Search results for: computational imaging
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3266

Search results for: computational imaging

716 AAV-Mediated Human Α-Synuclein Expression in a Rat Model of Parkinson's Disease –Further Characterization of PD Phenotype, Fine Motor Functional Effects as Well as Neurochemical and Neuropathological Changes over Time

Authors: R. Pussinen, V. Jankovic, U. Herzberg, M. Cerrada-Gimenez, T. Huhtala, A. Nurmi, T. Ahtoniemi

Abstract:

Targeted over-expression of human α-synuclein using viral-vector mediated gene delivery into the substantia nigra of rats and non-human primates has been reported to lead to dopaminergic cell loss and the formation of α-synuclein aggregates reminiscent of Lewy bodies. We have previously shown how AAV-mediated expression of α-synuclein is seen in the chronic phenotype of the rats over 16 week follow-up period. In the context of these findings, we attempted to further characterize this long term PD related functional and motor deficits as well as neurochemical and neuropathological changes in AAV-mediated α-synuclein transfection model in rats during chronic follow-up period. Different titers of recombinant AAV expressing human α-synuclein (A53T) were stereotaxically injected unilaterally into substantia nigra of Wistar rats. Rats were allowed to recover for 3 weeks prior to initial baseline behavioral testing with rotational asymmetry test, stepping test and cylinder test. A similar behavioral test battery was applied again at weeks 5, 9,12 and 15. In addition to traditionally used rat PD model tests, MotoRater test system, a high speed kinematic gait performance monitoring was applied during the follow-up period. Evaluation focused on animal gait between groups. Tremor analysis was performed on weeks 9, 12 and 15. In addition to behavioral end-points, neurochemical evaluation of dopamine and its metabolites were evaluated in striatum. Furthermore, integrity of the dopamine active transport (DAT) system was evaluated by using 123I- β-CIT and SPECT/CT imaging on weeks 3, 8 and 12 after AAV- α-synuclein transfection. Histopathology was examined from end-point samples at 3 or 12 weeks after AAV- α-synuclein transfection to evaluate dopaminergic cell viability and microglial (Iba-1) activation status in substantia nigra by using stereological analysis techniques. This study focused on the characterization and validation of previously published AAV- α-synuclein transfection model in rats but with the addition of novel end-points. We present the long term phenotype of AAV- α-synuclein transfected rats with traditionally used behavioral tests but also by using novel fine motor analysis techniques and tremor analysis which provide new insight to unilateral effects of AAV α-synuclein transfection. We also present data about neurochemical and neuropathological end-points for the dopaminergic system in the model and how well they correlate with behavioral phenotype.

Keywords: adeno-associated virus, alphasynuclein, animal model, Parkinson’s disease

Procedia PDF Downloads 295
715 Estimating Age in Deceased Persons from the North Indian Population Using Ossification of the Sternoclavicular Joint

Authors: Balaji Devanathan, Gokul G., Raveena Divya, Abhishek Yadav, Sudhir K. Gupta

Abstract:

Background: Age estimation is a common problem in administrative settings, medico legal cases, and among athletes competing in different sports. Age estimation is a problem in medico legal problems that arise in hospitals when there has been a criminal abortion, when consenting to surgery or a general physical examination, when there has been infanticide, impotence, sterility, etc. Medical imaging progress has benefited forensic anthropology in various ways, most notably in the area of determining bone age. An efficient method for researching the epiphyseal union and other differences in the body's bones and joints is multi-slice computed tomography. There isn't a significant database on Indians available. So to obtain an Indian based database author has performed this original study. Methodologies: The appearance and fusion of ossification centre of sternoclavicular joint is evaluated, and grades were assigned accordingly. Using MSCT scans, we examined the relationship between the age of the deceased and alterations in the sternoclavicular joint during the appearance and union in 500 instances, 327 men and 173 females, in the age range of 0 to 25 years. Results: According to our research in both the male and female groups, the ossification centre for the medial end of the clavicle first appeared between the ages of 18.5 and 17.1 respectively. The age range of the partial union was 20.4 and 20.2 years old. The earliest age of complete fusion was 23 years for males and 22 years for females. For fusion of their sternebrae into one, age range is 11–24 years for females and 17–24 years. The fusion of the third and fourth sternebrae was completed by 11 years. The fusions of the first and second and second and third sternebrae occur by the age of 17 years. Furthermore, correlation and reliability were carried out which yielded significant results. Conclusion: With numerous exceptions, the projected values are consistent with a large number of the previously developed age charts. These variations may be caused by the ethnic or regional heterogeneity in the ossification pattern among the population under study. The pattern of bone maturation did not significantly differ between the sexes, according to the study. The study's age range was 0 to 25 years, and for obvious reasons, the majority of the occurrences occurred in the last five years, or between 20 and 25 years of age. This resulted in a comparatively smaller study population for the 12–18 age group, where age estimate is crucial because of current legal requirements. It will require specialized PMCT research in this age range to produce population standard charts for age estimate. The medial end of the clavicle is one of several ossification foci that are being thoroughly investigated since they are challenging to assess with a traditional X-ray examination. Combining the two has been shown to be a valid result when it comes to raising the age beyond eighteen.

Keywords: age estimation, sternoclavicular joint, medial clavicle, computed tomography

Procedia PDF Downloads 44
714 Finite Element Simulation of RC Exterior Beam-Column Joints Using Damage Plasticity Model

Authors: A. M. Halahla, M. H. Baluch, M. K. Rahman, A. H. Al-Gadhib, M. N. Akhtar

Abstract:

In the present study, 3D simulation of a typical exterior (RC) beam–column joint (BCJ) strengthened with carbon fiber-reinforced plastic (CFRP) sheet are carried out. Numerical investigations are performed using a nonlinear finite element ( FE) analysis by incorporating damage plasticity model (CDP), for material behaviour the concrete response in compression, tension softening were used, linear plastic with isotropic hardening for reinforcing steel, and linear elastic lamina material model for CFRP sheets using the commercial FE software ABAQUS. The numerical models developed in the present study are validated with the results obtained from the experiment under monotonic loading using the hydraulic Jack in displacement control mode. The experimental program includes casting of deficient BCJ loaded to failure load for both un-strengthened and strengthened BCJ. The failure mode, and deformation response of CFRP strengthened and un-strengthened joints and propagation of damage in the components of BCJ are discussed. Finite element simulations are compared with the experimental result and are noted to yield reasonable comparisons. The damage plasticity model was able to capture with good accuracy of the ultimate load and the mode of failure in the beam column joint.

Keywords: reinforced concrete, exterior beam-column joints, concrete damage plasticity model, computational simulation, 3-D finite element model

Procedia PDF Downloads 383
713 New Active Dioxin Response Element Sites in Regulatory Region of Human and Viral Genes

Authors: Ilya B. Tsyrlov, Dmitry Y. Oshchepkov

Abstract:

A computational search for dioxin response elements (DREs) in genes of proteins comprising the Ah receptor (AhR) cytosolic core complex was performed by highly efficient tool SITECON. Eventually, the following number of new DREs in 5’flanking region was detected by SITECON: one in AHR gene, five in XAP2, eight in HSP90AA1, and three in HSP90AB1 genes. Numerous DREs found in genes of AhR and AhR cytosolic complex members would shed a light on potential mechanisms of expression, the stoichiometry of unliganded AhR core complex, and its degradation vs biosynthesis dynamics resulted from treatment of target cells with the AhR most potent ligand, 2,3,7,8-TCDD. With human viruses, reduced susceptibility to TCDD of geneencoding HIV-1 P247 was justified by the only potential DRE determined in gag gene encoding HIV-1 P24 protein, whereas the regulatory region of CMV genes encoding IE gp/UL37 has five potent DRE, 1.65 kb/UL36 – six DRE, pp65 and pp71 – each has seven DRE, and pp150 – ten DRE. Also, from six to eight DRE were determined with SITECON in the regulatory region of HSV-1 IE genes encoding tegument proteins, UL36 and UL37, and of UL19 gene encoding bindingglycoprotein C (gC). So, TCDD in the low picomolar range may activate in human cells AhR: Arnt transcription pathway that triggers CMV and HSV-1 reactivation by binding to numerous promoter DRE within immediate-early (IE) genes UL37 and UL36, thus committing virus to the lytic cycle.

Keywords: dioxin response elements, Ah receptor, AhR: Arnt transcription pathway, human and viral genes

Procedia PDF Downloads 104
712 Simplified Analysis Procedure for Seismic Evaluation of Tall Building at Structure and Component Level

Authors: Tahir Mehmood, Pennung Warnitchai

Abstract:

Simplified static analysis procedures such Nonlinear Static Procedure (NSP) are gaining popularity for the seismic evaluation of buildings. However, these simplified procedures accounts only for the seismic responses of the fundamental vibration mode of the structure. Some other procedures which can take into account the higher modes of vibration, lack in accuracy to determine the component responses. Hence, such procedures are not suitable for evaluating the structures where many vibration modes may participate significantly or where component responses are needed to be evaluated. Moreover, these procedures were found to either computationally expensive or tedious to obtain individual component responses. In this paper, a simplified but accurate procedure is studied. It is called the Uncoupled Modal Response History Analysis (UMRHA) procedure. In this procedure, the nonlinear response of each vibration mode is first computed, and they are later on combined into the total response of the structure. The responses of four tall buildings are computed by this simplified UMRHA procedure and compared with those obtained from the NLRHA procedure. The comparison shows that the UMRHA procedure is able to accurately compute the global responses, i.e., story shears and story overturning moments, floor accelerations and inter-story drifts as well as the component level responses of these tall buildings with heights varying from 20 to 44 stories. The required computational effort is also extremely low compared to that of the Nonlinear Response History Analysis (NLRHA) procedure.

Keywords: higher mode effects, seismic evaluation procedure, tall buildings, component responses

Procedia PDF Downloads 342
711 Numerical Investigation of Tsunami Flow Characteristics and Energy Reduction through Flexible Vegetation

Authors: Abhishek Mukherjee, Juan C. Cajas, Jenny Suckale, Guillaume Houzeaux, Oriol Lehmkuhl, Simone Marras

Abstract:

The investigation of tsunami flow characteristics and the quantification of tsunami energy reduction through the coastal vegetation is important to understand the protective benefits of nature-based mitigation parks. In the present study, a three-dimensional non-hydrostatic incompressible Computational Fluid Dynamics model with a two-way coupling enabled fluid-structure interaction approach (FSI) is used. After validating the numerical model against experimental data, tsunami flow characteristics have been investigated by varying vegetation density, modulus of elasticity, the gap between stems, and arrangement or distribution of vegetation patches. Streamwise depth average velocity profiles, turbulent kinetic energy, energy flux reflection, and dissipation extracted by the numerical study will be presented in this study. These diagnostics are essential to assess the importance of different parameters to design the proper coastal defense systems. When a tsunami wave reaches the shore, it transforms into undular bores, which induce scour around offshore structures and sediment transport. The bed shear stress, instantaneous turbulent kinetic energy, and the vorticity near-bed will be presented to estimate the importance of vegetation to prevent tsunami-induced scour and sediment transport.

Keywords: coastal defense, energy flux, fluid-structure interaction, natural hazards, sediment transport, tsunami mitigation

Procedia PDF Downloads 150
710 Effects of Oxytocin on Neural Response to Facial Emotion Recognition in Schizophrenia

Authors: Avyarthana Dey, Naren P. Rao, Arpitha Jacob, Chaitra V. Hiremath, Shivarama Varambally, Ganesan Venkatasubramanian, Rose Dawn Bharath, Bangalore N. Gangadhar

Abstract:

Objective: Impaired facial emotion recognition is widely reported in schizophrenia. Neuropeptide oxytocin is known to modulate brain regions involved in facial emotion recognition, namely amygdala, in healthy volunteers. However, its effect on facial emotion recognition deficits seen in schizophrenia is not well explored. In this study, we examined the effect of intranasal OXT on processing facial emotions and its neural correlates in patients with schizophrenia. Method: 12 male patients (age= 31.08±7.61 years, education= 14.50±2.20 years) participated in this single-blind, counterbalanced functional magnetic resonance imaging (fMRI) study. All participants underwent three fMRI scans; one at baseline, one each after single dose 24IU intranasal OXT and intranasal placebo. The order of administration of OXT and placebo were counterbalanced and subject was blind to the drug administered. Participants performed a facial emotion recognition task presented in a block design with six alternating blocks of faces and shapes. The faces depicted happy, angry or fearful emotions. The images were preprocessed and analyzed using SPM 12. First level contrasts comparing recognition of emotions and shapes were modelled at individual subject level. A group level analysis was performed using the contrasts generated at the first level to compare the effects of intranasal OXT and placebo. The results were thresholded at uncorrected p < 0.001 with a cluster size of 6 voxels. Neuropeptide oxytocin is known to modulate brain regions involved in facial emotion recognition, namely amygdala, in healthy volunteers. Results: Compared to placebo, intranasal OXT attenuated activity in inferior temporal, fusiform and parahippocampal gyri (BA 20), premotor cortex (BA 6), middle frontal gyrus (BA 10) and anterior cingulate gyrus (BA 24) and enhanced activity in the middle occipital gyrus (BA 18), inferior occipital gyrus (BA 19), and superior temporal gyrus (BA 22). There were no significant differences between the conditions on the accuracy scores of emotion recognition between baseline (77.3±18.38), oxytocin (82.63 ± 10.92) or Placebo (76.62 ± 22.67). Conclusion: Our results provide further evidence to the modulatory effect of oxytocin in patients with schizophrenia. Single dose oxytocin resulted in significant changes in activity of brain regions involved in emotion processing. Future studies need to examine the effectiveness of long-term treatment with OXT for emotion recognition deficits in patients with schizophrenia.

Keywords: recognition, functional connectivity, oxytocin, schizophrenia, social cognition

Procedia PDF Downloads 220
709 Comparison of the Toxicity of Silver and Gold Nanoparticles in Murine Fibroblasts

Authors: Šárka Hradilová, Aleš Panáček, Radek Zbořil

Abstract:

Nanotechnologies are considered the most promising fields with high added value, brings new possibilities in various sectors from industry to medicine. With the growing of interest in nanomaterials and their applications, increasing nanoparticle production leads to increased exposure of people and environment with ‘human made’ nanoparticles. Nanoparticles (NPs) are clusters of atoms in the size range of 1–100 nm. Metal nanoparticles represent one of the most important and frequently used types of NPs due to their unique physical, chemical and biological properties, which significantly differ from those of bulk material. Biological properties including toxicity of metal nanoparticles are generally determined by their size, size distribution, shape, surface area, surface charge, surface chemistry, stability in the environment and ability to release metal ions. Therefore, the biological behavior of NPs and their possible adverse effect cannot be derived from the bulk form of material because nanoparticles show unique properties and interactions with biological systems just due to their nanodimensions. Silver and gold NPs are intensively studied and used. Both can be used for instance in surface enhanced Raman spectroscopy, a considerable number of applications of silver NPs is associated with antibacterial effects, while gold NPs are associated with cancer treatment and bio imaging. Antibacterial effects of silver ions are known for centuries. Silver ions and silver-based compounds are highly toxic to microorganisms. Toxic properties of silver NPs are intensively studied, but the mechanism of cytoxicity is not fully understood. While silver NPs are considered toxic, gold NPs are referred to as toxic but also innocuous for eukaryotic cells. Therefore, gold NPs are used in various biological applications without a risk of cell damaging, even when we want to suppress the growth of cancer cells. Thus, gold NPs are toxic or harmless. Because most studies comparing particles of various sizes prepared in various ways, and testing is performed on different cell lines, it is very difficult to generalize. The novelty and significance of our research is focused to the complex biological effects of silver and gold NPs prepared by the same method, have the same parameters and the same stabilizer. That is why we can compare the biological effects of pure nanometals themselves based on their chemical nature without the influence of other variable. Aim of our study therefore is to compare the cytotoxic effect of two types of noble metal NPs focusing on the mechanisms that contribute to cytotoxicity. The study was conducted on murine fibroblasts by selected common used tests. Each of these tests monitors the selected area related to toxicity and together provides a comprehensive view on the issue of interactions of nanoparticles and living cells.

Keywords: cytotoxicity, gold nanoparticles, mechanism of cytotoxicity, silver nanoparticles

Procedia PDF Downloads 254
708 Over Cracking in Furnace and Corrective Action by Computational Fluid Dynamics (CFD) Analysis

Authors: Mokhtari Karchegani Amir, Maboudi Samad, Azadi Reza, Dastanian Raoof

Abstract:

Marun's petrochemical cracking furnaces have a very comprehensive operating control system for combustion and related equipment, utilizing advanced instrument circuits. However, after several years of operation, numerous problems arose in the pyrolysis furnaces. A team of experts conducted an audit, revealing that the furnaces were over-designed, leading to excessive consumption of air and fuel. This issue was related to the burners' shutter settings, which had not been configured properly. The operations department had responded by increasing the induced draft fan speed and forcing the instrument switches to counteract the wind effect in the combustion chamber. Using Fluent and Gambit software, the furnaces were analyzed. The findings indicated that this situation elevated the convection part's temperature, causing uneven heat distribution inside the furnace. Consequently, this led to overheating in the convection section and excessive cracking within the coils in the radiation section. The increased convection temperature damaged convection parts and resulted in equipment blockages downstream of the furnaces due to the production of more coke and tar in the process. To address these issues, corrective actions were implemented. The excess air for burners and combustion chambers was properly set, resulting in improved efficiency, reduced emissions of environmentally harmful gases, prevention of creep in coils, decreased fuel consumption, and lower maintenance costs.

Keywords: furnace, coke, CFD analysis, over cracking

Procedia PDF Downloads 77
707 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain

Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA

Abstract:

In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.

Keywords: BER, DWT, extreme leaning machine (ELM), PSNR

Procedia PDF Downloads 311
706 Physical Characterization of a Watershed for Correlation with Parameters of Thomas Hydrological Model and Its Application in Iber Hidrodinamic Model

Authors: Carlos Caro, Ernest Blade, Nestor Rojas

Abstract:

This study determined the relationship between basic geo-technical parameters and parameters of the hydro logical model Thomas for water balance of rural watersheds, as a methodological calibration application, applicable in distributed models as IBER model, which represents a distributed system simulation models for unsteady flow numerical free surface. There was an exploration in 25 points (on 15 sub) basin of Rio Piedras (Boy.) obtaining soil samples, to which geo-technical characterization was performed by laboratory tests. Thomas model has a physical characterization of the input area by only four parameters (a, b, c, d). Achieve measurable relationship between geo technical parameters and 4 values of hydro logical parameters helps to determine subsurface, underground and surface flow more agile manner. It is intended in this way to reach some solutions regarding limits initial model parameters on the basis of Thomas geo-technical characterization. In hydro geological models of rural watersheds, calibration is an important process in the characterization of the study area. This step can require a significant computational cost and time, especially if the initial values or parameters before calibration are outside of the geo-technical reality. A better approach in these initial values means optimization of these process through a geo-technical materials area, where is obtained an important approach to the study as in the starting range of variation for the calibration parameters.

Keywords: distributed hydrology, hydrological and geotechnical characterization, Iber model

Procedia PDF Downloads 522
705 Web and Smart Phone-based Platform Combining Artificial Intelligence and Satellite Remote Sensing Data to Geoenable Villages for Crop Health Monitoring

Authors: Siddhartha Khare, Nitish Kr Boro, Omm Animesh Mishra

Abstract:

Recent food price hikes may signal the end of an era of predictable global grain crop plenty due to climate change, population expansion, and dietary changes. Food consumption will treble in 20 years, requiring enormous production expenditures. Climate and the atmosphere changed owing to rainfall and seasonal cycles in the past decade. India's tropical agricultural relies on evapotranspiration and monsoons. In places with limited resources, the global environmental change affects agricultural productivity and farmers' capacity to adjust to changing moisture patterns. Motivated by these difficulties, satellite remote sensing might be combined with near-surface imaging data (smartphones, UAVs, and PhenoCams) to enable phenological monitoring and fast evaluations of field-level consequences of extreme weather events on smallholder agriculture output. To accomplish this technique, we must digitally map all communities agricultural boundaries and crop kinds. With the improvement of satellite remote sensing technologies, a geo-referenced database may be created for rural Indian agriculture fields. Using AI, we can design digital agricultural solutions for individual farms. Main objective is to Geo-enable each farm along with their seasonal crop information by combining Artificial Intelligence (AI) with satellite and near-surface data and then prepare long term crop monitoring through in-depth field analysis and scanning of fields with satellite derived vegetation indices. We developed an AI based algorithm to understand the timelapse based growth of vegetation using PhenoCam or Smartphone based images. We developed an android platform where user can collect images of their fields based on the android application. These images will be sent to our local server, and then further AI based processing will be done at our server. We are creating digital boundaries of individual farms and connecting these farms with our smart phone application to collect information about farmers and their crops in each season. We are extracting satellite-based information for each farm from Google earth engine APIs and merging this data with our data of tested crops from our app according to their farm’s locations and create a database which will provide the data of quality of crops from their location.

Keywords: artificial intelligence, satellite remote sensing, crop monitoring, android and web application

Procedia PDF Downloads 100
704 Staphylococcus Aureus Septic Arthritis and Necrotizing Fasciitis in a Patient With Undiagnosed Diabetes Mellitus.

Authors: Pedro Batista, André Vinha, Filipe Castelo, Bárbara Costa, Ricardo Sousa, Raquel Ricardo, André Pinto

Abstract:

Background: Septic arthritis is a diagnosis that must be considered in any patient presenting with acute joint swelling and fever. Among the several risk factors for septic arthritis, such as age, rheumatoid arthritis, recent surgery, or skin infection, diabetes mellitus can sometimes be the main risk factor. Staphylococcus aureus is the most common pathogen isolated in septic arthritis; however, it is uncommon in monomicrobial necrotizing fasciitis. Objectives: A case report of concomitant septic arthritis and necrotizing fasciitis in a patient with undiagnosed diabetes based on clinical history. Study Design & Methods: We report a case of a 58-year-old Portuguese previously healthy man who presented to the emergency department with fever and left knee swelling and pain for two days. The blood work revealed ketonemia of 6.7 mmol/L and glycemia of 496 mg/dL. The vital signs were significant for a temperature of 38.5 ºC and 123 bpm of heart rate. The left knee had edema and inflammatory signs. Computed tomography of the left knee showed diffuse edema of the subcutaneous cellular tissue and soft tissue air bubbles. A diagnosis of septic arthritis and necrotising fasciitis was made. He was taken to the operating room for surgical debridement. The samples collected intraoperatively were sent for microbiological analysis, revealing infection by multi-sensitive Staphylococcus aureus. Given this result, the empiric flucloxacillin (500 mg IV) and clindamycin (1000 mg IV) were maintained for 3 weeks. On the seventh day of hospitalization, there was a significant improvement in subcutaneous and musculoskeletal tissues. After two weeks of hospitalization, there was no purulent content and partial closure of the wounds was possible. After 3 weeks, he was switched to oral antibiotics (flucloxacillin 500 mg). A week later, a urinary infection by Pseudomonas aeruginosa was diagnosed and ciprofloxacin 500 mg was administered for 7 days without complications. After 30 days of hospital admission, the patient was discharged home and recovered. Results: The final diagnosis of concomitant septic arthritis and necrotizing fasciitis was made based on the imaging findings, surgical exploration and microbiological tests results. Conclusions: Early antibiotic administration and surgical debridement are key in the management of septic arthritis and necrotizing fasciitis. Furthermore, risk factors control (euglycemic blood glucose levels) must always be taken into account given the crucial role in the patient's recovery.

Keywords: septic arthritis, Necrotizing fasciitis, diabetes, Staphylococcus Aureus

Procedia PDF Downloads 315
703 Anti-Phospholipid Antibody Syndrome Presenting with Seizure, Stroke and Atrial Mass: A Case Report

Authors: Rajish Shil, Amal Alduhoori, Vipin Thomachan, Jamal Teir, Radhakrishnan Renganathan

Abstract:

Background: Antiphospholipid antibody syndrome (APS) has a broad spectrum of thrombotic and non-thrombotic clinical manifestations. We present a case of APS presenting with seizure, stroke, and atrial mass. Case Description: A 38-year-old male presented with headache of 10 days duration and tonic-clonic seizure. The neurological examination was normal. Magnetic resonance imaging of brain showed small acute right cerebellar infarct. Magnetic resonance angiography of brain and neck showed a focal narrowing in the origin of the internal carotid artery bilaterally. Electroencephalogram was normal. He was started on aspirin, atorvastatin, and carbamazepine. Transthoracic and trans-esophageal echocardiography showed a pedunculated and lobular atrial mass, measuring 1 X 1.5 cm, which was freely mobile across mitral valve opening across the left ventricular inflow. Autoimmune screening showed positive Antiphospholipid antibodies in high titer (Cardiolipin IgG > 120 units/ml, B2 glycoprotein IgG 90 units/mL). Anti-nuclear antibody was negative. Erythrocyte sedimentation rate and C-reactive protein levels were normal. Platelet count was low (111 x 109/L). The patient underwent successful surgical removal of the mass, which looked like a thrombotic clot, and Histopathological analysis confirmed it as a fibrinous clot, with no evidence of tumor cells. The patient was started on full anticoagulation treatment and was followed up regularly in the clinic, where our patient did not have any further complications from the disease. Discussion: Our patient was diagnosed to have APS based on the features of high positive anticardiolipin antibody IgG and B2 glycoprotein IgG levels, Stroke, thrombocytopenia, and abnormal echo findings. Thrombotic vegetation can mimic an atrial myxoma on echo. Conclusion: APS can present with neurological and cardiac manifestations, and therefore a high index of suspicion is necessary for a diagnosis of the disease as it can affect both short and long term treatment plans and prognosis. Therefore, in patients presenting with neurological symptoms like seizures, weakness and radiological diagnosis of stroke in a young patient, where atrial masses could be thought to be the cause of stroke, they should be screened for any concomitant findings of thrombocytopenia and/or activated partial thromboplastin time prolongation, which should raise the suspicion of vasculitis, specifically APS to be the primary cause of the clinical presentation.

Keywords: antiphospholipid syndrome, seizures, atrial mass, stroke

Procedia PDF Downloads 113
702 Evaluation of Non-Staggered Body-Fitted Grid Based Solution Method in Application to Supercritical Fluid Flows

Authors: Suresh Sahu, Abhijeet M. Vaidya, Naresh K. Maheshwari

Abstract:

The efforts to understand the heat transfer behavior of supercritical water in supercritical water cooled reactor (SCWR) are ongoing worldwide to fulfill the future energy demand. The higher thermal efficiency of these reactors compared to a conventional nuclear reactor is one of the driving forces for attracting the attention of nuclear scientists. In this work, a solution procedure has been described for solving supercritical fluid flow problems in complex geometries. The solution procedure is based on non-staggered grid. All governing equations are discretized by finite volume method (FVM) in curvilinear coordinate system. Convective terms are discretized by first-order upwind scheme and central difference approximation has been used to discretize the diffusive parts. k-ε turbulence model with standard wall function has been employed. SIMPLE solution procedure has been implemented for the curvilinear coordinate system. Based on this solution method, 3-D Computational Fluid Dynamics (CFD) code has been developed. In order to demonstrate the capability of this CFD code in supercritical fluid flows, heat transfer to supercritical water in circular tubes has been considered as a test problem. Results obtained by code have been compared with experimental results reported in literature.

Keywords: curvilinear coordinate, body-fitted mesh, momentum interpolation, non-staggered grid, supercritical fluids

Procedia PDF Downloads 130
701 Revealing Potential Drug Targets against Proto-Oncogene Wnt10B by Comparative Molecular Docking

Authors: Shazia Mannan, Zunera Khalid, Hammad-Ul-Mubeen

Abstract:

Wingless type Mouse mammary tumor virus (MMTV) Integration site-10B (Wnt10B) is an important member of the Wnt protein family that functions as cellular messenger in paracrine manner. Aberrant Wnt10B activity is the cause of several abnormalities including cancers of breast, cervix, liver, gastric tract, esophagus, pancreas as well as physiological problems like obesity, and osteoporosis. The objective of this study was to determine the possible inhibitors against aberrant expression of Wnt10B in order to prevent and treat the physiological disorders associated with it. Wnt10B3D structure was predicted by using comparative modeling and then analyzed by PROCHECK, Verify3D, and Errat. The model having 84.54% quality value was selected and acylated to satisfy the hydrophobic nature of Wnt10B. For search of inhibitors, virtual screening was performed on Natural Products (NP) database. The compounds were filtered and ligand-based screening was performed using the antagonist for mouse Wnt-3A. This resulted in a library of 272 unique compounds having most potent drug like activities for Wnt-4. Out of the 271 molecules analyzed three small molecules ZINC35442871, ZINC85876388, and ZINC00754234 having activity against Wnt4 abbarent expression were found common through docking experiment of Wnt10B. It is concluded that the three molecules ZINC35442871, ZINC85876388, and ZINC00754234 can be considered as lead compounds for performing further drug designing experiments against aberrant Wnt expressions.

Keywords: Wnt10B inhibitors, comparative computational studies, proto-oncogene, molecular docking

Procedia PDF Downloads 156
700 A Machine Learning Based Framework for Education Levelling in Multicultural Countries: UAE as a Case Study

Authors: Shatha Ghareeb, Rawaa Al-Jumeily, Thar Baker

Abstract:

In Abu Dhabi, there are many different education curriculums where sector of private schools and quality assurance is supervising many private schools in Abu Dhabi for many nationalities. As there are many different education curriculums in Abu Dhabi to meet expats’ needs, there are different requirements for registration and success. In addition, there are different age groups for starting education in each curriculum. In fact, each curriculum has a different number of years, assessment techniques, reassessment rules, and exam boards. Currently, students that transfer curriculums are not being placed in the right year group due to different start and end dates of each academic year and their date of birth for each year group is different for each curriculum and as a result, we find students that are either younger or older for that year group which therefore creates gaps in their learning and performance. In addition, there is not a way of storing student data throughout their academic journey so that schools can track the student learning process. In this paper, we propose to develop a computational framework applicable in multicultural countries such as UAE in which multi-education systems are implemented. The ultimate goal is to use cloud and fog computing technology integrated with Artificial Intelligence techniques of Machine Learning to aid in a smooth transition when assigning students to their year groups, and provide leveling and differentiation information of students who relocate from a particular education curriculum to another, whilst also having the ability to store and access student data from anywhere throughout their academic journey.

Keywords: admissions, algorithms, cloud computing, differentiation, fog computing, levelling, machine learning

Procedia PDF Downloads 142
699 Providing Reliability, Availability and Scalability Support for Quick Assist Technology Cryptography on the Cloud

Authors: Songwu Shen, Garrett Drysdale, Veerendranath Mannepalli, Qihua Dai, Yuan Wang, Yuli Chen, David Qian, Utkarsh Kakaiya

Abstract:

Hardware accelerator has been a promising solution to reduce the cost of cloud data centers. This paper investigates the QoS enhancement of the acceleration of an important datacenter workload: the webserver (or proxy) that faces high computational consumption originated from secure sockets layer (SSL) or transport layer security (TLS) procession in the cloud environment. Our study reveals that for the accelerator maintenance cases—need to upgrade driver/firmware or hardware reset due to hardware hang; we still can provide cryptography services by switching to software during maintenance phase and then switching back to accelerator after maintenance. The switching is seamless to server application such as Nginx that runs inside a VM on top of the server. To achieve this high availability goal, we propose a comprehensive fallback solution based on Intel® QuickAssist Technology (QAT). This approach introduces an architecture that involves the collaboration between physical function (PF) and virtual function (VF), and collaboration among VF, OpenSSL, and web application Nginx. The evaluation shows that our solution could provide high reliability, availability, and scalability (RAS) of hardware cryptography service in a 7x24x365 manner in the cloud environment.

Keywords: accelerator, cryptography service, RAS, secure sockets layer/transport layer security, SSL/TLS, virtualization fallback architecture

Procedia PDF Downloads 159
698 Marine Environmental Monitoring Using an Open Source Autonomous Marine Surface Vehicle

Authors: U. Pruthviraj, Praveen Kumar R. A. K. Athul, K. V. Gangadharan, S. Rao Shrikantha

Abstract:

An open source based autonomous unmanned marine surface vehicle (UMSV) is developed for some of the marine applications such as pollution control, environmental monitoring and thermal imaging. A double rotomoulded hull boat is deployed which is rugged, tough, quick to deploy and moves faster. It is suitable for environmental monitoring, and it is designed for easy maintenance. A 2HP electric outboard marine motor is used which is powered by a lithium-ion battery and can also be charged from a solar charger. All connections are completely waterproof to IP67 ratings. In full throttle speed, the marine motor is capable of up to 7 kmph. The motor is integrated with an open source based controller using cortex M4F for adjusting the direction of the motor. This UMSV can be operated by three modes: semi-autonomous, manual and fully automated. One of the channels of a 2.4GHz radio link 8 channel transmitter is used for toggling between different modes of the USMV. In this electric outboard marine motor an on board GPS system has been fitted to find the range and GPS positioning. The entire system can be assembled in the field in less than 10 minutes. A Flir Lepton thermal camera core, is integrated with a 64-bit quad-core Linux based open source processor, facilitating real-time capturing of thermal images and the results are stored in a micro SD card which is a data storage device for the system. The thermal camera is interfaced to an open source processor through SPI protocol. These thermal images are used for finding oil spills and to look for people who are drowning at low visibility during the night time. A Real Time clock (RTC) module is attached with the battery to provide the date and time of thermal images captured. For the live video feed, a 900MHz long range video transmitter and receiver is setup by which from a higher power output a longer range of 40miles has been achieved. A Multi-parameter probe is used to measure the following parameters: conductivity, salinity, resistivity, density, dissolved oxygen content, ORP (Oxidation-Reduction Potential), pH level, temperature, water level and pressure (absolute).The maximum pressure it can withstand 160 psi, up to 100m. This work represents a field demonstration of an open source based autonomous navigation system for a marine surface vehicle.

Keywords: open source, autonomous navigation, environmental monitoring, UMSV, outboard motor, multi-parameter probe

Procedia PDF Downloads 241
697 Measurement of Magnetic Properties of Grainoriented Electrical Steels at Low and High Fields Using a Novel Single

Authors: Nkwachukwu Chukwuchekwa, Joy Ulumma Chukwuchekwa

Abstract:

Magnetic characteristics of grain-oriented electrical steel (GOES) are usually measured at high flux densities suitable for its typical applications in power transformers. There are limited magnetic data at low flux densities which are relevant for the characterization of GOES for applications in metering instrument transformers and low frequency magnetic shielding in magnetic resonance imaging medical scanners. Magnetic properties such as coercivity, B-H loop, AC relative permeability and specific power loss of conventional grain oriented (CGO) and high permeability grain oriented (HGO) electrical steels were measured and compared at high and low flux densities at power magnetising frequency. 40 strips comprising 20 CGO and 20 HGO, 305 mm x 30 mm x 0.27 mm from a supplier were tested. The HGO and CGO strips had average grain sizes of 9 mm and 4 mm respectively. Each strip was singly magnetised under sinusoidal peak flux density from 8.0 mT to 1.5 T at a magnetising frequency of 50 Hz. The novel single sheet tester comprises a personal computer in which LabVIEW version 8.5 from National Instruments (NI) was installed, a NI 4461 data acquisition (DAQ) card, an impedance matching transformer, to match the 600  minimum load impedance of the DAQ card with the 5 to 20  low impedance of the magnetising circuit, and a 4.7 Ω shunt resistor. A double vertical yoke made of GOES which is 290 mm long and 32 mm wide is used. A 500-turn secondary winding, about 80 mm in length, was wound around a plastic former, 270 mm x 40 mm, housing the sample, while a 100-turn primary winding, covering the entire length of the plastic former was wound over the secondary winding. A standard Epstein strip to be tested is placed between the yokes. The magnetising voltage was generated by the LabVIEW program through a voltage output from the DAQ card. The voltage drop across the shunt resistor and the secondary voltage were acquired by the card for calculation of magnetic field strength and flux density respectively. A feedback control system implemented in LabVIEW was used to control the flux density and to make the induced secondary voltage waveforms sinusoidal to have repeatable and comparable measurements. The low noise NI4461 card with 24 bit resolution and a sampling rate of 204.8 KHz and 92 KHz bandwidth were chosen to take the measurements to minimize the influence of thermal noise. In order to reduce environmental noise, the yokes, sample and search coil carrier were placed in a noise shielding chamber. HGO was found to have better magnetic properties at both high and low magnetisation regimes. This is because of the higher grain size of HGO and higher grain-grain misorientation of CGO. HGO is better CGO in both low and high magnetic field applications.

Keywords: flux density, electrical steel, LabVIEW, magnetization

Procedia PDF Downloads 291
696 Spatial Object-Oriented Template Matching Algorithm Using Normalized Cross-Correlation Criterion for Tracking Aerial Image Scene

Authors: Jigg Pelayo, Ricardo Villar

Abstract:

Leaning on the development of aerial laser scanning in the Philippine geospatial industry, researches about remote sensing and machine vision technology became a trend. Object detection via template matching is one of its application which characterized to be fast and in real time. The paper purposely attempts to provide application for robust pattern matching algorithm based on the normalized cross correlation (NCC) criterion function subjected in Object-based image analysis (OBIA) utilizing high-resolution aerial imagery and low density LiDAR data. The height information from laser scanning provides effective partitioning order, thus improving the hierarchal class feature pattern which allows to skip unnecessary calculation. Since detection is executed in the object-oriented platform, mathematical morphology and multi-level filter algorithms were established to effectively avoid the influence of noise, small distortion and fluctuating image saturation that affect the rate of recognition of features. Furthermore, the scheme is evaluated to recognized the performance in different situations and inspect the computational complexities of the algorithms. Its effectiveness is demonstrated in areas of Misamis Oriental province, achieving an overall accuracy of 91% above. Also, the garnered results portray the potential and efficiency of the implemented algorithm under different lighting conditions.

Keywords: algorithm, LiDAR, object recognition, OBIA

Procedia PDF Downloads 244
695 Predicting of Hydrate Deposition in Loading and Offloading Flowlines of Marine CNG Systems

Authors: Esam I. Jassim

Abstract:

The main aim of this paper is to demonstrate the prediction of the model capability of predicting the nucleation process, the growth rate, and the deposition potential of second phase particles in gas flowlines. The primary objective of the research is to predict the risk hazards involved in the marine transportation of compressed natural gas. However, the proposed model can be equally used for other applications including production and transportation of natural gas in any high-pressure flow-line. The proposed model employs the following three main components to approach the problem: computational fluid dynamics (CFD) technique is used to configure the flow field; the nucleation model is developed and incorporated in the simulation to predict the incipient hydrate particles size and growth rate; and the deposition of the gas/particle flow is proposed using the concept of the particle deposition velocity. These components are integrated in a comprehended model to locate the hydrate deposition in natural gas flowlines. The present research is prepared to foresee the deposition location of solid particles that could occur in a real application in Compressed Natural Gas loading and offloading. A pipeline with 120 m length and different sizes carried a natural gas is taken in the study. The location of particle deposition formed as a result of restriction is determined based on the procedure mentioned earlier and the effect of water content and downstream pressure is studied. The critical flow speed that prevents such particle to accumulate in the certain pipe length is also addressed.

Keywords: hydrate deposition, compressed natural gas, marine transportation, oceanography

Procedia PDF Downloads 487
694 Artificial Intelligence in the Design of a Retaining Structure

Authors: Kelvin Lo

Abstract:

Nowadays, numerical modelling in geotechnical engineering is very common but sophisticated. Many advanced input settings and considerable computational efforts are required to optimize the design to reduce the construction cost. To optimize a design, it usually requires huge numerical models. If the optimization is conducted manually, there is a potentially dangerous consequence from human errors, and the time spent on the input and data extraction from output is significant. This paper presents an automation process introduced to numerical modelling (Plaxis 2D) of a trench excavation supported by a secant-pile retaining structure for a top-down tunnel project. Python code is adopted to control the process, and numerical modelling is conducted automatically in every 20m chainage along the 200m tunnel, with maximum retained height occurring in the middle chainage. Python code continuously changes the geological stratum and excavation depth under groundwater flow conditions in each 20m section. It automatically conducts trial and error to determine the required pile length and the use of props to achieve the required factor of safety and target displacement. Once the bending moment of the pile exceeds its capacity, it will increase in size. When the pile embedment reaches the default maximum length, it will turn on the prop system. Results showed that it saves time, increases efficiency, lowers design costs, and replaces human labor to minimize error.

Keywords: automation, numerical modelling, Python, retaining structures

Procedia PDF Downloads 51
693 An Approach to Secure Mobile Agent Communication in Multi-Agent Systems

Authors: Olumide Simeon Ogunnusi, Shukor Abd Razak, Michael Kolade Adu

Abstract:

Inter-agent communication manager facilitates communication among mobile agents via message passing mechanism. Until now, all Foundation for Intelligent Physical Agents (FIPA) compliant agent systems are capable of exchanging messages following the standard format of sending and receiving messages. Previous works tend to secure messages to be exchanged among a community of collaborative agents commissioned to perform specific tasks using cryptosystems. However, the approach is characterized by computational complexity due to the encryption and decryption processes required at the two ends. The proposed approach to secure agent communication allows only agents that are created by the host agent server to communicate via the agent communication channel provided by the host agent platform. These agents are assumed to be harmless. Therefore, to secure communication of legitimate agents from intrusion by external agents, a 2-phase policy enforcement system was developed. The first phase constrains the external agent to run only on the network server while the second phase confines the activities of the external agent to its execution environment. To implement the proposed policy, a controller agent was charged with the task of screening any external agent entering the local area network and preventing it from migrating to the agent execution host where the legitimate agents are running. On arrival of the external agent at the host network server, an introspector agent was charged to monitor and restrain its activities. This approach secures legitimate agent communication from Man-in-the Middle and Replay attacks.

Keywords: agent communication, introspective agent, isolation of agent, policy enforcement system

Procedia PDF Downloads 297
692 Physical and Morphological Response to Land Reclamation Projects in a Wave-Dominated Bay

Authors: Florian Monetti, Brett Beamsley, Peter McComb, Simon Weppe

Abstract:

Land reclamation from the ocean has considerably increased over past decades to support worldwide rapid urban growth. Reshaping the coastline, however, inevitably affects coastal systems. One of the main challenges for coastal oceanographers is to predict the physical and morphological responses for nearshore systems to man-made changes over multiple time-scales. Fully-coupled numerical models are powerful tools for simulating the wide range of interactions between flow field and bedform morphology. Restricted and inconsistent measurements, combined with limited computational resources, typically make this exercise complex and uncertain. In the present study, we investigate the impact of proposed land reclamation within a wave-dominated bay in New Zealand. For this purpose, we first calibrated our morphological model based on the long-term evolution of the bay resulting from land reclamation carried out in the 1950s. This included the application of sedimentological spin-up and reduction techniques based on historical bathymetry datasets. The updated bathymetry, including the proposed modifications of the bay, was then used to predict the effect of the proposed land reclamation on the wave climate and morphology of the bay after one decade. We show that reshaping the bay induces a distinct symmetrical response of the shoreline which likely will modify the nearshore wave patterns and consequently recreational activities in the area.

Keywords: coastal waves, impact of land reclamation, long-term coastal evolution, morphodynamic modeling

Procedia PDF Downloads 174
691 Comparative Mesh Sensitivity Study of Different Reynolds Averaged Navier Stokes Turbulence Models in OpenFOAM

Authors: Zhuoneng Li, Zeeshan A. Rana, Karl W. Jenkins

Abstract:

In industry, to validate a case, often a multitude of simulation are required and in order to demonstrate confidence in the process where users tend to use a coarser mesh. Therefore, it is imperative to establish the coarsest mesh that could be used while keeping reasonable simulation accuracy. To date, the two most reliable, affordable and broadly used advanced simulations are the hybrid RANS (Reynolds Averaged Navier Stokes)/LES (Large Eddy Simulation) and wall modelled LES. The potentials in these two simulations will still be developed in the next decades mainly because the unaffordable computational cost of a DNS (Direct Numerical Simulation). In the wall modelled LES, the turbulence model is applied as a sub-grid scale model in the most inner layer near the wall. The RANS turbulence models cover the entire boundary layer region in a hybrid RANS/LES (Detached Eddy Simulation) and its variants, therefore, the RANS still has a very important role in the state of art simulations. This research focuses on the turbulence model mesh sensitivity analysis where various turbulence models such as the S-A (Spalart-Allmaras), SSG (Speziale-Sarkar-Gatski), K-Omega transitional SST (Shear Stress Transport), K-kl-Omega, γ-Reθ transitional model, v2f are evaluated within the OpenFOAM. The simulations are conducted on a fully developed turbulent flow over a flat plate where the skin friction coefficient as well as velocity profiles are obtained to compare against experimental values and DNS results. A concrete conclusion is made to clarify the mesh sensitivity for different turbulence models.

Keywords: mesh sensitivity, turbulence models, OpenFOAM, RANS

Procedia PDF Downloads 261
690 Effect of Mach Number for Gust-Airfoil Interatcion Noise

Authors: ShuJiang Jiang

Abstract:

The interaction of turbulence with airfoil is an important noise source in many engineering fields, including helicopters, turbofan, and contra-rotating open rotor engines, where turbulence generated in the wake of upstream blades interacts with the leading edge of downstream blades and produces aerodynamic noise. One approach to study turbulence-airfoil interaction noise is to model the oncoming turbulence as harmonic gusts. A compact noise source produces a dipole-like sound directivity pattern. However, when the acoustic wavelength is much smaller than the airfoil chord length, the airfoil needs to be treated as a non-compact source, and the gust-airfoil interaction becomes more complicated and results in multiple lobes generated in the radiated sound directivity. Capturing the short acoustic wavelength is a challenge for numerical simulations. In this work, simulations are performed for gust-airfoil interaction at different Mach numbers, using a high-fidelity direct Computational AeroAcoustic (CAA) approach based on a spectral/hp element method, verified by a CAA benchmark case. It is found that the squared sound pressure varies approximately as the 5th power of Mach number, which changes slightly with the observer location. This scaling law can give a better sound prediction than the flat-plate theory for thicker airfoils. Besides, another prediction method, based on the flat-plate theory and CAA simulation, has been proposed to give better predictions than the scaling law for thicker airfoils.

Keywords: aeroacoustics, gust-airfoil interaction, CFD, CAA

Procedia PDF Downloads 78
689 Study on the Impact of Windows Location on Occupancy Thermal Comfort by Computational Fluid Dynamics (CFD) Simulation

Authors: Farhan E Shafrin, Khandaker Shabbir Ahmed

Abstract:

Natural ventilation strategies continue to be a key alternative to costly mechanical ventilation systems, especially in healthcare facilities, due to increasing energy issues in developing countries, including Bangladesh. Besides, overcrowding and insufficient ventilation strategies remain significant causes of thermal discomfort and hospital infection in Bangladesh. With the proper location of inlet and outlet windows, uniform flow is possible in the occupancy area to achieve thermal comfort. It also determines the airflow pattern of the ward that decreases the movement of the contaminated air. This paper aims to establish a relationship between the location of the windows and the thermal comfort of the occupants in a naturally ventilated hospital ward. It defines the openings and ventilation variables that are interrelated in a way that enhances or limits the health and thermal comfort of occupants. The study conducts a full-scale experiment in one of the naturally ventilated wards in a primary health care hospital in Manikganj, Dhaka. CFD simulation is used to explore the performance of various opening positions in ventilation efficiency and thermal comfort in the study area. The results indicate that the opening located in the hospital ward has a significant impact on the thermal comfort of the occupants and the airflow pattern inside the ward. The findings can contribute to design the naturally ventilated hospital wards by identifying and predicting future solutions when it comes to relationships with the occupants' thermal comforts.

Keywords: CFD simulation, hospital ward, natural ventilation, thermal comfort, window location

Procedia PDF Downloads 196
688 Enhancer: An Effective Transformer Architecture for Single Image Super Resolution

Authors: Pitigalage Chamath Chandira Peiris

Abstract:

A widely researched domain in the field of image processing in recent times has been single image super-resolution, which tries to restore a high-resolution image from a single low-resolution image. Many more single image super-resolution efforts have been completed utilizing equally traditional and deep learning methodologies, as well as a variety of other methodologies. Deep learning-based super-resolution methods, in particular, have received significant interest. As of now, the most advanced image restoration approaches are based on convolutional neural networks; nevertheless, only a few efforts have been performed using Transformers, which have demonstrated excellent performance on high-level vision tasks. The effectiveness of CNN-based algorithms in image super-resolution has been impressive. However, these methods cannot completely capture the non-local features of the data. Enhancer is a simple yet powerful Transformer-based approach for enhancing the resolution of images. A method for single image super-resolution was developed in this study, which utilized an efficient and effective transformer design. This proposed architecture makes use of a locally enhanced window transformer block to alleviate the enormous computational load associated with non-overlapping window-based self-attention. Additionally, it incorporates depth-wise convolution in the feed-forward network to enhance its ability to capture local context. This study is assessed by comparing the results obtained for popular datasets to those obtained by other techniques in the domain.

Keywords: single image super resolution, computer vision, vision transformers, image restoration

Procedia PDF Downloads 105
687 A Picture is worth a Billion Bits: Real-Time Image Reconstruction from Dense Binary Pixels

Authors: Tal Remez, Or Litany, Alex Bronstein

Abstract:

The pursuit of smaller pixel sizes at ever increasing resolution in digital image sensors is mainly driven by the stringent price and form-factor requirements of sensors and optics in the cellular phone market. Recently, Eric Fossum proposed a novel concept of an image sensor with dense sub-diffraction limit one-bit pixels (jots), which can be considered a digital emulation of silver halide photographic film. This idea has been recently embodied as the EPFL Gigavision camera. A major bottleneck in the design of such sensors is the image reconstruction process, producing a continuous high dynamic range image from oversampled binary measurements. The extreme quantization of the Poisson statistics is incompatible with the assumptions of most standard image processing and enhancement frameworks. The recently proposed maximum-likelihood (ML) approach addresses this difficulty, but suffers from image artifacts and has impractically high computational complexity. In this work, we study a variant of a sensor with binary threshold pixels and propose a reconstruction algorithm combining an ML data fitting term with a sparse synthesis prior. We also show an efficient hardware-friendly real-time approximation of this inverse operator. Promising results are shown on synthetic data as well as on HDR data emulated using multiple exposures of a regular CMOS sensor.

Keywords: binary pixels, maximum likelihood, neural networks, sparse coding

Procedia PDF Downloads 201