Search results for: fatty acid methyl esters
1328 Vitamin B9 Separation by Synergic Pertraction
Authors: Blaga Alexandra Cristina, Kloetzer Lenuta, Bompa Amalia Stela, Galaction Anca Irina, Cascaval Dan
Abstract:
Vitamin B9 is an important member of vitamins B group, being a growth factor, important for making genetic material as DNA and RNA, red blood cells, for building muscle tissues, especially during periods of infancy, adolescence and pregnancy. Its production by biosynthesis is based on the high metabolic potential of mutant Bacillus subtilis, due to a superior biodisponibility compared to that obtained by chemical pathways. Pertraction, defined as the extraction and transport through liquid membranes consists in the transfer of a solute between two aqueous phases of different pH-values, phases that are separated by a solvent layer of various sizes. The pertraction efficiency and selectivity could be significantly enhanced by adding a carrier in the liquid membrane, such as organophosphoric compounds, long chain amines or crown-ethers etc., the separation process being called facilitated pertraction. The aim of the work is to determine the impact of the presence of two extractants/carriers in the bulk liquid membrane, i.e. di(2-ethylhexyl) phosphoric acid (D2EHPA) and lauryltrialkylmetilamine (Amberlite LA2) on the transport kinetics of vitamin B9. The experiments have been carried out using two pertraction equipments for a free liquid membrane or bulk liquid membrane. One pertraction cell consists on a U-shaped glass pipe (used for the dichloromethane membrane) and the second one is an H-shaped glass pipe (used for h-heptane), having 45 mm inner diameter of the total volume of 450 mL, the volume of each compartment being of 150 mL. The aqueous solutions are independently mixed by means of double blade stirrers with 6 mm diameter and 3 mm height, having the rotation speed of 500 rpm. In order to reach high diffusional rates through the solvent layer, the organic phase has been mixed with a similar stirrer, at a similar rotation speed (500 rpm). The area of mass transfer surface, both for extraction and for reextraction, was of 1.59x10-³ m2. The study on facilitated pertraction with the mixture of two carriers, namely D2EHPA and Amberlite LA-2, dissolved in two solvents with different polarities: n-heptane and dichloromethane, indicated the possibility to obtain the synergic effect. The synergism has been analyzed by considering the vitamin initial and final mass flows, as well as the permeability factors through liquid membrane. The synergic effect has been observed at low D2EHPA concentrations and high Amberlite LA-2 concentrations, being more important for the low-polar solvent (n-heptane). The results suggest that the mechanism of synergic pertraction consists on the reaction between the organophosphoric carrier and vitamin B9 at the interface between the feed and membrane phases, while the aminic carrier enhances the hydrophobicity of this compound by solvation. However, the formation of this complex reduced the reextraction rate and, consequently, affects the synergism related to the final mass flows and permeability factor. For describing the influences of carriers concentrations on the synergistic coefficients, some equations have been proposed by taking into account the vitamin mass flows or permeability factors, with an average deviations between 4.85% and 10.73%.Keywords: pertraction, synergism, vitamin B9, Amberlite LA-2, di(2-ethylhexyl) phosphoric acid
Procedia PDF Downloads 2751327 A Systematic Review of Antimicrobial Resistance in Fish and Poultry – Health and Environmental Implications for Animal Source Food Production in Egypt, Nigeria, and South Africa
Authors: Ekemini M. Okon, Reuben C. Okocha, Babatunde T. Adesina, Judith O. Ehigie, Babatunde M. Falana, Boluwape T. Okikiola
Abstract:
Antimicrobial resistance (AMR) has evolved to become a significant threat to global public health and food safety. The development of AMR in animals has been associated with antimicrobial overuse. In recent years, the number of antimicrobials used in food animals such as fish and poultry has escalated. It, therefore, becomes imperative to understand the patterns of AMR in fish and poultry and map out future directions for better surveillance efforts. This study used the Preferred Reporting Items for Systematic reviews and Meta-Analyses(PRISMA) to assess the trend, patterns, and spatial distribution for AMR research in Egypt, Nigeria, and South Africa. A literature search was conducted through the Scopus and Web of Science databases in which published studies on AMR between 1989 and 2021 were assessed. A total of 172 articles were relevant for this study. The result showed progressive attention on AMR studies in fish and poultry from 2018 to 2021 across the selected countries. The period between 2018 (23 studies) and 2021 (25 studies) showed a significant increase in AMR publications with a peak in 2019 (28 studies). Egypt was the leading exponent of AMR research (43%, n=74) followed by Nigeria (40%, n=69), then South Africa (17%, n=29). AMR studies in fish received relatively little attention across countries. The majority of the AMR studies were on poultry in Egypt (82%, n=61), Nigeria (87%, n=60), and South Africa (83%, n=24). Further, most of the studies were on Escherichia and Salmonella species. Antimicrobials frequently researched were ampicillin, erythromycin, tetracycline, trimethoprim, chloramphenicol, and sulfamethoxazole groups. Multiple drug resistance was prevalent, as demonstrated by antimicrobial resistance patterns. In poultry, Escherichia coli isolates were resistant to cefotaxime, streptomycin, chloramphenicol, enrofloxacin, gentamycin, ciprofloxacin, oxytetracycline, kanamycin, nalidixic acid, tetracycline, trimethoprim/sulphamethoxazole, erythromycin, and ampicillin. Salmonella enterica serovars were resistant to tetracycline, trimethoprim/sulphamethoxazole, cefotaxime, and ampicillin. Staphylococcusaureus showed high-level resistance to streptomycin, kanamycin, erythromycin, cefoxitin, trimethoprim, vancomycin, ampicillin, and tetracycline. Campylobacter isolates were resistant to ceftriaxone, erythromycin, ciprofloxacin, tetracycline, and nalidixic acid at varying degrees. In fish, Enterococcus isolates showed resistance to penicillin, ampicillin, chloramphenicol, vancomycin, and tetracycline but sensitive to ciprofloxacin, erythromycin, and rifampicin. Isolated strains of Vibrio species showed sensitivity to florfenicol and ciprofloxacin, butresistance to trimethoprim/sulphamethoxazole and erythromycin. Isolates of Aeromonas and Pseudomonas species exhibited resistance to ampicillin and amoxicillin. Specifically, Aeromonashydrophila isolates showed sensitivity to cephradine, doxycycline, erythromycin, and florfenicol. However, resistance was also exhibited against augmentinandtetracycline. The findings constitute public and environmental health threats and suggest the need to promote and advance AMR research in other countries, particularly those on the global hotspot for antimicrobial use.Keywords: antibiotics, antimicrobial resistance, bacteria, environment, public health
Procedia PDF Downloads 2001326 Antimicrobial Nanocompositions Made of Amino Acid Based Biodegradable Polymers
Authors: Nino Kupatadze, Mzevinar Bedinashvili, Tamar Memanishvili, Manana Gurielidze, David Tugushi, Ramaz Katsarava
Abstract:
Bacteria easily colonize the surfaces of tissues, surgical devices (implants, orthopedics, catheters, etc.), and instruments causing surgical device related infections. Therefore, the battle against bacteria and the prevention of surgical devices from biofilm formation is one of the main challenges of biomedicine today. Our strategy to the solution of this problem consists in using antimicrobial polymeric coatings as effective “shields” to protect surfaces from bacteria’s colonization and biofilm formation. As one of the most promising approaches look be the use of antimicrobial bioerodible polymeric nanocomposites containing silver nanoparticles (AgNPs). We assume that the combination of an erodible polymer with a strong bactericide should put obstacles to bacteria to occupy the surface and to form biofilm. It has to be noted that this kind of nanocomposites are also promising as wound dressing materials to treat infected superficial wounds. Various synthetic and natural polymers were used for creating biocomposites containing AgNPs as both particles' stabilizers and matrices forming elastic films at surfaces. One of the most effective systems to fabricate AgNPs is an ethanol solution of polyvinylpyrrolidone(PVP) with dissolved AgNO3–ethanol serves as a AgNO3 reductant and PVP as AgNPs stabilizer (through the interaction of nanoparticles with nitrogen atom of the amide group). Though PVP is biocompatible and film-forming polymer, it is not a good candidate to design either "biofilm shield" or wound dressing material because of a high solubility in water – though the solubility of PVP provides the desirable release of AgNPs from the matrix, but the coating is easily washable away from the surfaces. More promising as matrices look water insoluble but bioerodible polymers that can provide the release of AgNPs and form long-lasting coatings at the surfaces. For creating bioerodible water-insoluble antimicrobial coatings containing AgNPs, we selected amino acid based biodegradable polymers(AABBPs)–poly(ester amide)s, poly(ester urea)s, their copolymers containing amide and related groups capable to stabilize AgNPs. Among a huge variety of AABBPs reported we selected the polymers soluble in ethanol. For preparing AgNPs containing nanocompositions AABBPs and AgNO3 were dissolved in ethanol and subjected to photochemical reduction using daylight-irradiation. The formation of AgNPs was observed visually by coloring the solutions in brownish-red. The obtained AgNPs were characterized by UV-spectroscopy, transmission electron microscopy(TEM), and dynamic light scattering(DLS). According to the UV and TEM data, the photochemical reduction resulted presumably in spherical AgNPs with rather high contribution of the particles below 10 nm that are known as responsible for the antimicrobial activity. DLS study showed that average size of nanoparticles formed after photo-reduction in ethanol solution ranged within 50 nm. The in vitro antimicrobial activity study of the new nanocomposite material is in progress now.Keywords: nanocomposites, silver nanoparticles, polymer, biodegradable
Procedia PDF Downloads 3961325 Understanding the Origins of Pesticides Metabolites in Natural Waters through the Land Use, Hydroclimatic Conditions and Water Quality
Authors: Alexis Grandcoin, Stephanie Piel, Estelle Baures
Abstract:
Brittany (France) is an agricultural region, where emerging pollutants are highly at risk to reach water bodies. Among them, pesticides metabolites are frequently detected in surface waters. The Vilaine watershed (11 000 km²) is of great interest, as a large drinking water treatment plant (100 000 m³/day) is located at the extreme downstream of it. This study aims to provide an evaluation of the pesticides metabolites pollution in the Vilaine watershed, and an understanding of their availability, in order to protect the water resource. Hydroclimatic conditions, land use, and water quality parameters controlling metabolites availability are emphasized. Later this knowledge will be used to understand the favoring conditions resulting in metabolites export towards surface water. 19 sampling points have been strategically chosen along the 220 km of the Vilaine river and its 3 main influents. Furthermore, the intakes of two drinking water plants have been sampled, one is located at the extreme downstream of the Vilaine river and the other is the riparian groundwater under the Vilaine river. 5 sampling campaigns with various hydroclimatic conditions have been carried out. Water quality parameters and hydroclimatic conditions have been measured. 15 environmentally relevant pesticides and metabolites have been analyzed. Also, these compounds are recalcitrant to classic water treatment that is why they have been selected. An evaluation of the watershed contamination has been done in 2016-2017. First observations showed that aminomethylphosphonic acid (AMPA) and metolachlor ethanesulfonic acid (MESA) are the most detected compounds in surface waters samples with 100 % and 98 % frequency of detection respectively. They are the main pollutants of the watershed regardless of the hydroclimatic conditions. AMPA concentration in the river strongly increases downstream of Rennes agglomeration (220k inhabitants) and reaches a maximum of 2.3 µg/l in low waters conditions. Groundwater contains mainly MESA, Diuron and metazachlor ESA at concentrations close to limits of quantification (LOQ) (0.02 µg/L). Metolachlor, metazachlor and alachlor due to their fast degradation in soils were found in small amounts (LOQ – 0.2 µg/L). Conversely glyphosate was regularly found during warm and sunny periods up to 0.6 µg/L. Soil uses (agricultural cultures types, urban areas, forests, wastewater treatment plants implementation), water quality parameters, and hydroclimatic conditions have been correlated to pesticides and metabolites concentration in waters. Statistical treatments showed that chloroacetamides metabolites and AMPA behave differently regardless of the hydroclimatic conditions. Chloroacetamides are correlated to each other, to agricultural areas and to typical agricultural tracers as nitrates. They are present in waters the whole year, especially during rainy periods, suggesting important stocks in soils. Also Chloroacetamides are negatively correlated with AMPA, the different forms of phosphorus, and organic matter. AMPA is ubiquitous but strongly correlated with urban areas despite the recent French regulation, restricting glyphosate to agricultural and private uses. This work helps to predict and understand metabolites present in the water resource used to craft drinking water. As the studied metabolites are difficult to remove, this project will be completed by a water treatment part.Keywords: agricultural watershed, AMPA, metolachlor-ESA, water resource
Procedia PDF Downloads 1591324 Towards Development of Superior Brassica juncea by Pyramiding of Genes of Diverse Pathways for Value Addition, Stress Alleviation and Human Health
Authors: Deepak Kumar, Ravi Rajwanshi, Mohd. Aslam Yusuf, Nisha Kant Pandey, Preeti Singh, Mukesh Saxena, Neera Bhalla Sarin
Abstract:
Global issues are leading to concerns over food security. These include climate change, urbanization, increase in population subsequently leading to greater energy and water demand. Futuristic approach for crop improvement involves gene pyramiding for agronomic traits that empower the plants to withstand multiple stresses. In an earlier study from the laboratory, the efficacy of overexpressing γ-tocopherol methyl transferase (γ-TMT) gene from the vitamin E biosynthetic pathway has been shown to result in six-fold increase of the most biologically active form, the α-tocopherol in Brassica juncea which resulted in alleviation of salt, heavy metal and osmoticum induced stress by the transgenic plants. The glyoxalase I (gly I) gene from the glyoxalase pathway has also been earlier shown by us to impart tolerance against multiple abioitc stresses by detoxification of the cytotoxic compound methylglyoxal in Brassica juncea. Recently, both the transgenes were pyramided in Brassica juncea lines through sexual crosses involving two stable Brassica juncea lines overexpressing γ-TMT and gly I genes respectively. The transgene integration was confirmed by PCR analysis and their mRNA expression was evident by RT-PCR analysis. Preliminary physiological investigations showed ~55% increased seed germination under 200 mM NaCl stress in the pyramided line and 81% higher seed germination under 200 mM mannitol stress as compared to the WT control plants. The pyramided lines also retained more chlorophyll content when the leaf discs were floated on NaCl (200, 400 and 600 mM) or mannitol (200, 400 and 600 mM) compared to the WT control plants. These plants had higher Relative Water Content and greater solute accumulation under stress compared to the parental plants having γ-TMT or the glyI gene respectively. The studies revealed the synergy of two components from different metabolic pathways in enhancing stress hardiness of the transgenic B. juncea plants. It was concluded that pyramiding of genes (γ-TMT and glyI) from diverse pathways can lead to enhanced tolerance to salt and mannitol stress (simulating drought conditions). This strategy can prove useful in enhancing the crop yields under various abiotic stresses.Keywords: abiotic stress, brassica juncea, glyoxalase I, α-tocopherol
Procedia PDF Downloads 5501323 DNA PLA: A Nano-Biotechnological Programmable Device
Authors: Hafiz Md. HasanBabu, Khandaker Mohammad Mohi Uddin, Md. IstiakJaman Ami, Rahat Hossain Faisal
Abstract:
Computing in biomolecular programming performs through the different types of reactions. Proteins and nucleic acids are used to store the information generated by biomolecular programming. DNA (Deoxyribose Nucleic Acid) can be used to build a molecular computing system and operating system for its predictable molecular behavior property. The DNA device has clear advantages over conventional devices when applied to problems that can be divided into separate, non-sequential tasks. The reason is that DNA strands can hold so much data in memory and conduct multiple operations at once, thus solving decomposable problems much faster. Programmable Logic Array, abbreviated as PLA is a programmable device having programmable AND operations and OR operations. In this paper, a DNA PLA is designed by different molecular operations using DNA molecules with the proposed algorithms. The molecular PLA could take advantage of DNA's physical properties to store information and perform calculations. These include extremely dense information storage, enormous parallelism, and extraordinary energy efficiency.Keywords: biological systems, DNA computing, parallel computing, programmable logic array, PLA, DNA
Procedia PDF Downloads 1301322 Study the Action of Malathion Induced Enzymatic Changes in the Target Organ of Fish Labeo Rohita
Authors: Sudha Summarwar, Jyotsana Pandey, Deepali Lall
Abstract:
The Malathion compound has the great tendency to be accumulated in the organs of the fishes both if it is present in traces or in higher amount in the aquatic environment. It has the tendency to be accumulated more in quantity in the organs directly exposed to it. The accumulation was found to be time and concentration dependent. The accumulation of malathion was maximum in gills and is the minimum in the brain. Effect of different sub-lethal concentrations (l/5th, l/l0th, l/15th, l/20th, and 1/25th fractions of 96 hr. LC50) of malathion compound on acid phosphatase (AcPase), alkaline phosphatase (AlPase), serum glutamic oxalacetic transaminase (SGOT) and Serum Glucose-6-Phosphatase (S-G-6-Pase), serum glutamic pyruvic transaminase (SGPT) in blood of Labeo rohita exposed for the period of 15. 30, 45, and 60 days, have been studied in present investigations. In general the alterations were concentrations and duration dependent.Keywords: AcPase, AlPase, Labeo rohita, malathion, S-G-6-Pase, SGOT, SGPT
Procedia PDF Downloads 3271321 Effect of Different Types of Nano/Micro Fillers on the Interfacial Shear Properties of Polyamide 6 with De-Sized Carbon Fiber
Authors: Mohamed H. Gabr, Kiyoshi Uzawa
Abstract:
The current study aims to investigate the effect of fillers with different geometries and sizes on the interfacial shear properties of PA6 composites with de-sized carbon fiber. The fillers which have been investigated are namely; nano-layer silicates (nanoclay), sub-micro aluminum titanium (ALTi) particles, and multiwall carbon nanotube (MWCNT). By means of X-ray photoelectron spectroscopy (XPS), epoxide group which defined as a sizing agent, has been removed. Sizing removal can reduce the acid parameter of carbon fibers surface promoting bonding strength at the fiber/matrix interface which is a desirable property for the carbon fiber composites. Microdroplet test showed that the interfacial shear strength (IFSS) has been enhanced with the addition of 10wt% ALTi by about 23% comparing with neat PA6. However, with including other types of fillers into PA6, the results did not show enhancement of IFSS.Keywords: sub-micro particles, nano-composites, interfacial shear strength, polyamide 6
Procedia PDF Downloads 2411320 Ag and Au Nanoparticles Fabrication in Cross-Linked Polymer Microgels for Their Comparative Catalytic Study
Authors: Luqman Ali Shah, Murtaza Sayed, Mohammad Siddiq
Abstract:
Three-dimensional cross-linked polymer microgels with temperature responsive N-isopropyl acrylamide (NIPAM) and pH-sensitive methacrylic acid (MAA) were successfully synthesized by free radical emulsion polymerization with different amount of MAA. Silver and gold nanoparticles with size of 6.5 and 3.5 nm (±0.5 nm) respectively were homogeneously reduced inside these materials by chemical reduction method at pH 2.78 and 8.36 for the preparation of hybrid materials. The samples were characterized by FTIR, DLS and TEM techniques. The catalytic activity of the hybrid materials was investigated for the reduction of 4-nitrophenol (4- NP) using NaBH4 as reducing agent by UV-visible spectroscopy. The hybrid polymer network synthesized at pH 8.36 shows enhanced catalytic efficiency compared to catalysts synthesized at pH 2.78. In this study, it has been explored that catalyst activity strongly depends on amount of MAA, synthesis pH and type of metal nanoparticles entrapped.Keywords: cross-linked polymer microgels, free radical polymerization, metal nanoparticles, catalytic activity, comparative study
Procedia PDF Downloads 3241319 Pharmacokinetic Monitoring of Glimepiride and Ilaprazole in Rat Plasma by High Performance Liquid Chromatography with Diode Array Detection
Authors: Anil P. Dewani, Alok S. Tripathi, Anil V. Chandewar
Abstract:
Present manuscript reports the development and validation of a quantitative high performance liquid chromatography method for the pharmacokinetic evaluation of Glimepiride (GLM) and Ilaprazole (ILA) in rat plasma. The plasma samples were involved with Solid phase extraction process (SPE). The analytes were resolved on a Phenomenex C18 column (4.6 mm× 250 mm; 5 µm particle size) using a isocratic elution mode comprising methanol:water (80:20 % v/v) with pH of water modified to 3 using Formic acid, the total run time was 10 min at 225 nm as common wavelength, the flow rate throughout was 1ml/min. The method was validated over the concentration range from 10 to 600 ng/mL for GLM and ILA, in rat plasma. Metformin (MET) was used as Internal Standard. Validation data demonstrated the method to be selective, sensitive, accurate and precise. The limit of detection was 1.54 and 4.08 and limit of quantification was 5.15 and 13.62 for GLM and ILA respectively, the method demonstrated excellent linearity with correlation coefficients (r2) 0.999. The intra and inter-day precision (RSD%) values were < 2.0% for both ILA and GLM. The method was successfully applied in pharmacokinetic studies followed by oral administration in rats.Keywords: pharmacokinetics, glimepiride, ilaprazole, HPLC, SPE
Procedia PDF Downloads 3691318 Anticorrosive Polyurethane Clear Coat with Self-Cleaning Character
Authors: Nihit Madireddi, P. A. Mahanwar
Abstract:
We have aimed to produce a self-cleaning transparent polymer coating with polyurethane (PU) matrix as the latter is highly solvent, chemical and weather resistant having good mechanical properties. Nano-silica modified by 1H, 1H, 2H, 2H-perflurooctyltriethoxysilane was incorporated into the PU matrix for attaining self-cleaning ability through hydrophobicity. The modification was confirmed by particle size analysis and scanning electron microscopy (SEM). Thermo-gravimetric (TGA) studies were carried to ascertain the grafting of silane onto the silica. Several coating formulations were prepared by varying the silica loading content and compared to a commercial equivalent. The effect of dispersion and the morphology of the coated films were assessed by SEM analysis. All coating standardized tests like solvent resistance, adhesion, flexibility, acid, alkali, gloss etc. have been performed as per ASTM standards. Water contact angle studies were conducted to analyze the hydrophobic character of the coating. In addition, the coatings were also subjected to salt spray and accelerated weather testing to analyze the durability of the coating.Keywords: FAS, nano-silica, PU clear coat, self-cleaning
Procedia PDF Downloads 3111317 Differential Proteomics Expression in Purple Rice Supplemented Type 2 Diabetic Rats’ Skeletal Muscle
Authors: Ei Ei Hlaing, Narissara Lailerd, Sittiruk Roytrakul, Pichapat Piamrojanaphat
Abstract:
Type 2 diabetes is one of the most common metabolic diseases all over the world. The pathogenesis of type 2 diabetes is not the only dysfunction of pancreatic beta cells but also insulin resistance in muscle, liver and adipose tissue. High levels of circulating free fatty acids, an increased lipid content of muscle cells, impaired insulin-mediated glucose uptake and diminished mitochondrial functioning are pathophysiological hallmarks of diabetic skeletal muscles. Purple rice (Oryza sativa L. indica) has been shown to have antidiabetic effects. However, the underlying mechanism(s) of antidiabetic activity of purple rice is still unraveled. In this research, to explore in-depth cellular mechanism(s), proteomic profile of purple rice supplemented type 2 diabetic rats’ skeletal muscle were analyzed contract with non-supplemented rats. Diabetic rats were induced high-fat diet combined with streptozotocin injection. By using one- dimensional gel electrophoresis (1-DE) and LC-MS/MS quantitative proteomic method, we analyzed proteomic profiles in skeletal muscle of normal rats, normal rats with purple rice supplementation, type 2 diabetic rats, and type 2 diabetic rats with purple rice supplementation. Total 2676 polypeptide expressions were identified. Among them, 24 peptides were only expressed in type 2 diabetic rats, and 24 peptides were unique peptides in type 2 diabetic rats with purple rice supplementation. Acetyl CoA carboxylase 1 (ACACA) found as unique protein in type 2 diabetic rats which is the major enzyme in lipid synthesis and metabolism. Interestingly, DNA damage response protein, heterogeneous nuclear ribonucleoprotein K [Mus musculus] (Hnrnpk), was upregulated in type 2 diabetic rats’ skeletal muscle. Meanwhile, unique proteins of type 2 diabetic rats with purple rice supplementation (bone morphogenetic 7 protein preproprotein, BMP7; and forkhead box protein NX4, Foxn4) involved with muscle cells growth through the regulation of TGF-β/Smad signaling network. Moreover, BMP7 may effect on insulin signaling through the downstream signaling of protein kinase B (Akt) which acts in protein synthesis, glucose uptake, and glycogen synthesis. In conclusion, our study supports that type 2 diabetes impairs muscular lipid metabolism. In addition, purple rice might recover the muscle cells growth and insulin signaling.Keywords: proteomics, purple rice bran, skeletal muscle, type 2 diabetic rats
Procedia PDF Downloads 2531316 Ordered Mesoporous Carbons of Different Morphology for Loading and Controlled Release of Active Pharmaceutical Ingredients
Authors: Aleksander Ejsmont, Aleksandra Galarda, Joanna Goscianska
Abstract:
Smart porous carriers with defined structure and physicochemical properties are required for releasing the therapeutic drug with precise control of delivery time and location in the body. Due to their non-toxicity, ordered structure, chemical, and thermal stability, mesoporous carbons can be considered as modern carriers for active pharmaceutical ingredients (APIs) whose effectiveness needs frequent dosing algorithms. Such an API-carrier system, if programmed precisely, may stabilize the pharmaceutical and increase its dissolution leading to enhanced bioavailability. The substance conjugated with the material, through its prior adsorption, can later be successfully applied internally to the organism, as well as externally if the API release is feasible under these conditions. In the present study, ordered mesoporous carbons of different morphologies and structures, prepared by hard template method, were applied as carriers in the adsorption and controlled release of active pharmaceutical ingredients. In the first stage, the carbon materials were synthesized and functionalized with carboxylic groups by chemical oxidation using ammonium persulfate solution and then with amine groups. Materials obtained were thoroughly characterized with respect to morphology (scanning electron microscopy), structure (X-ray diffraction, transmission electron microscopy), characteristic functional groups (FT-IR spectroscopy), acid-base nature of surface groups (Boehm titration), parameters of the porous structure (low-temperature nitrogen adsorption) and thermal stability (TG analysis). This was followed by a series of tests of adsorption and release of paracetamol, benzocaine, and losartan potassium. Drug release experiments were performed in the simulated gastric fluid of pH 1.2 and phosphate buffer of pH 7.2 or 6.8 at 37.0 °C. The XRD patterns in the small-angle range and TEM images revealed that functionalization of mesoporous carbons with carboxylic or amine groups leads to the decreased ordering of their structure. Moreover, the modification caused a considerable reduction of the carbon-specific surface area and pore volume, but it simultaneously resulted in changing their acid-base properties. Mesoporous carbon materials exhibit different morphologies, which affect the host-guest interactions during the adsorption process of active pharmaceutical ingredients. All mesoporous carbons show high adsorption capacity towards drugs. The sorption capacity of materials is mainly affected by BET surface area and the structure/size matching between adsorbent and adsorbate. Selected APIs are linked to the surface of carbon materials mainly by hydrogen bonds, van der Waals forces, and electrostatic interactions. The release behavior of API is highly dependent on the physicochemical properties of mesoporous carbons. The release rate of APIs could be regulated by the introduction of functional groups and by changing the pH of the receptor medium. Acknowledgments—This research was supported by the National Science Centre, Poland (project SONATA-12 no: 2016/23/D/NZ7/01347).Keywords: ordered mesoporous carbons, sorption capacity, drug delivery, carbon nanocarriers
Procedia PDF Downloads 1761315 Hepatotoxicity Induced by Arsenic Trioxide in Adult Mice and Their Progeny
Authors: Bouaziz H., Soudania N., Essafia M., Ben Amara I., Hakim A., Jamoussi K., Zeghal Km, Zeghal N.
Abstract:
In this investigation, we have evaluated the effects of arsenic trioxide on hepatic function in pregnant and lactating Swiss albino mice and their suckling pups. Experiments were carried out on female mice given 175 ppm As2O3 in their drinking water from the 14th day of pregnancy until day 14 after delivery. Our results showed a significant decrease in plasma levels of total protein and albumin, cholesterol and triglyceride in As2O3 treated mice and their pups. The hyperbilirubinemia and the increased plasma total alkaline phosphatase activity suggested the presence of cholestasis. Transaminase activities as well as lactate deshydrogenase activity in plasma, known as biomarkers of hepatocellular injury, were elevated indicating hepatic cells’damage after treatment with As2O3. Exposure to arsenic led to an increase of liver thiobarbituric acid reactive substances level along with a concomitant decrease in the activities of superoxide dismutase, catalase and glutathione peroxidase and in glutathione.Keywords: antioxidant status, arsenic trioxide, hepatotoxicity, mice, oxidative stress
Procedia PDF Downloads 2551314 Identification of Odorant Receptors through the Antennal Transcriptome of the Grapevine Pest, Lobesia botrana (Lepidoptera: Tortricidae)
Authors: Ricardo Godoy, Herbert Venthur, Hector Jimenez, Andres Quiroz, Ana Mutis
Abstract:
In agriculture, grape production has great economic importance at global level, considering that in 2013 it reached 7.4 million hectares (ha) covered by plantations of this fruit worldwide. Chile is the number one exporter in the world with 800,000 tons. However, these values have been threatened by the attack of the grapevine moth, Lobesia botrana (Denis & Schiffermuller) (Lepidoptera: Tortricidae), since its detection in 2008. Nowadays, the use of semiochemicals, in particular the major component of the sex pheromone, (E,Z)-7.9-dodecadienil acetate, are part of mating disruption methods to control L. botrana. How insect pests can recognize these molecules, is being part of huge efforts to deorphanize their olfactory mechanism at molecular level. Thus, an interesting group of proteins has been identified in the antennae of insects, where odorant-binding proteins (OBPs) are known by transporting molecules to odorant receptors (ORs) and a co-receptor (ORCO) causing a behavioral change in the insect. Other proteins such as chemosensory proteins (CSPs), ionotropic receptors (IRs), odorant degrading enzymes (ODEs) and sensory neuron membrane proteins (SNMPs) seem to be involved, but few studies have been performed so far. The above has led to an increasing interest in insect communication at a molecular level, which has contributed to both a better understanding of the olfaction process and the design of new pest management strategies. To date, it has been reported that the ORs can detect one or a small group of odorants in a specific way. Therefore, the objective of this study is the identification of genes that encode these ORs using the antennal transcriptome of L. botrana. Total RNA was extracted for females and males of L. botrana, and the antennal transcriptome sequenced by Next Generation Sequencing service using an Illumina HiSeq2500 platform with 50 million reads per sample. Unigenes were assembled using Trinity v2.4.0 package and transcript abundance was obtained using edgeR. Genes were identified using BLASTN and BLASTX locally installed in a Unix system and based on our own Tortricidae database. Those Unigenes related to ORs were characterized using ORFfinder and protein Blastp server. Finally, a phylogenetic analysis was performed with the candidate amino acid sequences for LbotORs including amino acid sequences of other moths ORs, such as Bombyx mori, Cydia pomonella, among others. Our findings suggest 61 genes encoding ORs and one gene encoding an ORCO in both sexes, where the greatest difference was found in the OR6 because of the transcript abundance according to the value of FPKM in females and males was 1.48 versus 324.00. In addition, according to phylogenetic analysis OR6 is closely related to OR1 in Cydia pomonella and OR6, OR7 in Epiphyas postvittana, which have been described as pheromonal receptors (PRs). These results represent the first evidence of ORs present in the antennae of L. botrana and a suitable starting point for further functional studies with selected ORs, such as OR6, which is potentially related to pheromonal recognition.Keywords: antennal transcriptome, lobesia botrana, odorant receptors (ORs), phylogenetic analysis
Procedia PDF Downloads 2001313 Zn-, Mg- and Ni-Al-NO₃ Layered Double Hydroxides Intercalated by Nitrate Anions for Treatment of Textile Wastewater
Authors: Fatima Zahra Mahjoubi, Abderrahim Khalidi, Mohamed Abdennouri, Omar Cherkaoui, Noureddine Barka
Abstract:
Industrial effluents are one of the major causes of environmental pollution, especially effluents discharged from various dyestuff manufactures, plastic, and paper making industries. These effluents can give rise to certain hazards and environmental problems for their highly colored suspended organic solid. Dye effluents are not only aesthetic pollutants, but coloration of water by the dyes may affect photochemical activities in aquatic systems by reducing light penetration. It has been also reported that several commonly used dyes are carcinogenic and mutagenic for aquatic organisms. Therefore, removing dyes from effluents is of significant importance. Many adsorbent materials have been prepared in the removal of dyes from wastewater, including anionic clay or layered double hydroxyde. The zinc/aluminium (Zn-AlNO₃), magnesium/aluminium (Mg-AlNO₃) and nickel/aluminium (Ni-AlNO₃) layered double hydroxides (LDHs) were successfully synthesized via coprecipitation method. Samples were characterized by XRD, FTIR, TGA/DTA, TEM and pHPZC analysis. XRD patterns showed a basal spacing increase in the order of Zn-AlNO₃ (8.85Å)> Mg-AlNO₃ (7.95Å)> Ni-AlNO₃ (7.82Å). FTIR spectrum confirmed the presence of nitrate anions in the LDHs interlayer. The TEM images indicated that the Zn-AlNO3 presents circular to shaped particles with an average particle size of approximately 30 to 40 nm. Small plates assigned to sheets with hexagonal form were observed in the case of Mg-AlNO₃. Ni-AlNO₃ display nanostructured sphere in diameter between 5 and 10 nm. The LDHs were used as adsorbents for the removal of methyl orange (MO), as a model dye and for the treatment of an effluent generated by a textile factory. Adsorption experiments for MO were carried out as function of solution pH, contact time and initial dye concentration. Maximum adsorption was occurred at acidic solution pH. Kinetic data were tested using pseudo-first-order and pseudo-second-order kinetic models. The best fit was obtained with the pseudo-second-order kinetic model. Equilibrium data were correlated to Langmuir and Freundlich isotherm models. The best conditions for color and COD removal from textile effluent sample were obtained at lower values of pH. Total color removal was obtained with Mg-AlNO₃ and Ni-AlNO₃ LDHs. Reduction of COD to limits authorized by Moroccan standards was obtained with 0.5g/l LDHs dose.Keywords: chemical oxygen demand, color removal, layered double hydroxides, textile wastewater treatment
Procedia PDF Downloads 3541312 Evaluation of Iron Oxide-Functionalized Multiwall Carbon Nanotube Self-Standing Electrode for Symmetric Supercapacitor Application
Authors: B. V. Bhaskara Rao, Rodrigo Espinoza
Abstract:
The rapid development of renewable energy sources has drawn great attention to energy storage devices, especially supercapacitors, because of their high power density and rate performance. This work focus on Fe₃O₄ nanoparticles synthesized by reverse co-precipitation and MWCNTs functionalized by –COOH acid functionalization. The results show that Optimized 25wt% Fe₃O₄@FMWCNT show high specific capacitance 100 mF/cm² at one mA/cm² whereas 15wt% Fe₃O₄@FMWCNT showed high stability (80% retention capacity) over 5000 cycles. The electrolyte used in the coin cell is LiPF6 and the thickness of the electrode is 30 microns. The optimized Fe₃O₄@FMWCNT bucky papers coin cell electrochemical studies suggest that 25wt% Fe₃O₄@FMWCNT could be a good candidate for high-capacity supercapacitor devices. This could be further tested for flexible and planar supercapacitor device application with gel electrolytes.Keywords: self-standing electrode, Fe₃O4@FMWCNT, supercapacitor, symmetric coin-cell
Procedia PDF Downloads 1561311 Physical-Chemical Parameters of Latvian Apple Juices and Their Suitability for Cider Production
Authors: Rita Riekstina-Dolge, Zanda Kruma, Daina Karklina, Fredijs Dimins
Abstract:
Apple juice is the main raw material for cider production. In this study apple juices obtained from 14 dessert and crab variety apples grown in Latvia were investigated. For all samples soluble solids, titratable acidity, pH and sugar content were determined. Crab apples produce more dry matter, total sugar and acid content compared to the dessert apples but it depends on the apple variety. Total sugar content of crab apple juices was 1.3 to 1.8 times larger than in dessert apple juices. Titratable acidity of dessert apple juices is in the range of 4.1g L-1 to 10.83g L-1 and in crab apple juices titratable acidity is from 7.87g L-1 to 19.6g L-1. Fructose was detected as the main sugar whereas glucose level varied depending on the variety. The highest titratable acidity and content of sugars was detected in ‘Cornelia’ apples juice.Keywords: apple juice, hierarchical cluster analysis, sugars, titratable acidity
Procedia PDF Downloads 2421310 CO2 Adsorption on the Activated Klaten-Indonesian Natural Zeolite in a Packed Bed Adsorber
Authors: Sang Kompiang Wirawan, Chandra Purnomo
Abstract:
Carbon dioxide (CO2) adsorption on the activated Klaten-Indonesian natural zeolite (AKINZ) in a packed bed adsorber has been studied. Experiment works consisted of acid activation and adsorption experiments. The natural zeolite sample was activated using 0.3 M HCl at the temperature of 353 K. In the adsorption experiments the feed gas concentrations were 40 and 80 % CO2 in helium within various temperatures of 303; 323 and 373 K. The experiments were conducted by using transient step change adsorption and 20 % Ar/He tracer experiment was conducted to measure dispersion and time lag effect of the packed bed system. A mathematical model of CO2 adsorption had been set up by assuming plug flow;isothermal;isobaric and no gas film mass transport resistance. Single site Langmuir physisorption and Maxwell Stefan mass transport in micropore were applied. All the data were then optimized to get the best value of modified fitted parameter. The model was in a good agreement with the experiment data. Diffusivity tended to increase by increasing temperatures.Keywords: adsorption, Langmuir, Maxwell-Stefan, natural zeolite, surface diffusion
Procedia PDF Downloads 3551309 Histochemistry of Intestinal Enzymes of Juvenile Dourado Salminus brasiliensis Fed Bovine Colostrum
Authors: Debora B. Moretti, Wiolene M. Nordi, Thaline Maira P. Cruz, José Eurico P. Cyrino, Raul Machado-Neto
Abstract:
Enzyme activity was evaluated in the intestine of juvenile dourado (Salminus brasiliensis) fed with diets containing 0, 10 or 20% of lyophilized bovine colostrum (LBC) inclusion for either 30 or 60 days. The intestinal enzymes acid and alkaline phosphatase (ACP and ALP, respectively), non-specific esterase (NSE), lipase (LIP), dipeptidyl aminopeptidase IV (DAP IV) and leucine aminopeptidase (LAP) were studied using histochemistry in four intestinal segments (S1, S2, S3 and posterior intestine). Weak proteolitic activity was observed in all intestinal segments for DAP IV and LAP. The activity of NSE and LIP was also weak in all intestines, except for the moderate activity of NSE in the S2 of 20% LBC group after 30 days and in the S1 of 0% LBC group after 60 days. The ACP was detected only in the S2 and S3 of the 10% LBC group after 30 days. Moderate and strong staining was observed in the first three intestinal segments for ALP and weak activity in the posterior intestine. The activity of DAP IV, LAP and ALP were also present in the cytoplasm of the enterocytes. In the present results, bovine colostrum feeding did not cause alterations in activity of intestinal enzymes.Keywords: carnivorous fish, enterocyte, intestinal epithelium, teleost
Procedia PDF Downloads 3291308 Post-Harvest Preservation of Mango Fruit Using Freeze and Tray Drying Methods
Authors: O. A. Adeyeye, E. R. Sadiku, Periyar Selvam Sellamuthu, Anand Babu Perumal, Reshma B. Nambiar
Abstract:
Mango is a tropical fruit which is often labelled as ‘super-fruit’ because of its unquantifiable benefits to human beings. However, despite its great importance, mango is a seasonal fruit and only very few off-seasonal cultivars are available in the market for consumption. Therefore, to overcome the seasonal variation and to increase the shelf-life of mango fruits, different drying methods are considered. In this study, freeze drying and tray drying methods were used to preserve two different cultivars of mango from South Africa. Moisture content, total soluble solid, ascorbic acid, total phenol content (TPC), antioxidant activity (DPPH) and organoleptic tests were carried out on the samples before and after drying. The effects of different edible preservatives and selected packaging materials used were analyzed on each sample. The result showed that freeze drying method is the best method of preserving the selected cultivar.Keywords: postharvest, Mangos, cultivar, total soluble solid, total phenol content, antioxidant
Procedia PDF Downloads 3521307 Magnetic Properties and Cytotoxicity of Ga-Mn Magnetic Ferrites Synthesized by the Citrate Sol-Gel Method
Authors: Javier Sánchez, Laura Elena De León Prado, Dora Alicia Cortés Hernández
Abstract:
Magnetic spinel ferrites are materials that possess size, magnetic properties and heating ability adequate for their potential use in biomedical applications. The Mn0.5Ga0.5Fe2O4 magnetic nanoparticles (MNPs) were synthesized by sol-gel method using citric acid as chelating agent of metallic precursors. The synthesized samples were identified by X-Ray Diffraction (XRD) as an inverse spinel structure with no secondary phases. Saturation magnetization (Ms) of crystalline powders was 45.9 emu/g, which was higher than those corresponding to GaFe2O4 (14.2 emu/g) and MnFe2O4 (40.2 emu/g) synthesized under similar conditions, while the coercivity field (Hc) was 27.9 Oe. The average particle size was 18 ± 7 nm. The heating ability of the MNPs was enough to increase the surrounding temperature up to 43.5 °C in 7 min when a quantity of 4.5 mg of MNPs per mL of liquid medium was tested. Cytotoxic effect (hemolysis assay) of MNPs was determined and the results showed hemolytic values below 1% in all tested cases. According to the results obtained, these synthesized nanoparticles can be potentially used as thermoseeds for hyperthermia therapy.Keywords: manganese-gallium ferrite, magnetic hyperthermia, heating ability, cytotoxicity
Procedia PDF Downloads 3931306 Physicochemical Studies and Screening of Aflatoxins and Pesticide Residues in Some 'Honey Pastes' Marketed in Jeddah, Saudi Arabia
Authors: Rashad Al-Hindi
Abstract:
The study aimed at investigating and screening of some contaminants in some honey-based products. Sixty-nine 'honey paste' samples marketed in Jeddah, Saudi Arabia, were subjected to physicochemical studies and screening of aflatoxins and pesticide residues. The physicochemical parameters studied were mainly: moisture content, total sugars, total ash, total nitrogen, fibres, total acidity as citric acid and pH. These parameters were investigated using standard methods of analysis. Mycotoxins (aflatoxins) and pesticide residues were by an enzyme-linked immunosorbent assay (ELISA) according to official methods. Results revealed that mean values of the examined criteria were: 15.44±0.36%; 74±4.30%; 0.40±0.062%; 0.22±0.05%; 6.93±1.30%; 2.53±0.161 mmol/kg; 4.10±0.158, respectively. Overall results proved that all tested honey pastes samples were free from mycotoxins (aflatoxins) and pesticide residues. Therefore, we conclude that 'honey pastes' marketed in Jeddah city, Saudi Arabia were safe for human consumption.Keywords: aflatoxins, honey mixtures, pesticide residues, physicochemical
Procedia PDF Downloads 1771305 Investigation of Mechanical and Rheological Properties of Poly (trimethylene terephthalate) (PTT)/Polyethylene Blend Using Carboxylate and Ionomer as Compatibilizers
Authors: Wuttikorn Chayapanja, Sutep Charoenpongpool, Manit Nithitanakul, Brian P. Grady
Abstract:
Poly (trimethylene terephthalate) (PTT) is a linear aromatic polyester with good strength and stiffness, good surface appearance, low shrinkage and war page, and good dimensional stability. However, it has low impact strength which is a problem in automotive application. Thus, modification of PTT with the other polymer or polymer blending is a one way to develop a new material with excellence properties. In this study, PTT/High Density Polyethylene (HDPE) blends and PTT/Linear Low Density Polyethylene (LLDPE) blends with and without compatibilizers base on maleic anhydride grafted HDPE (MAH-g-HDPE) and ethylene-methacrylic acid neutralized sodium metal (Na-EMAA) were prepared by a twin-screw extruder. The blended samples with different ratios of polymers and compatibilizers were characterized on mechanical and rheological properties. Moreover, the phase morphology and dispersion size were studied by using SEM to give better understanding of the compatibility of the blends.Keywords: poly trimethylene terephthalate, polyethylene, compatibilizer, polymer blend
Procedia PDF Downloads 4151304 Conducting Glove Leathers Prepared through in-situ Polymerization of Pyrrole
Authors: Wegene Demisie Jima
Abstract:
Leather is a durable and flexible material used for various purposes including clothing, footwear, upholstery and gloves. However, the use of leather for smart product applications is a challenge since it is electrically insulating material. Here, we report a simple method to produce conducting glove leathers using an in-situ polymerization of pyrrole. The concentrations of pyrrole, ferric chloride and anthraquinone-2-sulfonic acid sodium salt monohydrate were optimized to produce maximum conductivity in the treated leathers. The coating of polypyrrole in the treated leathers was probed using FT-IR, X-ray diffraction and electron microscopic analysis. FTIR confirms that the formation of polypyrrole on the leather surface as well as presence of prominent N-C stretching band. X-ray diffraction analysis suggests para-crystallinity in the PPy-treated leathers.We further demonstrate that the treated leathers, with maximum conductivity of 7.4 S/cm, can be used for making conductive gloves for operating touch-screen devices apart from other smart product applications.Keywords: electrical conductivity, in-situ polymerization, pyrrole, smart product
Procedia PDF Downloads 1931303 Where do Pregnant Women Miss Out on Nutrition? Analysis of Survey Data from 22 Countries
Authors: Alexis D'Agostino, Celeste Sununtunasuk, Jack Fiedler
Abstract:
Background: Iron-folic acid (IFA) supplementation during antenatal care (ANC) has existed in many countries for decades. Despite this, low national coverage persists and women do not often consume appropriate amounts during pregnancy. USAID’s SPRING Project investigated pregnant women’s access to, and consumption of, IFA tablets through ANC. Cross-country analysis provided a global picture of the state of IFA-supplementation, while country-specific results noted key contextual issues, including geography, wealth, and ANC attendance. The analysis can help countries prioritize strategies for systematic performance improvements within one of the most common micronutrient supplementation programs aimed at reducing maternal anemia. Methodology: Using falter point analysis on Demographic and Health Survey (DHS) data collected from 162,958 women across 22 countries, SPRING identified four sequential falter points (ANC attendance, IFA receipt or purchase, IFA consumption, and number of tablets taken) where pregnant women fell out of the IFA distribution structure. SPRING analyzed data on IFA intake from DHS surveys with women of reproductive age. SPRING disaggregated these data by ANC participation during the most recent pregnancy, residency, and women’s socio-economic status. Results: Average sufficient IFA tablet use across all countries was only eight percent. Even in the best performing countries, only about one-third of pregnant women consumed 180 or more IFA tablets during their most recent pregnancy. ANC attendance was an important falter point for a quarter of women across all countries (with highest falter rates in Democratic Republic of the Congo, Nigeria, and Niger). Further analysis reveals patterns, with some countries having high ANC coverage but low IFA provision during ANC (DRC and Haiti), others having high ANC coverage and IFA provision but few women taking any tablets (Nigeria and Liberia), and countries that perform well in ANC, supplies, and initial consumption but where very few women consume the recommended 180 tablets (Malawi and Cambodia). Country-level analysis identifies further patterns of supplementation. In Indonesia, for example, only 62% of women in the poorest quintile took even one IFA tablet, while 86% of the wealthiest women did. This association between socioeconomic status and IFA intake held across nearly all countries where these data are available and was also visible in rural/urban comparisons. Analysis of ANC attendance data also suggests that higher numbers of ANC visits are associated with higher tablet intake. Conclusions: While it is difficult to disentangle which specific aspects of supply or demand cause the low rates of consumption, this tool allows policy-makers to identify major bottlenecks to scaling-up IFA supplementation during ANC. In turn, each falter point provides possible explanations of program performance and helps strategically identify areas for improved IFA supplementation. For example, improving the delivery of IFA supplementation in Ethiopia relies on increasing access to ANC, but also on identifying and addressing program gaps in IFA supply management and health workers’ practices in order to provide quality ANC services. While every country requires a customized approach to improving IFA supplementation, the multi-country analysis conducted by SPRING is a helpful first step in identifying country bottlenecks and prioritizing interventions.Keywords: iron and folic acid, supplementation, antenatal care, micronutrient
Procedia PDF Downloads 3971302 Evaluation of Antarctic Bacteria as Potential Producers of Cellulolytic Enzymes of Industrial Interest
Authors: Claudio Lamilla, Andrés Santos, Vicente Llanquinao, Jocelyn Hermosilla, Leticia Barrientos
Abstract:
The industry in general is very interested in improving and optimizing industrial processes in order to reduce the costs involved in obtaining raw materials and production. Thus, an interesting and cost-effective alternative is the incorporation of bioactive metabolites in such processes, being an example of this enzymes which catalyze efficiently a large number of enzymatic reactions of industrial and biotechnological interest. In the search for new sources of these active metabolites, Antarctica is one of the least explored places on our planet where the most drastic cold conditions, salinity, UVA-UVB and liquid water available are present, features that have shaped all life in this very harsh environment, especially bacteria that live in different Antarctic ecosystems, which have had to develop different strategies to adapt to these conditions, producing unique biochemical strategies. In this work the production of cellulolytic enzymes of seven bacterial strains isolated from marine sediments at different sites in the Antarctic was evaluated. Isolation of the strains was performed using serial dilutions in the culture medium at M115°C. The identification of the strains was performed using universal primers (27F and 1492R). The enzyme activity assays were performed on R2A medium, carboxy methyl cellulose (CMC)was added as substrate. Degradation of the substrate was revealed by adding Lugol. The results show that four of the tested strains produce enzymes which degrade CMC substrate. The molecular identifications, showed that these bacteria belong to the genus Streptomyces and Pseudoalteromonas, being Streptomyces strain who showed the highest activity. Only some bacteria in marine sediments have the ability to produce these enzymes, perhaps due to their greater adaptability to degrade at temperatures bordering zero degrees Celsius, some algae that are abundant in this environment and have cellulose as the main structure. The discovery of new enzymes adapted to cold is of great industrial interest, especially for paper, textiles, detergents, biofuels, food and agriculture. These enzymes represent 8% of industrial demand worldwide and is expected to increase their demand in the coming years. Mainly in the paper and food industry are required in extraction processes starch, protein and juices, as well as the animal feed industry where treating vegetables and grains helps improve the nutritional value of the food, all this clearly puts Antarctic microorganisms and their enzymes specifically as a potential contribution to industry and the novel biotechnological applications.Keywords: antarctic, bacteria, biotechnological, cellulolytic enzymes
Procedia PDF Downloads 2971301 An AFM Approach of RBC Micro and Nanoscale Topographic Features During Storage
Authors: K. Santacruz-Gomez, E. Silva-Campa, S. Álvarez-García, V. Mata-Haro, D. Soto-Puebla, M. Pedroza-Montero
Abstract:
Blood gamma irradiation is the only available method to prevent transfusion-associated graft versus host disease (TA-GVHD). However, when blood is irradiated, determine blood shelf time is crucial. Non-irradiated blood has a self-time from 21 to 35 days when is preserved with an anticoagulated solution and stored at 4°C. During their storage, red blood cells (RBC) undergo a series of biochemical, biomechanical and molecular changes involving what is known as storage lesion (SL). SL include loss of structural integrity of RBC, a decrease of 2,3-diphosphatidylglyceric acid levels, and an increase of both ion potassium concentration and hemoglobin (Hb). On the other hand, Atomic force Microscopy (AFM) represents a versatile tool for a nano-scale high-resolution topographic analysis in biological systems. In order to evaluate SL in irradiated and non-irradiated blood, RBC topography and morphometric parameters were obtained from an AFM XE-BIO system. Cell viability was followed using flow cytometry. Our results showed that early markers as nanoscale roughness, allow us to evaluate blood quality since another perspective.Keywords: AFM, blood γ-irradiation, roughness, storage lesion
Procedia PDF Downloads 5331300 Analysis of Sulphur-Oxidizing Bacteria Attack on Concrete Based on Waste Materials
Authors: A. Eštoková, M. Kovalčíková, A. Luptáková, A. Sičáková, M. Ondová
Abstract:
Concrete durability as an important engineering property of concrete, determining the service life of concrete structures very significantly, can be threatened and even lost due to the interactions of concrete with external environment. Bio-corrosion process caused by presence and activities of microorganisms producing sulphuric acid is a special type of sulphate deterioration of concrete materials. The effects of sulphur-oxidizing bacteria Acidithiobacillus thiooxidans on various concrete samples, based on silica fume and zeolite, were investigated in laboratory during 180 days. A laboratory study was conducted to compare the performance of concrete samples in terms of the concrete deterioration influenced by the leaching of calcium and silicon compounds from the cement matrix. The changes in the elemental concentrations of calcium and silicon in both solid samples and liquid leachates were measured by using X – ray fluorescence method. Experimental studies confirmed the silica fume based concrete samples were found out to have the best performance in terms of both silicon and calcium ions leaching.Keywords: biocorrosion, concrete, leaching, bacteria
Procedia PDF Downloads 4511299 Dual Mode “Turn On-Off-On” Photoluminescence Detection of EDTA and Lead Using Moringa Oleifera Gum-Derived Carbon Dots
Authors: Anisha Mandal, Swambabu Varanasi
Abstract:
Lead is one of the most prevalent toxic heavy metal ions, and its pollution poses a significant threat to the environment and human health. On the other hand, Ethylenediaminetetraacetic acid is a widely used metal chelating agent that, due to its poor biodegradability, is an incessant pollutant to the environment. For the first time, a green, simple, and cost-effective approach is used to hydrothermally synthesise photoluminescent carbon dots using Moringa Oleifera Gum in a single step. Then, using Moringa Oleifera Gum-derived carbon dots, a photoluminescent "ON-OFF-ON" mechanism for dual mode detection of trace Pb2+ and EDTA was proposed. MOG-CDs detect Pb2+ selectively and sensitively using a photoluminescence quenching mechanism, with a detection limit (LOD) of 0.000472 ppm. (1.24 nM). The quenched photoluminescence can be restored by adding EDTA to the MOG-CD+Pb2+ system; this strategy is used to quantify EDTA at a level of detection of 0.0026 ppm. (8.9 nM). The quantification of Pb2+ and EDTA in actual samples encapsulated the applicability and dependability of the proposed photoluminescent probe.Keywords: carbon dots, photoluminescence, sensor, moringa oleifera gum
Procedia PDF Downloads 114