Search results for: encrypted traffic classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3377

Search results for: encrypted traffic classification

857 Hydrologic Impacts of Climate Change and Urbanization on Quetta Watershed, Pakistan

Authors: Malik Muhammad Akhtar, Tanzeel Khan

Abstract:

Various natural and anthropogenic factors are affecting recharge processes in urban areas due to intense urban expansion; land-use/landcover change (LULC) and climate considerably influence the ecosystem functions. In Quetta, a terrible transformation of LULC has occurred due to an increase in human population and rapid urbanization over the past years; according to the Pakistan Bureau of Statistics, the increase of population from 252,577 in 1972 to 2,275,699 in 2017 shows an abrupt rise which in turn has affected the aquifer recharge capability, vegetation, and precipitation at Quetta. This study focuses on the influence of population growth and LULC on groundwater table level by employing multi-temporal, multispectral satellite data during the selected years, i.e. 2014, 2017, and 2020. The results of land classification showed that barren land had shown a considerable decrease, whereas the urban area has increased over time from 152.4sq/km in 2014 to 195.5sq/km in 2017 to 283.3sq/km in 2020, whereas surface-water area coverage has increased since 2014 because of construction of few dams around the valley. Rapid urbanization stresses limited hydrology resources, and this needs to be addressed to conserve/sustain the resources through educating the local community, awareness regarding water use and climate change, and supporting artificial recharge of the aquifers.

Keywords: climate changes, urbanization, GIS, land use, Quetta, watershed

Procedia PDF Downloads 127
856 The Climate Impact Due to Clouds and Selected Greenhouse Gases by Short Wave Upwelling Radiative Flux within Spectral Range of Space-Orbiting Argus1000 Micro-Spectrometer

Authors: Rehan Siddiqui, Brendan Quine

Abstract:

The Radiance Enhancement (RE) and integrated absorption technique is applied to develop a synthetic model to determine the enhancement in radiance due to cloud scene and Shortwave upwelling Radiances (SHupR) by O2, H2O, CO2 and CH4. This new model is used to estimate the magnitude variation for RE and SHupR over spectral range of 900 nm to 1700 nm by varying surface altitude, mixing ratios and surface reflectivity. In this work, we employ satellite real observation of space orbiting Argus 1000 especially for O2, H2O, CO2 and CH4 together with synthetic model by using line by line GENSPECT radiative transfer model. All the radiative transfer simulations have been performed by varying over a different range of percentages of water vapor contents and carbon dioxide with the fixed concentration oxygen and methane. We calculate and compare both the synthetic and real measured observed data set of different week per pass of Argus flight. Results are found to be comparable for both approaches, after allowing for the differences with the real and synthetic technique. The methodology based on RE and SHupR of the space spectral data can be promising for the instant and reliable classification of the cloud scenes.

Keywords: radiance enhancement, radiative transfer, shortwave upwelling radiative flux, cloud reflectivity, greenhouse gases

Procedia PDF Downloads 338
855 Solar-Assisted City Bus Electrical Installation: Opportunities and Impact on the Environment in Sydney

Authors: M. J. Geca, T. Tulwin, A. Majczak

Abstract:

On-board electricity consumption in the diesel city bus during operation is an important energy source. Electricity is generated by a combustion engine-driven alternator. Increased fuel consumption to generate on-board electricity in the bus has a negative impact on the emission of toxic components and carbon dioxide. At the same time, the bus roof surface allows placing a set of lightweight photovoltaic panels with power from 1 to 1.5 kW. The article presents an experimental study of electricity consumption of a city bus with diesel engine equipped with photovoltaic installation. The stream of electricity consumed by the bus and generated by a standard alternator and PV system was recorded. Base on the experimental research carried out in central Europe; the article analyses the impact of an additional source of electricity in the form of a photovoltaic installation on fuel consumption and emissions of toxic components of vehicles located in the latitude of Sydney. In Poland, the maximum global value of horizontal irradiation GHI is 1150 kWh/m², while for Sydney 1652 kWh/m². In addition, the profile of temperature and sunshine per year is different for these two different latitudes as presented in the article. Electricity generated directly from the sun powers the bus's electrical receivers. The photovoltaic system is able to replace 23% of annual electricity consumption, which at the same time will reduce 4% of fuel consumption and CO₂ reduction. Approximately 25% of the light is lost during vehicle traffic in Sydney latitude. The temperature losses of photovoltaic panels are comparable due to the cooling during vehicle motion. Acknowledgement: The project/research was financed in the framework of the project Lublin University of Technology - Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).

Keywords: electric energy, photovoltaic system, fuel consumption, CO₂

Procedia PDF Downloads 115
854 Major Depressive Disorder: Diagnosis based on Electroencephalogram Analysis

Authors: Wajid Mumtaz, Aamir Saeed Malik, Syed Saad Azhar Ali, Mohd Azhar Mohd Yasin

Abstract:

In this paper, a technique based on electroencephalogram (EEG) analysis is presented, aiming for diagnosing major depressive disorder (MDD) among a potential population of MDD patients and healthy controls. EEG is recognized as a clinical modality during applications such as seizure diagnosis, index for anesthesia, detection of brain death or stroke. However, its usability for psychiatric illnesses such as MDD is less studied. Therefore, in this study, for the sake of diagnosis, 2 groups of study participants were recruited, 1) MDD patients, 2) healthy people as controls. EEG data acquired from both groups were analyzed involving inter-hemispheric asymmetry and composite permutation entropy index (CPEI). To automate the process, derived quantities from EEG were utilized as inputs to classifier such as logistic regression (LR) and support vector machine (SVM). The learning of these classification models was tested with a test dataset. Their learning efficiency is provided as accuracy of classifying MDD patients from controls, their sensitivities and specificities were reported, accordingly (LR =81.7 % and SVM =81.5 %). Based on the results, it is concluded that the derived measures are indicators for diagnosing MDD from a potential population of normal controls. In addition, the results motivate further exploring other measures for the same purpose.

Keywords: major depressive disorder, diagnosis based on EEG, EEG derived features, CPEI, inter-hemispheric asymmetry

Procedia PDF Downloads 548
853 Data Mining Approach: Classification Model Evaluation

Authors: Lubabatu Sada Sodangi

Abstract:

The rapid growth in exchange and accessibility of information via the internet makes many organisations acquire data on their own operation. The aim of data mining is to analyse the different behaviour of a dataset using observation. Although, the subset of the dataset being analysed may not display all the behaviours and relationships of the entire data and, therefore, may not represent other parts that exist in the dataset. There is a range of techniques used in data mining to determine the hidden or unknown information in datasets. In this paper, the performance of two algorithms Chi-Square Automatic Interaction Detection (CHAID) and multilayer perceptron (MLP) would be matched using an Adult dataset to find out the percentage of an/the adults that earn > 50k and those that earn <= 50k per year. The two algorithms were studied and compared using IBM SPSS statistics software. The result for CHAID shows that the most important predictors are relationship and education. The algorithm shows that those are married (husband) and have qualification: Bachelor, Masters, Doctorate or Prof-school whose their age is > 41<57 earn > 50k. Also, multilayer perceptron displays marital status and capital gain as the most important predictors of the income. It also shows that individuals that their capital gain is less than 6,849 and are single, separated or widow, earn <= 50K, whereas individuals with their capital gain is > 6,849, work > 35 hrs/wk, and > 27yrs their income will be > 50k. By comparing the two algorithms, it is observed that both algorithms are reliable but there is strong reliability in CHAID which clearly shows that relation and education contribute to the prediction as displayed in the data visualisation.

Keywords: data mining, CHAID, multi-layer perceptron, SPSS, Adult dataset

Procedia PDF Downloads 380
852 Assessment of Air Quality Around Western Refinery in Libya: Mobile Monitoring

Authors: A. Elmethnani, A. Jroud

Abstract:

This coastal crude oil refinery is situated north of a big city west of Tripoli; the city then could be highly prone to downwind refinery emissions where the NNE wind direction is prevailing through most seasons of the year. Furthermore, due to the absence of an air quality monitoring network and scarce emission data available for the neighboring community, nearby residents have serious worries about the impacts of the oil refining operations on local air quality. In responding to these concerns, a short term survey has performed for three consecutive days where a semi-continues mobile monitoring approach has developed effectively in this study; the monitoring station (Compact AQM 65 AeroQual) was mounted on a vehicle to move quickly between locations, measurements of 10 minutes averaging of 60 seconds then been taken at each fixed sampling point. The downwind ambient concentration of CO, H₂S, NOₓ, NO₂, SO₂, PM₁, PM₂.₅ PM₁₀, and TSP were measured at carefully chosen sampling locations, ranging from 200m nearby the fence-line passing through the city center up to 4.7 km east to attain best spatial coverage. Results showed worrying levels of PM₂.₅ PM₁₀, and TSP at one sampling location in the city center, southeast of the refinery site, with an average mean of 16.395μg/m³, 33.021μg/m³, and 42.426μg/m³ respectively, which could be attributed to road traffic. No significant concentrations have been detected for other pollutants of interest over the study area, as levels observed for CO, SO₂, H₂S, NOₓ, and NO₂ haven’t respectively exceeded 1.707 ppm, 0.021ppm, 0.134 ppm, 0.4582 ppm, and 0.0018 ppm, which was at the same sampling locations as well. Although it wasn’t possible to compare the results with the Libyan air quality standards due to the difference in the averaging time period, the technique was adequate for the baseline air quality screening procedure. Overall, findings primarily suggest modeling of dispersion of the refinery emissions to assess the likely impact and spatial-temporal distribution of air pollutants.

Keywords: air quality, mobil monitoring, oil refinery

Procedia PDF Downloads 98
851 Proposed Framework based on Classification of Vertical Handover Decision Strategies in Heterogeneous Wireless Networks

Authors: Shidrokh Goudarzi, Wan Haslina Hassan

Abstract:

Heterogeneous wireless networks are converging towards an all-IP network as part of the so-called next-generation network. In this paradigm, different access technologies need to be interconnected; thus, vertical handovers or vertical handoffs are necessary for seamless mobility. In this paper, we conduct a review of existing vertical handover decision-making mechanisms that aim to provide ubiquitous connectivity to mobile users. To offer a systematic comparison, we categorize these vertical handover measurement and decision structures based on their respective methodology and parameters. Subsequently, we analyze several vertical handover approaches in the literature and compare them according to their advantages and weaknesses. The paper compares the algorithms based on the network selection methods, complexity of the technologies used and efficiency in order to introduce our vertical handover decision framework. We find that vertical handovers on heterogeneous wireless networks suffer from the lack of a standard and efficient method to satisfy both user and network quality of service requirements at different levels including architectural, decision-making and protocols. Also, the consolidation of network terminal, cross-layer information, multi packet casting and intelligent network selection algorithm appears to be an optimum solution for achieving seamless service continuity in order to facilitate seamless connectivity.

Keywords: heterogeneous wireless networks, vertical handovers, vertical handover metric, decision-making algorithms

Procedia PDF Downloads 396
850 Health Care Waste Management Practices in Liberia: An Investigative Case Study

Authors: V. Emery David Jr., J. Wenchao, D. Mmereki, Y. John, F. Heriniaina

Abstract:

Healthcare waste management continues to present an array of challenges for developing countries, and Liberia is of no exception. There is insufficient information available regarding the generation, handling, and disposal of health care waste. This face serves as an impediment to healthcare management schemes. The specific objective of this study is to present an evaluation of the current health care management practices in Liberia. It also presented procedures, techniques used, methods of handling, transportation, and disposal methods of wastes as well as the quantity and composition of health care waste. This study was conducted as an investigative case study, covering three different health care facilities; a hospital, a health center, and a clinic in Monrovia, Montserrado County. The average waste generation was found to be 0-7kg per day at the clinic and health center and 8-15kg per/day at the hospital. The composition of the waste includes hazardous and non-hazardous waste i.e. plastic, papers, sharps, and pathological elements etc. Nevertheless, the investigation showed that the healthcare waste generated by the surveyed healthcare facilities were not properly handled because of insufficient guidelines for separate collection, and classification, and adequate methods for storage and proper disposal of generated wastes. This therefore indicates that there is a need for improvement within the healthcare waste management system to improve the existing situation.

Keywords: disposal, healthcare waste, management, Montserrado County, Monrovia

Procedia PDF Downloads 349
849 Stochastic Multicast Routing Protocol for Flying Ad-Hoc Networks

Authors: Hyunsun Lee, Yi Zhu

Abstract:

Wireless ad-hoc network is a decentralized type of temporary machine-to-machine connection that is spontaneous or impromptu so that it does not rely on any fixed infrastructure and centralized administration. As unmanned aerial vehicles (UAVs), also called drones, have recently become more accessible and widely utilized in military and civilian domains such as surveillance, search and detection missions, traffic monitoring, remote filming, product delivery, to name a few. The communication between these UAVs become possible and materialized through Flying Ad-hoc Networks (FANETs). However, due to the high mobility of UAVs that may cause different types of transmission interference, it is vital to design robust routing protocols for FANETs. In this talk, the multicast routing method based on a modified stochastic branching process is proposed. The stochastic branching process is often used to describe an early stage of an infectious disease outbreak, and the reproductive number in the process is used to classify the outbreak into a major or minor outbreak. The reproductive number to regulate the local transmission rate is adapted and modified for flying ad-hoc network communication. The performance of the proposed routing method is compared with other well-known methods such as flooding method and gossip method based on three measures; average reachability, average node usage and average branching factor. The proposed routing method achieves average reachability very closer to flooding method, average node usage closer to gossip method, and outstanding average branching factor among methods. It can be concluded that the proposed multicast routing scheme is more efficient than well-known routing schemes such as flooding and gossip while it maintains high performance.

Keywords: Flying Ad-hoc Networks, Multicast Routing, Stochastic Branching Process, Unmanned Aerial Vehicles

Procedia PDF Downloads 126
848 Attachment Patterns in a Sample of South African Children at Risk in Middle Childhood

Authors: Renate Gericke, Carol Long

Abstract:

Despite the robust empirical support of attachment, advancement in the description and conceptualization of attachment has been slow and has not significantly advanced beyond the identification of attachment security or type (namely, secure, avoidant, ambivalent and disorganized). This has continued despite papers arguing for theoretical refinement in the classification of attachment presentations. For thinking and practice to advance, it is critically important that these categories and their assessment be interrogated in different contexts and across developmental age. To achieve this, a quantitative design was used with descriptive and inferential statistics, and general linear models were employed to analyze the data. The Attachment Story Completion Test (ASCT) was administered to 105 children between the ages of eight and twelve from socio-economically deprived contexts with high exposure to trauma. A staggering 93% of the children had insecure attachments (specifically, avoidant 37%, disorganized 34% and ambivalent 22%) and attachment was more complex than currently conceptualized in the attachment literature. Primary attachment did not only present as one of four discreet categories, but 70% of the sample had a complex attachment with more than one type of maternal attachment style. Attachment intensity also varied along a continuum (between 1 and 5). The findings have implications for a) research that has not considered the potential complexity of attachment or attachment intensity, b) policy to more actively support mother-infant dyads, particularly in high-risk contexts and c) question the applicability of a western conceptualization of a primary maternal attachment figure in non-western collectivist societies.

Keywords: attachment, children at risk, middle childhood, non-western context

Procedia PDF Downloads 197
847 Principle Component Analysis on Colon Cancer Detection

Authors: N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Rita Magdalena, R. D. Atmaja, Sofia Saidah, Ocky Tiaramukti

Abstract:

Colon cancer or colorectal cancer is a type of cancer that attacks the last part of the human digestive system. Lymphoma and carcinoma are types of cancer that attack human’s colon. Colon cancer causes deaths about half a million people every year. In Indonesia, colon cancer is the third largest cancer case for women and second in men. Unhealthy lifestyles such as minimum consumption of fiber, rarely exercising and lack of awareness for early detection are factors that cause high cases of colon cancer. The aim of this project is to produce a system that can detect and classify images into type of colon cancer lymphoma, carcinoma, or normal. The designed system used 198 data colon cancer tissue pathology, consist of 66 images for Lymphoma cancer, 66 images for carcinoma cancer and 66 for normal / healthy colon condition. This system will classify colon cancer starting from image preprocessing, feature extraction using Principal Component Analysis (PCA) and classification using K-Nearest Neighbor (K-NN) method. Several stages in preprocessing are resize, convert RGB image to grayscale, edge detection and last, histogram equalization. Tests will be done by trying some K-NN input parameter setting. The result of this project is an image processing system that can detect and classify the type of colon cancer with high accuracy and low computation time.

Keywords: carcinoma, colorectal cancer, k-nearest neighbor, lymphoma, principle component analysis

Procedia PDF Downloads 209
846 Automatic Early Breast Cancer Segmentation Enhancement by Image Analysis and Hough Transform

Authors: David Jurado, Carlos Ávila

Abstract:

Detection of early signs of breast cancer development is crucial to quickly diagnose the disease and to define adequate treatment to increase the survival probability of the patient. Computer Aided Detection systems (CADs), along with modern data techniques such as Machine Learning (ML) and Neural Networks (NN), have shown an overall improvement in digital mammography cancer diagnosis, reducing the false positive and false negative rates becoming important tools for the diagnostic evaluations performed by specialized radiologists. However, ML and NN-based algorithms rely on datasets that might bring issues to the segmentation tasks. In the present work, an automatic segmentation and detection algorithm is described. This algorithm uses image processing techniques along with the Hough transform to automatically identify microcalcifications that are highly correlated with breast cancer development in the early stages. Along with image processing, automatic segmentation of high-contrast objects is done using edge extraction and circle Hough transform. This provides the geometrical features needed for an automatic mask design which extracts statistical features of the regions of interest. The results shown in this study prove the potential of this tool for further diagnostics and classification of mammographic images due to the low sensitivity to noisy images and low contrast mammographies.

Keywords: breast cancer, segmentation, X-ray imaging, hough transform, image analysis

Procedia PDF Downloads 85
845 Poli4SDG: An Application for Environmental Crises Management and Gender Support

Authors: Angelica S. Valeriani, Lorenzo Biasiolo

Abstract:

In recent years, the scale of the impact of climate change and its related side effects has become ever more massive and devastating. Sustainable Development Goals (SDGs), promoted by United Nations, aim to front issues related to climate change, among others. In particular, the project CROWD4SDG focuses on a bunch of SDGs since it promotes environmental activities and climate-related issues. In this context, we developed a prototype of an application, under advanced development considering web design, that focuses on SDG 13 (SDG on climate action) by providing users with useful instruments to face environmental crises and climate-related disasters. Our prototype is thought and structured for both web and mobile development. The main goal of the application, POLI4SDG, is to help users to get through emergency services. To this extent, an organized overview and classification prove to be very effective and helpful to people in need. A careful analysis of data related to environmental crises prompted us to integrate the user contribution, i.e., exploiting a core principle of Citizen Science, into the realization of a public catalog, available for consulting and organized according to typology and specific features. In addition, gender equality and opportunity features are considered in the prototype in order to allow women, often the most vulnerable category, to have direct support. The overall description of the application functionalities is detailed. Moreover, the implementation features and properties of the prototype are discussed.

Keywords: crowdsourcing, social media, SDG, climate change, natural disasters, gender equality

Procedia PDF Downloads 115
844 Gender Inequality and Human Trafficking

Authors: Kimberly McCabe

Abstract:

The trafficking of women and children for abuse and exploitation is not a new problem under the umbrella of human trafficking; however, over the last decade, the problem has attracted increased attention from international governments and non-profits attempting to reduce victimization and provide services for survivors. Research on human trafficking suggests that the trafficking of human beings is, largely, a symptom of poverty. As the trafficking of human beings may be viewed as a response to the demand for people for various forms of exploitation, a product of poverty, and a consequence of the subordinate positions of women and children in society, it reaches beyond randomized victimization. Hence, human trafficking, and especially the trafficking of women and children, goes beyond the realm of poorness. Therefore, to begin to understand the reasons for the existence of human trafficking, one must identify and consider not only the immediate causes but also those underlying structural determinants that facilitate this form of victimization. Specifically, one must acknowledge the economic, social, and cultural factors that support human trafficking. This research attempts to study human trafficking at the country level by focusing on economic, social, and cultural characteristics. This study focuses on inequality and, in particular, gender inequality as related to legislative attempts to address human trafficking. Within the design of this project is the use of the US State Department’s tier classification system for Trafficking in Persons (TIP) and the USA CIA Fact Sheet of country characteristics for over 150 countries in an attempt to model legal outcomes as related to human trafficking. Results of this research demonstrate the significance of characteristics beyond poverty as related to country-level responses to human trafficking.

Keywords: child trafficking, gender inequality, human trafficking, inequality

Procedia PDF Downloads 246
843 A Prospective Study of a Modified Pin-In-Plaster Technique for Treatment of Distal Radius Fractures

Authors: S. alireza Mirghasemi, Shervin Rashidinia, Mohammadsaleh Sadeghi, Mohsen Talebizadeh, Narges Rahimi Gabaran, S. Shahin Eftekhari, Sara Shahmoradi

Abstract:

Purpose: There are various pin-in-plaster methods for treating distal radius fractures. This study is meant to introduce a modified technique of pin-in-plaster. Materials and methods: Fifty-four patients with distal radius fractures were followed up for one year. Patients were excluded if they had type B fractures according to AO classification, multiple injuries or pathological fractures, and were treated more than 7 days after injury. Range of motion and functional results were evaluated. Radiographic parameters including radial inclination, tilt, and height, were measured preoperatively and postoperatively. Results: The average radial tilt was 10.6° and radial height was 10.2 mm at the sixth month postoperatively. Three cases of pin tract infection were recorded, who were treated totally with oral antibiotics. There was no case of pin loosening. Of total 73 patients underwent surgery, three cases of radial nerve irritation were recorded at the time of cast removal. All of them resolved at the 6th month follow up. No median nerve compression and carpal tunnel syndrome have found. We also had no case of tendon injury. Conclusion: Our modified technique is effective to restore anatomic congruity and maintain reduction.

Keywords: distal radius fracture, percutaneous pinning, pin-in-plaster, modified method of pin-in-plaster, operative treatment

Procedia PDF Downloads 512
842 D3Advert: Data-Driven Decision Making for Ad Personalization through Personality Analysis Using BiLSTM Network

Authors: Sandesh Achar

Abstract:

Personalized advertising holds greater potential for higher conversion rates compared to generic advertisements. However, its widespread application in the retail industry faces challenges due to complex implementation processes. These complexities impede the swift adoption of personalized advertisement on a large scale. Personalized advertisement, being a data-driven approach, necessitates consumer-related data, adding to its complexity. This paper introduces an innovative data-driven decision-making framework, D3Advert, which personalizes advertisements by analyzing personalities using a BiLSTM network. The framework utilizes the Myers–Briggs Type Indicator (MBTI) dataset for development. The employed BiLSTM network, specifically designed and optimized for D3Advert, classifies user personalities into one of the sixteen MBTI categories based on their social media posts. The classification accuracy is 86.42%, with precision, recall, and F1-Score values of 85.11%, 84.14%, and 83.89%, respectively. The D3Advert framework personalizes advertisements based on these personality classifications. Experimental implementation and performance analysis of D3Advert demonstrate a 40% improvement in impressions. D3Advert’s innovative and straightforward approach has the potential to transform personalized advertising and foster widespread personalized advertisement adoption in marketing.

Keywords: personalized advertisement, deep Learning, MBTI dataset, BiLSTM network, NLP.

Procedia PDF Downloads 46
841 BIM-Based Tool for Sustainability Assessment and Certification Documents Provision

Authors: Taki Eddine Seghier, Mohd Hamdan Ahmad, Yaik-Wah Lim, Samuel Opeyemi Williams

Abstract:

The assessment of building sustainability to achieve a specific green benchmark and the preparation of the required documents in order to receive a green building certification, both are considered as major challenging tasks for green building design team. However, this labor and time-consuming process can take advantage of the available Building Information Modeling (BIM) features such as material take-off and scheduling. Furthermore, the workflow can be automated in order to track potentially achievable credit points and provide rating feedback for several design options by using integrated Visual Programing (VP) to handle the stored parameters within the BIM model. Hence, this study proposes a BIM-based tool that uses Green Building Index (GBI) rating system requirements as a unique input case to evaluate the building sustainability in the design stage of the building project life cycle. The tool covers two key models for data extraction, firstly, a model for data extraction, calculation and the classification of achievable credit points in a green template, secondly, a model for the generation of the required documents for green building certification. The tool was validated on a BIM model of residential building and it serves as proof of concept that building sustainability assessment of GBI certification can be automatically evaluated and documented through BIM.

Keywords: green building rating system, GBRS, building information modeling, BIM, visual programming, VP, sustainability assessment

Procedia PDF Downloads 328
840 The Design of a Mixed Matrix Model for Activity Levels Extraction and Sub Processes Classification of a Work Project (Case: Great Tehran Electrical Distribution Company)

Authors: Elham Allahmoradi, Bahman Allahmoradi, Ali Bonyadi Naeini

Abstract:

Complex systems have many aspects. A variety of methods have been developed to analyze these systems. The most efficient of these methods should not only be simple, but also provide useful and comprehensive information about many aspects of the system. Matrix methods are considered the most commonly methods used to analyze and design systems. Each matrix method can examine a particular aspect of the system. If these methods are combined, managers can access to more comprehensive and broader information about the system. This study was conducted in four steps. In the first step, a process model of a real project has been extracted through IDEF3. In the second step, activity levels have been attained by writing a process model in the form of a design structure matrix (DSM) and sorting it through triangulation algorithm (TA). In the third step, sub-processes have been obtained by writing the process model in the form of an interface structure matrix (ISM) and clustering it through cluster identification algorithm (CIA). In the fourth step, a mixed model has been developed to provide a unified picture of the project structure through the simultaneous presentation of activities and sub-processes. Finally, the paper is completed with a conclusion.

Keywords: integrated definition for process description capture (IDEF3) method, design structure matrix (DSM), interface structure matrix (ism), mixed matrix model, activity level, sub-process

Procedia PDF Downloads 495
839 Tracking and Classifying Client Interactions with Personal Coaches

Authors: Kartik Thakore, Anna-Roza Tamas, Adam Cole

Abstract:

The world health organization (WHO) reports that by 2030 more than 23.7 million deaths annually will be caused by Cardiovascular Diseases (CVDs); with a 2008 economic impact of $3.76 T. Metabolic syndrome is a disorder of multiple metabolic risk factors strongly indicated in the development of cardiovascular diseases. Guided lifestyle intervention driven by live coaching has been shown to have a positive impact on metabolic risk factors. Individuals’ path to improved (decreased) metabolic risk factors are driven by personal motivation and personalized messages delivered by coaches and augmented by technology. Using interactions captured between 400 individuals and 3 coaches over a program period of 500 days, a preliminary model was designed. A novel real time event tracking system was created to track and classify clients based on their genetic profile, baseline questionnaires and usage of a mobile application with live coaching sessions. Classification of clients and coaches was done using a support vector machines application build on Apache Spark, Stanford Natural Language Processing Library (SNLPL) and decision-modeling.

Keywords: guided lifestyle intervention, metabolic risk factors, personal coaching, support vector machines application, Apache Spark, natural language processing

Procedia PDF Downloads 433
838 The Nexus between Country Risk and Exchange Rate Regimes: A Global Investigation

Authors: Jie Liu, Wei Wei, Chun-Ping Chang

Abstract:

Using a sample of 110 countries over the period 1984-2013, this paper examines the impacts of country risks on choosing a specific exchange rate regime (first by utilizing the Levy-Yeyati and Sturzenegger de facto classification and then robusting it by the IMF de jure measurement) relative to other regimes via the panel multinomial logit approach. Empirical findings are as follows. First, in the full samples case we provide evidence that government is more likely to implement a flexible regime, but less likely to adopt a fixed regime, under a low level of composite and financial risk. Second, we find that Eurozone countries are more likely to choose a fixed exchange rate regime with a decrease in the level of country risk and favor a flexible regime in response to a shock from an increase of risk, which is opposite to non-Eurozone countries. Third, we note that high-risk countries are more likely to choose a fixed regime with a low level of composite and political risk in the government, but do not adjust the exchange rate regime as a shock absorber when facing economic and financial risks. It is interesting to see that those countries with relatively low risk display almost opposite results versus high-risk economies. Overall, we believe that it is critically important to account for political economy variables in a government’s exchange rate policy decisions, especially for country risks. All results are robust to the panel ordered probit model.

Keywords: country risk, political economy, exchange rate regimes, shock absorber

Procedia PDF Downloads 307
837 Injury Patterns and Outcomes in Alcohol Intoxicated Trauma Patients Admitted at Level I Apex Trauma Centre of a Developing Nation

Authors: G. Kaushik, A. Gupta, S. Lalwani, K. D. Soni, S. Kumar, S. Sagar

Abstract:

Objective: Alcohol is a leading risk factor associated with the disability and death due to RTI. Present study aims to demonstrate the demographic profile, injury pattern, physiological parameters of victims of trauma following alcohol consumption arriving in the emergency department (ED) and mortality in alcohol intoxicated trauma patients admitted to Apex Trauma Center in Delhi. Design and Methods: Present study was performed in randomly selected 182 alcohol breath analyzer tested RTI patients from the emergency department of Jai Prakash Narayan Apex Trauma Center (JPNATC), All India Institute of Medical Sciences, New Delhi for over a period of 3 months started from September 2013 to November 2013. Results: A total 182 RTI patients with blunt injury were selected between 30-40 years of age and equally distributed to male and female group. Of these, 93 (51%) were alcohol negative and 89 (49%) were alcohol positive. In 89 alcohol positive patients, 47 (53%) had Artificial Airway as compared to 17 (18%), (p < 0.001) in the other group. The Glasgow Coma Scale (GCS) score was lower (p < 0.001) and higher Injury Severity Score (ISS) was observed in alcohol positive group as compared to other group (p < 0.03). Increased number of patients (58%) were admitted to Intensive Care Unit (ICU), in alcohol positive group (p < 0.001) and they were in ICU for longer time compare to other group (p < 0.001). The alcohol positive patients were on ventilator support for longer duration as compared to non-alcoholic group (p < 0.001). Mortality rate was higher in alcohol intoxicated patients as compared to non-alcoholic RTI patients, however, the difference was not statistically significant. Conclusion: This study revealed that GCS, mean ISS, ICU stay, ventilation time etc. might have considerable impact on mortality in alcohol intoxicated patients as compared to non-alcoholic group.

Keywords: road traffic injuries, alcohol, trauma, emergency department

Procedia PDF Downloads 320
836 Software Development for AASHTO and Ethiopian Roads Authority Flexible Pavement Design Methods

Authors: Amare Setegn Enyew, Bikila Teklu Wodajo

Abstract:

The primary aim of flexible pavement design is to ensure the development of economical and safe road infrastructure. However, failures can still occur due to improper or erroneous structural design. In Ethiopia, the design of flexible pavements relies on doing calculations manually and selecting pavement structure from catalogue. The catalogue offers, in eight different charts, alternative structures for combinations of traffic and subgrade classes, as outlined in the Ethiopian Roads Authority (ERA) Pavement Design Manual 2001. Furthermore, design modification is allowed in accordance with the structural number principles outlined in the AASHTO 1993 Guide for Design of Pavement Structures. Nevertheless, the manual calculation and design process involves the use of nomographs, charts, tables, and formulas, which increases the likelihood of human errors and inaccuracies, and this may lead to unsafe or uneconomical road construction. To address the challenge, a software called AASHERA has been developed for AASHTO 1993 and ERA design methods, using MATLAB language. The software accurately determines the required thicknesses of flexible pavement surface, base, and subbase layers for the two methods. It also digitizes design inputs and references like nomographs, charts, default values, and tables. Moreover, the software allows easier comparison of the two design methods in terms of results and cost of construction. AASHERA's accuracy has been confirmed through comparisons with designs from handbooks and manuals. The software can aid in reducing human errors, inaccuracies, and time consumption as compared to the conventional manual design methods employed in Ethiopia. AASHERA, with its validated accuracy, proves to be an indispensable tool for flexible pavement structure designers.

Keywords: flexible pavement design, AASHTO 1993, ERA, MATLAB, AASHERA

Procedia PDF Downloads 67
835 Applying Resilience Engineering to improve Safety Management in a Construction Site: Design and Validation of a Questionnaire

Authors: M. C. Pardo-Ferreira, J. C. Rubio-Romero, M. Martínez-Rojas

Abstract:

Resilience Engineering is a new paradigm of safety management that proposes to change the way of managing the safety to focus on the things that go well instead of the things that go wrong. Many complex and high-risk sectors such as air traffic control, health care, nuclear power plants, railways or emergencies, have applied this new vision of safety and have obtained very positive results. In the construction sector, safety management continues to be a problem as indicated by the statistics of occupational injuries worldwide. Therefore, it is important to improve safety management in this sector. For this reason, it is proposed to apply Resilience Engineering to the construction sector. The Construction Phase Health and Safety Plan emerges as a key element for the planning of safety management. One of the key tools of Resilience Engineering is the Resilience Assessment Grid that allows measuring the four essential abilities (respond, monitor, learn and anticipate) for resilient performance. The purpose of this paper is to develop a questionnaire based on the Resilience Assessment Grid, specifically on the ability to learn, to assess whether a Construction Phase Health and Safety Plans helps companies in a construction site to implement this ability. The research process was divided into four stages: (i) initial design of a questionnaire, (ii) validation of the content of the questionnaire, (iii) redesign of the questionnaire and (iii) application of the Delphi method. The questionnaire obtained could be used as a tool to help construction companies to evolve from Safety-I to Safety-II. In this way, companies could begin to develop the ability to learn, which will serve as a basis for the development of the other abilities necessary for resilient performance. The following steps in this research are intended to develop other questions that allow evaluating the rest of abilities for resilient performance such as monitoring, learning and anticipating.

Keywords: resilience engineering, construction sector, resilience assessment grid, construction phase health and safety plan

Procedia PDF Downloads 140
834 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping

Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting

Abstract:

Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.

Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator

Procedia PDF Downloads 252
833 Identification and Evaluation of Landscape Mosaics of Kutlubeyyazıcılar Campus, Bartın University, Turkey

Authors: Y. Sarı Nayim, B. N. Nayim

Abstract:

This research proposal includes the defining and evaluation of the semi-natural and cultural ecosystems at Bartın University main campus in Turkey in terms of landscape mosaics. The ecosystem mosaic of the main campus was divided into zones based on ecological classification technique. Based on the results from the study, it was found that 6 different ecosystem mosaics should be used as a base in the planning and design of the existing and future landscape planning of Kutlubeyyazıcılar campus. The first landscape zone involves the 'social areas'. These areas include yards, dining areas, recreational areas and lawn areas. The second landscape zone is 'main vehicle and pedestrian areas'. These areas include vehicle access to the campus landscape, moving in the campus with vehicles, parking and pedestrian walk ways. The third zone is 'landscape areas with high visual landscape quality'. These areas will be the places where attractive structural and plant landscape elements will be used. Fourth zone will be 'landscapes of building borders and their surroundings.' The fifth and important zone that should be survived in the future is 'Actual semi-natural forest and bush areas'. And the last zone is 'water landscape' which brings ecological value to landscape areas. While determining the most convenient areas in the planning and design of the campus, these landscape mosaics should be taken into consideration. This zoning will ensure that the campus landscape is protected and living spaces in the campus apart from the areas where human activities are carried out will be used properly.

Keywords: campus landscape planning and design, landscape ecology, landscape mosaics, Bartın

Procedia PDF Downloads 371
832 Educational Attainment Inequalities in Depressive Symptoms in More Than 100 000 Individuals in Europe

Authors: Adam Chlapecka, Anna Kagstrom, Pavla Cermakova

Abstract:

Background: Increasing educational attainment (EA) could decrease the occurrence of depression. We investigated the relationship between EA and depressive symptoms in older individuals across four European regions. Methods: We studied 108 315 Europeans (54 % women, median age 63 years old) from the Survey on Health, Ageing and Retirement in Europe assessing EA (7 educational levels based on ISCED classification); and depressive symptoms (≥ 4 points on EURO-D scale). Logistic regression estimated the association between EA and depressive symptoms, adjusting for sociodemographic and health-related factors; testing for sex/age/region and education interactions. Results: Higher EA was associated with lower odds of depressive symptoms, independent of sociodemographic and health-related factors. A threshold of the lowest odds of depressive symptoms was detected at the first stage of tertiary education (OR 0.60; 95% CI 0.55-0.65; p<0.001; relative to no education). Central and Eastern Europe showed the strongest association (OR for high vs. low education 0.37; 95% CI 0.33-0.40; p<0.001) and Scandinavia the weakest (OR for high vs. low education 0.69; 95% CI 0.60-0.80; p<0.001). The association was strongest amongst younger individuals. There was a sex and education interaction only within Central and Eastern Europe. Conclusion: The level of EA is reflected in later-life depressive symptoms, suggesting that supporting individuals in achieving EA, and considering those with lower EA at increased risk for depression, could lead to the decreased burden of depression across the life course. Further educational support in Central and Eastern Europe may decrease the higher burden of depressive symptoms in women.

Keywords: depression, education, epidemiology, Europe

Procedia PDF Downloads 206
831 Introduction of Mass Rapid Transit System and Its Impact on Para-Transit

Authors: Khalil Ahmad Kakar

Abstract:

In developing countries increasing the automobile and low capacity public transport (para-transit) which are creating congestion, pollution, noise, and traffic accident are the most critical quandary. These issues are under the analysis of assessors to break down the puzzle and propose sustainable urban public transport system. Kabul city is one of those urban areas that the inhabitants are suffering from lack of tolerable and friendly public transport system. The city is the most-populous and overcrowded with around 4.5 million population. The para-transit is the only dominant public transit system with a very poor level of services and low capacity vehicles (6-20 passengers). Therefore, this study after detailed investigations suggests bus rapid transit (BRT) system in Kabul City. It is aimed to mitigate the role of informal transport and decreases congestion. The research covers three parts. In the first part, aggregated travel demand modelling (four-step) is applied to determine the number of users for para-transit and assesses BRT network based on higher passenger demand for public transport mode. In the second part, state preference (SP) survey and binary logit model are exerted to figure out the utility of existing para-transit mode and planned BRT system. Finally, the impact of predicted BRT system on para-transit is evaluated. The extracted outcome based on high travel demand suggests 10 km network for the proposed BRT system, which is originated from the district tenth and it is ended at Kabul International Airport. As well as, the result from the disaggregate travel mode-choice model, based on SP and logit model indicates that the predicted mass rapid transit system has higher utility with the significant impact regarding the reduction of para-transit.

Keywords: BRT, para-transit, travel demand modelling, Kabul City, logit model

Procedia PDF Downloads 188
830 The Employees' Classification Method in the Space of Their Job Satisfaction, Loyalty and Involvement

Authors: Svetlana Ignatjeva, Jelena Slesareva

Abstract:

The aim of the study is development and adaptation of the method to analyze and quantify the indicators characterizing the relationship between a company and its employees. Diagnostics of such indicators is one of the most complex and actual issues in psychology of labour. The offered method is based on the questionnaire; its indicators reflect cognitive, affective and connotative components of socio-psychological attitude of employees to be as efficient as possible in their professional activities. This approach allows measure not only the selected factors but also such parameters as cognitive and behavioural dissonances. Adaptation of the questionnaire includes factor structure analysis and suitability analysis of phenomena indicators measured in terms of internal consistency of individual factors. Structural validity of the questionnaire was tested by exploratory factor analysis. Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. Factor analysis allows reduce dimension of the phenomena moving from the indicators to aggregative indexes and latent variables. Aggregative indexes are obtained as the sum of relevant indicators followed by standardization. The coefficient Cronbach's Alpha was used to assess the reliability-consistency of the questionnaire items. The two-step cluster analysis in the space of allocated factors allows classify employees according to their attitude to work in the company. The results of psychometric testing indicate possibility of using the developed technique for the analysis of employees’ attitude towards their work in companies and development of recommendations on their optimization.

Keywords: involved in the organization, loyalty, organizations, method

Procedia PDF Downloads 359
829 Investigating a Deterrence Function for Work Trips for Perth Metropolitan Area

Authors: Ali Raouli, Amin Chegenizadeh, Hamid Nikraz

Abstract:

The Perth metropolitan area and its surrounding regions have been expanding rapidly in recent decades and it is expected that this growth will continue in the years to come. With this rapid growth and the resulting increase in population, consideration should be given to strategic planning and modelling for the future expansion of Perth. The accurate estimation of projected traffic volumes has always been a major concern for the transport modelers and planners. Development of a reliable strategic transport model depends significantly on the inputs data into the model and the calibrated parameters of the model to reflect the existing situation. Trip distribution is the second step in four-step modelling (FSM) which is complex due to its behavioral nature. Gravity model is the most common method for trip distribution. The spatial separation between the Origin and Destination (OD) zones will be reflected in gravity model by applying deterrence functions which provide an opportunity to include people’s behavior in choosing their destinations based on distance, time and cost of their journeys. Deterrence functions play an important role for distribution of the trips within a study area and would simulate the trip distances and therefore should be calibrated for any particular strategic transport model to correctly reflect the trip behavior within the modelling area. This paper aims to review the most common deterrence functions and propose a calibrated deterrence function for work trips within the Perth Metropolitan Area based on the information obtained from the latest available Household data and Perth and Region Travel Survey (PARTS) data. As part of this study, a four-step transport model using EMME software has been developed for Perth Metropolitan Area to assist with the analysis and findings.

Keywords: deterrence function, four-step modelling, origin destination, transport model

Procedia PDF Downloads 170
828 Performance Assessment of Multi-Level Ensemble for Multi-Class Problems

Authors: Rodolfo Lorbieski, Silvia Modesto Nassar

Abstract:

Many supervised machine learning tasks require decision making across numerous different classes. Multi-class classification has several applications, such as face recognition, text recognition and medical diagnostics. The objective of this article is to analyze an adapted method of Stacking in multi-class problems, which combines ensembles within the ensemble itself. For this purpose, a training similar to Stacking was used, but with three levels, where the final decision-maker (level 2) performs its training by combining outputs from the tree-based pair of meta-classifiers (level 1) from Bayesian families. These are in turn trained by pairs of base classifiers (level 0) of the same family. This strategy seeks to promote diversity among the ensembles forming the meta-classifier level 2. Three performance measures were used: (1) accuracy, (2) area under the ROC curve, and (3) time for three factors: (a) datasets, (b) experiments and (c) levels. To compare the factors, ANOVA three-way test was executed for each performance measure, considering 5 datasets by 25 experiments by 3 levels. A triple interaction between factors was observed only in time. The accuracy and area under the ROC curve presented similar results, showing a double interaction between level and experiment, as well as for the dataset factor. It was concluded that level 2 had an average performance above the other levels and that the proposed method is especially efficient for multi-class problems when compared to binary problems.

Keywords: stacking, multi-layers, ensemble, multi-class

Procedia PDF Downloads 271