate (NDER) of different piano pieces consisting of different number of notes at different SNR levels. The NDER is found to be remained within 15% for all piano pieces under consideration when the SNR is kept above 8 dB.Keywords: AWGN, onset detection, piano note, STFT
Procedia PDF Downloads 160