Search results for: hydraulic resistance
1403 Potential of Entomopathogenic Nematodes to Control Woolly Apple Aphid (Eriosoma lanigerum)
Authors: Nomakholwa F. Stokwe, Antoinette P. Malan
Abstract:
Woolly apple aphid (WAA), Eriosoma lanigerum, is an important pest of apples worldwide. The aphid feeds above ground on buds and leaf axils and the roots of apple trees. Entomopathogenic nematodes (EPNs) of the two families, Steinernematidae and Heterorhabditidae, and their symbiotic bacteria have generated extensive interest as inundative applied biological control agents of insects. With the development of the resistance of WAA to chemicals, export restrictions, and the inability of parasitoids to control the aphid successfully early in the season, considering EPNs as an alternative biocontrol agent is important. Seven EPN species were tested for their pathogenicity against WAA. Laboratory bioassays identified S. yirgalemense and H. zealandica as being the most virulent against the subterranean stage of the WAA, with a mortality rate of 48% and 38%, respectively. Studies on the effect of WAA size showed that the last instar is most susceptible to infection, whereas smaller instars appear to be too small for nematode penetration and infection. Neither increasing the exposure period of the aphids nor increasing the nematode concentration affected the infection rate positively. The haemolymph of WAA showed an inhibitory effect on the development of the symbiotic bacteria, preventing the completion of the nematode’s life cycle.Keywords: apples, biocontrol, entomopathogenic nematodes, woolly apple aphid
Procedia PDF Downloads 2241402 Probabilistic Model for Evaluating Seismic Soil Liquefaction Based on Energy Approach
Authors: Hamid Rostami, Ali Fallah Yeznabad, Mohammad H. Baziar
Abstract:
The energy-based method for evaluating seismic soil liquefaction has two main sections. First is the demand energy, which is dissipated energy of earthquake at a site, and second is the capacity energy as a representation of soil resistance against liquefaction hazard. In this study, using a statistical analysis of recorded data by 14 down-hole array sites in California, an empirical equation was developed to estimate the demand energy at sites. Because determination of capacity energy at a site needs to calculate several site calibration factors, which are obtained by experimental tests, in this study the standard penetration test (SPT) N-value was assumed as an alternative to the capacity energy at a site. Based on this assumption, the empirical equation was employed to calculate the demand energy for 193 liquefied and no-liquefied sites and then these amounts were plotted versus the corresponding SPT numbers for all sites. Subsequently, a discrimination analysis was employed to determine the equations of several boundary curves for various liquefaction likelihoods. Finally, a comparison was made between the probabilistic model and the commonly used stress method. As a conclusion, the results clearly showed that energy-based method can be more reliable than conventional stress-based method in evaluation of liquefaction occurrence.Keywords: energy demand, liquefaction, probabilistic analysis, SPT number
Procedia PDF Downloads 3681401 Green Natural Rubber Composites Reinforced with Synthetic Graphite: Effects of Reinforcing Agent on Film’s Mechanical Properties and Electrical Conductivity
Authors: Veerapat Kitsawat, Muenduen Phisalaphong
Abstract:
Green natural rubber (NR) composites reinforced with synthetic graphite, using alginate as thickening and dispersing agent, were developed to improve mechanical properties and electrical conductivity. The film fabrication was performed using a latex aqueous microdispersion process. The research found that up to 60 parts per hundred rubbers (phr) of graphite could be successfully integrated into the NR matrix without causing agglomeration and phase separation. Accordingly, the mechanical properties, in terms of tensile strength and Young’s modulus of the composite films, were significantly increased, while the elongation at break decreased with higher graphite loading. The reinforcement strongly improved the hydrophilicity of the composite films, resulting in a higher water absorption rate compared to the neat NR film. Moreover, the incorporation of synthetic graphite significantly improved the chemical resistance of the composite films when exposed to toluene. It is demonstrated that the electrical conductivity of the composite films was considerably enhanced with graphite loading. According to the obtained properties, the developed composites offer potential for further development as conductive substrate for electronic applications.Keywords: alginate, composite, graphite, natural rubber
Procedia PDF Downloads 821400 Platooning Method Using Dynamic Correlation of Destination Vectors in Urban Areas
Authors: Yuya Tanigami, Naoaki Yamanaka, Satoru Okamoto
Abstract:
Economic losses due to delays in traffic congestion regarding urban transportation networks have become a more serious social problem as traffic volume increases. Platooning has recently been attracting attention from many researchers to alleviate traffic jams, especially on the highway. On highways, platooning can have positive effects, such as reducing inter-vehicular distance and reducing air resistance. However, the impacts of platooning on urban roads have not been addressed in detail since traffic lights may break the platoons. In this study, we propose a platooning method using L2 norm and cosine similarity to form a platoon with highly similar routes. Also, we investigate the sorting method within a platoon according to each vehicle’s straightness. Our proposed sorting platoon method, which uses two lanes, eliminates Head of Line Blocking at the intersection and improves throughput at intersections. This paper proposes a cyber-physical system (CPS) approach to collaborative urban platoon control. We conduct simulations using the traffic simulator SUMO and the road network, which imitates Manhattan Island. Results from the SUMO confirmed that our method shortens the average travel time by 10-20%. This paper shows the validity of forming a platoon based on destination vectors and sorting vehicles within a platoon.Keywords: CPS, platooning, connected car, vector correlation
Procedia PDF Downloads 751399 Impact of Legs Geometry on the Efficiency of Thermoelectric Devices
Authors: Angel Fabian Mijangos, Jaime Alvarez Quintana
Abstract:
Key concepts like waste heat recycling or waste heat recovery are the basic ideas in thermoelectricity so as to the design the newest solid state sources of energy for a stable supply of electricity and environmental protection. According to several theoretical predictions; at device level, the geometry and configuration of the thermoelectric legs are crucial in the thermoelectric performance of the thermoelectric modules. Thus, in this work, it has studied the geometry effect of legs on the thermoelectric figure of merit ZT of the device. First, asymmetrical legs are proposed in order to reduce the overall thermal conductance of the device so as to increase the temperature gradient in the legs, as well as by harnessing the Thomson effect, which is generally neglected in conventional symmetrical thermoelectric legs. It has been developed a novel design of a thermoelectric module having asymmetrical legs, and by first time it has been validated experimentally its thermoelectric performance by realizing a proof-of-concept device which shows to have almost twofold the thermoelectric figure of merit as compared to conventional one. Moreover, it has been also varied the length of thermoelectric legs in order to analyze its effect on the thermoelectric performance of the device. Along with this, it has studied the impact of contact resistance in these systems. Experimental results show that device architecture can improve up to twofold the thermoelectric performance of the device.Keywords: asymmetrical legs, heat recovery, heat recycling, thermoelectric module, Thompson effect
Procedia PDF Downloads 2411398 Preparation of Polylactide Nanoparticles by Supercritical Fluid Technology
Authors: Jakub Zágora, Daniela Plachá, Karla Čech Barabaszová, Sylva Holešová, Roman Gábor, Alexandra Muñoz Bonilla, Marta Fernández García
Abstract:
The development of new antimicrobial materials that are not toxic to higher living organisms is a major challenge today. Newly developed materials can have high application potential in biomedicine, coatings, packaging, etc. A combination of commonly used biopolymer polylactide with cationic polymers seems to be very successful in the fight against antimicrobial resistance [1].PLA will play a key role in fulfilling the intention set out in the New Deal announced by the EU commission, as it is a bioplastic that is easily degradable, recyclable, and mass-produced. Also, the development of 3D printing in the context of this initiative, and the actual use of PLA as one of the main materials used for this printing, make the technology around the preparation and modification of PLA quite logical. Moreover, theenvironmentally friendly and energy saving technology like supercritical fluid process (SFP) will be used for their preparation. In a first approach, polylactide nano- and microparticles and structures were prepared by supercritical fluid extraction. The RESS (rapid expansion supercritical fluid solution) method is easier to optimize and shows better particle size control. On the contrary, a highly porous structure was obtained using the SAS (supercritical antisolvent) method. In a second part, the antimicrobial biobased polymer was introduced by SFP.Keywords: polylactide, antimicrobial polymers, supercritical fluid technology, micronization
Procedia PDF Downloads 1881397 The DC Behavioural Electrothermal Model of Silicon Carbide Power MOSFETs under SPICE
Authors: Lakrim Abderrazak, Tahri Driss
Abstract:
This paper presents a new behavioural electrothermal model of power Silicon Carbide (SiC) MOSFET under SPICE. This model is based on the MOS model level 1 of SPICE, in which phenomena such as Drain Leakage Current IDSS, On-State Resistance RDSon, gate Threshold voltage VGSth, the transconductance (gfs), I-V Characteristics Body diode, temperature-dependent and self-heating are included and represented using behavioural blocks ABM (Analog Behavioural Models) of Spice library. This ultimately makes this model flexible and easily can be integrated into the various Spice -based simulation softwares. The internal junction temperature of the component is calculated on the basis of the thermal model through the electric power dissipated inside and its thermal impedance in the form of the localized Foster canonical network. The model parameters are extracted from manufacturers' data (curves data sheets) using polynomial interpolation with the method of simulated annealing (S A) and weighted least squares (WLS). This model takes into account the various important phenomena within transistor. The effectiveness of the presented model has been verified by Spice simulation results and as well as by data measurement for SiC MOS transistor C2M0025120D CREE (1200V, 90A).Keywords: SiC power MOSFET, DC electro-thermal model, ABM Spice library, SPICE modelling, behavioural model, C2M0025120D CREE.
Procedia PDF Downloads 5811396 Sporting Events among the Disabled between Excellence and Ideal in Motor Performance: Analytical Descriptive Study in Some Paralympic Sports
Authors: Guebli Abdelkader, Reguieg Madani, Belkadi Adel, Sbaa Bouabdellah
Abstract:
The identification of mechanical variables in the motor performance trajectory has a prominent role in improving skill performance, error-exceeding, it contributes seriously to solving some problems of learning and training. The study aims to highlight the indicators of motor performance for Paralympic athletes during the practicing sports between modelling and between excellence in motor performance, this by taking into account the distinction of athlete practicing with special behavioral skills for the Paralympic athletes. In the study, we relied on the analysis of some previous research of biomechanical performance indicators during some of the events sports (shooting activities in the Paralympic athletics, shooting skill in the wheelchair basketball). The results of the study highlight the distinction of disabled practitioners of sporting events identified in motor performance during practice, by overcoming some physics indicators in human movement, as a lower center of body weight, increase in offset distance, such resistance which requires them to redouble their efforts. However, the results of the study highlighted the strength of the correlation between biomechanical variables of motor performance and the digital level achievement similar to the other practitioners normal.Keywords: sports, the disabled, motor performance, Paralympic
Procedia PDF Downloads 2831395 Numerical Investigation of Static and Dynamic Responses of Fiber Reinforced Sand
Authors: Sandeep Kumar, Mahesh Kumar Jat, Rajib Sarkar
Abstract:
Soil reinforced with randomly distributed fibers is an attractive means to improve the performance of soil in a cost effective manner. Static and dynamic characterization of fiber reinforced soil have become important to evaluate adequate performance for all classes of geotechnical engineering problems. Present study investigates the behaviour of fiber reinforced cohesionless soil through numerical simulation of triaxial specimen. The numerical model has been validated with the existing literature of laboratory triaxial compression testing. A parametric study has been done to find out optimum fiber content for shear resistance. Cyclic triaxial testing has been simulated and the stress-strain response of fiber-reinforced sand has been examined considering different combination of fiber contents. Shear modulus values and damping values of fiber-reinforced sand are evaluated. It has been observed from results that for 1.0 percent fiber content shear modulus increased 2.28 times and damping ratio decreased 4.6 times. The influence of amplitude of cyclic strain, confining pressure and frequency of loading on the dynamic properties of fiber reinforced sand has been investigated and presented.Keywords: damping, fiber reinforced soil, numerical modelling, shear modulus
Procedia PDF Downloads 2781394 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves
Authors: Shengnan Chen, Shuhua Wang
Abstract:
Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves
Procedia PDF Downloads 2831393 Aerodynamics of Spherical Combat Platform Levitation
Authors: Aelina Franz
Abstract:
In recent years, the scientific community has witnessed a paradigm shift in the exploration of unconventional levitation methods, particularly in the domain of spherical combat platforms. This paper explores aerodynamics and levitational dynamics inherent in these spheres by examining interactions at the quantum level. Our research unravels the nuanced aerodynamic phenomena governing the levitation of spherical combat platforms. Through an analysis of the quantum fluid dynamics surrounding these spheres, we reveal the crucial interactions between air resistance, surface irregularities, and the quantum fluctuations that influence their levitational behavior. Our findings challenge conventional understanding, providing a perspective on the aerodynamic forces at play during the levitation of spherical combat platforms. Furthermore, we propose design modifications and control strategies informed by both classical aerodynamics and quantum information processing principles. These advancements not only enhance the stability and maneuverability of the combat platforms but also open new avenues for exploration in the interdisciplinary realm of engineering and quantum information sciences. This paper aims to contribute to levitation technologies and their applications in the field of spherical combat platforms. We anticipate that our work will stimulate further research to create a deeper understanding of aerodynamics and quantum phenomena in unconventional levitation systems.Keywords: spherical combat platforms, levitation technologies, aerodynamics, maneuverable platforms
Procedia PDF Downloads 571392 Biofouling Control during the Wastewater Treatment in Self-Support Carbon Nanotubes Membrane: Role of Low Voltage Electric Potential
Authors: Chidambaram Thamaraiselvan, Carlos Dosoretz
Abstract:
This work will explore the influence of low voltage electric field, both alternating (AC) and direct (DC) currents, on biofouling control to highly electrically conductive self-supporting carbon nanotubes (CNT) membranes at conditions which encourage bacterial growth. A mutant strain of Pseudomonas putida S12 was used a model bacterium. The antibiofouling studies were performed with flow-through mode connecting an electric circuit in resistive mode. Major emphasis was placed on AC due to its ability of repulsing and inactivating bacteria. The observations indicate that an AC potential >1500 mV, 1 kHz frequency, 100 Ω external resistance on ground side and pulse wave above the offset (+0.45) almost completely prevented attachment of bacteria (>98.5%) and bacterial inactivation (95.3±2.5%). Findings suggest that at the conditions applied, direct electron transfer might be dominant in a decrease of cell viability. AC resulted more effective than DC, both in terms of biofouling reduction compared to cathodic DC and in terms of cell inactivation compared to anodic DC. This electrically polarized CNT membranes offer a viable antibiofouling strategy to hinder biofouling and simplify membrane care during filtration.Keywords: bacterial attachment, biofouling control, low electric potential, water treatment
Procedia PDF Downloads 2701391 Nanoderma: Ecofriendly Nano Biofungicides for Controlling Plant Pathogenic Fungi
Authors: Kamel A. Abd-Elsalam, Alexei R. Khokhlov
Abstract:
Studies on bioefficacy (in vitro and in vivo) and mode of action of the nanocides against the most important plant diseases in Egypt and Russia might assist in the goal of sustainable agriculture. To our knowledge, few researchers have evaluated the combined antimicrobial effect of inorganic nanoparticles (NPs) with bioorganic pesticides for controlling plant pathogens in the greenhouse and open field, decontrol investigated synergistic effect. In the current project, we will develop eco-friendly alternative management strategies including the use of heavy nanometal-tolerant Trichoderma strains and the main effective material in conventional fungicides (curpic, sulfur, phosphorus and zinc) for controlling plant diseases. Studies on bioefficacy and the mechanism of the nanocides against the most important plant diseases in Egypt were evaluated. There is a growing need to establish mechanisms of action for nano bio and/or fungicides to assist the design of new compounds or combinations of compounds, in order to understand resistance mechanisms and to provide a focus for toxicological attention. Nanofungicides represent an emerging technological development that could offer a range of benefits including increased efficacy, durability, and a reduction in the amounts of active ingredients that need to be used.Keywords: biohybrids, biocides, bioagent, plant pathogenic fungi
Procedia PDF Downloads 2551390 Evaluation of Deteriorated Fired Clay Bricks Based on Schmidt Hammer Tests
Authors: Laurent Debailleux
Abstract:
Although past research has focused on parameters influencing the vulnerability of brick and its decay, in practice ancient fired clay bricks are usually replaced without any particular assessment of their characteristics. This paper presents results of non-destructive Schmidt hammer tests performed on ancient fired clay bricks sampled from historic masonry. Samples under study were manufactured between the 18th and 20th century and came from facades and interior walls. Tests were performed on three distinct brick surfaces, depending on their position within the masonry unit. Schmidt hammer tests were carried out in order to measure the mean rebound value (Rn), which refers to the resistance of the surface to successive impacts of the hammer plunger tip. Results indicate that rebound values increased with successive impacts at the same point. Therefore, mean Schmidt hammer rebound values (Rn), limited to the first impact on a surface minimises the estimation of compressive strength. In addition, the results illustrate that this technique is sensitive enough to measure weathering differences, even for different surfaces of a particular sample. Finally, the paper also highlights the relevance of considering the position of the brick within the masonry when conducting particular assessments of the material’s strength.Keywords: brick, non-destructive tests, rebound number, Schmidt hammer, weathering grade
Procedia PDF Downloads 1611389 Biochemical and Molecular Analysis of Staphylococcus aureus Various Isolates from Different Places
Authors: Kiran Fatima, Kashif Ali
Abstract:
Staphylococcus aureus is an opportunistic human as well as animal pathogen that causes a variety of diseases. A total of 70 staphylococci isolates were obtained from soil, water, yogurt, and clinical samples. The likely staphylococci clinical isolates were identified phenotypically by different biochemical tests. Molecular identification was done by PCR using species-specific 16S rRNA primer pairs, and finally, 50 isolates were found to be positive as Staphylococcus aureus, sciuri, xylous and cohnii. Screened isolates were further analyzed by several microbiological diagnostics tests, including gram staining, coagulase, capsule, hemolysis, fermentation of glucose, lactose, maltose, and sucrose tests enzymatic reactions. It was found that 78%, 81%, and 51% of isolates were positive for gelatin hydrolysis, protease, and lipase activities, respectively. Antibiogram analysis of isolated Staphylococcus aureus strains with respect to different antimicrobial agents revealed resistance patterns ranging from 57 to 96%. Our study also shows 70% of strains to be MRSA, 54.3% as VRSA, and 54.3% as both MRSA and VRSA. All the identified isolates were subjected to detection of mecA, nuc, and hlb genes, and 70%, 84%, and 40% were found to harbour mecA, nuc, and hlb genes, respectively. The current investigation is highly important and informative for the high-level multidrug-resistant Staphylococcus aureus infections inclusive also of methicillin and vancomycin.Keywords: MRSA, VRSA, mecA, MSSA
Procedia PDF Downloads 1301388 Inhibitory Effect of Helichrysum arenarium Essential Oil on the Growth of Food Contaminated Microorganisms
Authors: Ali Mohamadi Sani
Abstract:
The aim of this study was to determine the antimicrobial effect of Helichrysum arenarium L. essential oil in "in-vitro" condition on the growth of seven microbial species including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Saccharomyces cereviciae, Candida albicans, Aspergillus flavus and Aspergillus parasiticus using microdilution method. The minimum inhibitory concentration (MIC) and minimum bactericidal or fungicidal concentration (MBC, MFC) were determined for the essential oil at ten concentrations. Finally, the sensitivity of tested microbes to the essential oil of H. arenarium was investigated. Results showed that Bacillus subtilis (MIC=781.25 and MBC=6250 µg/ml) was more resistance than two other bacterial species. Among the tested yeasts, Saccharomyces cereviciae (MIC=97.65 and MFC=781.25 µg/ml) was more sensitive than Candida albicans, while among the fungal species, growth of Aspergillus parasiticus inhibited at lower concentration of oil than the Aspergillus flavus. The extracted essential oil exhibited the same MIC value in the liquid medium against all fungal strains (48.82 µg/ml), while different activity against A. flavus and A. parasiticus was observed in this medium with MFC values of 6250 and 390.625µg/ml, respectively. The results of the present study indicated that Helichrysum arenarium L essential oil had significant (P<0.05) antimicrobial activity; therefore, it can be used as a natural preservation to increase the shelf life of food products.Keywords: Helichrysum arenarium, antimicrobial, essential oil, MIC
Procedia PDF Downloads 3471387 Mechanisms Involved in Biological Control of Fusarium Wilt
Authors: Bensaid Fatiha
Abstract:
The objective of our present work is the description of the antagonistic capacities of one strain of Pseudomonas fluorescens and the nonpathogenic fungic isolate Fusarium oxysporum against phytopathogenic agent Fusarium oxysporum F. Sp. lycopersici. This work has been achieved in two main parts: the first is interested on the in vitro antagonistic activities; the second was interested to study the soil receptiveness of fusarium wilt tomato. The use of strain of fluorescent Pseudomonas and a non-pathogenic strain of F. oxysporum in the different antagonism tests, has allowed assuring a certain bio-protection from the plants of tomatoes opposite to F. oxysporum F. Sp. lycopersici, agent of a wilt of tomato. These antagonistic have shown a substantial in vitro antagonistic activity on the three mediums (KB, PDA, KB+PDA) against F. oxysporum F. Sp. lycopersici, by inhibiting its growth mycelium with rate of inhibition going until 80 % with non-pathogen of Fusarium oxysporum and 60 % with strain of fluorescens Pseudomonas. Soil microbial balance, between the antagonistic population and that of pathogenic, can be modulated through microbiological variations or abiotic additives influencing directly or indirectly the metabolic behavior microbial. In this experiment, addition of glucose or EDTA, could increase or decrease the resistance of soil by activation of pathogenic or antagonists, as a result of modification and modulation in their metabolic activities.Keywords: fluorescents, nonpathogenic, fusarium oxysporum, fusarium wilt, antagonism, biological control, soil receptivity
Procedia PDF Downloads 4611386 A Study on the Implementation of Differentiating Instruction Based on Universal Design for Learning
Authors: Yong Wook Kim
Abstract:
The diversity of students in regular classrooms is increasing due to expand inclusive education and increase multicultural students in South Korea. In this diverse classroom environment, the universal design for learning (UDL) has been proposed as a way to meet both the educational need and social expectation of student achievement. UDL offers a variety of practical teaching methods, one of which is a differentiating instruction. The differentiating instruction has been pointed out resource limitation, organizational resistance, and lacks easy-to-implement framework. However, through the framework provided by the UDL, differentiating instruction is able to be flexible in their implementation. In practice, the UDL and differentiating instruction are complementary, but there is still a lack of research that suggests specific implementation methods that apply both concepts at the same time. This study was conducted to investigate the effects of differentiating instruction strategies according to learner characteristics (readiness, interest, learning profile), components of differentiating instruction (content, process, performance, learning environment), especially UDL principles (representation, behavior and expression, participation) existed in differentiating instruction, and implementation of UDL-based differentiating instruction through the Planning for All Learner (PAL) and UDL Lesson Plan Cycle. It is meaningful that such a series of studies can enhance the possibility of more concrete and realistic UDL-based teaching and learning strategies in the classroom, especially in inclusive settings.Keywords: universal design for learning, differentiating instruction, UDL lesson plan, PAL
Procedia PDF Downloads 1941385 Encapsulation of Satureja khuzestanica Essential Oil in Chitosan Nanoparticles with Enhanced Antifungal Activity
Authors: Amir Amiri, Naghmeh Morakabati
Abstract:
During the recent years the six-fold growth of cancer in Iran has led the production of healthy products to become a challenge in the food industry. Due to the young population in the country, the consumption of fast foods is growing. The chemical cancer-causing preservatives are used to produce these products more than the standard; so using an appropriate alternative seems to be important. On the one hand, the plant essential oils show the high antimicrobial potential against pathogenic and spoilage microorganisms and on the other hand they are highly volatile and decomposed under the processing conditions. The study aims to produce the loaded chitosan nanoparticles with different concentrations of savory essential oil to improve the anti-microbial property and increase the resistance of essential oil to oxygen and heat. The encapsulation efficiency was obtained in the range of 32.07% to 39.93% and the particle size distribution of the samples was observed in the range of 159 to 210 nm. The range of Zeta potential was obtained between -11.9 to -23.1 mV. The essential oil loaded in chitosan showed stronger antifungal activity against Rhizopus stolonifer. The results showed that the antioxidant property is directly related to the concentration of loaded essential oil so that the antioxidant property increases by increasing the concentration of essential oil. In general, it seems that the savory essential oil loaded in chitosan particles can be used as a food processor.Keywords: chitosan, encapsulation, essential oil, nanogel
Procedia PDF Downloads 2741384 Finite Element Analysis of the Drive Shaft and Jacking Frame Interaction in Micro-Tunneling Method: Case Study of Tehran Sewerage
Authors: B. Mohammadi, A. Riazati, P. Soltan Sanjari, S. Azimbeik
Abstract:
The ever-increasing development of civic demands on one hand; and the urban constrains for newly establish of infrastructures, on the other hand, perforce the engineering committees to apply non-conflicting methods in order to optimize the results. One of these optimized procedures to establish the main sewerage networks is the pipe jacking and micro-tunneling method. The raw information and researches are based on the experiments of the slurry micro-tunneling project of the Tehran main sewerage network that it has executed by the KAYSON co. The 4985 meters route of the mentioned project that is located nearby the Azadi square and the most vital arteries of Tehran is faced to 45% physical progress nowadays. The boring machine is made by the Herrenknecht and the diameter of the using concrete-polymer pipes are 1600 and 1800 millimeters. Placing and excavating several shafts on the ground and direct Tunnel boring between the axes of issued shafts is one of the requirements of the micro-tunneling. Considering the stream of the ground located shafts should care the hydraulic circumstances, civic conditions, site geography, traffic cautions and etc. The profile length has to convert to many shortened segment lines so the generated angle between the segments will be based in the manhole centers. Each segment line between two continues drive and receive the shaft, displays the jack location, driving angle and the path straight, thus, the diversity of issued angle causes the variety of jack positioning in the shaft. The jacking frame fixing conditions and it's associated dynamic load direction produces various patterns of Stress and Strain distribution and creating fatigues in the shaft wall and the soil surrounded the shaft. This pattern diversification makes the shaft wall transformed, unbalanced subsidence and alteration in the pipe jacking Stress Contour. This research is based on experiments of the Tehran's west sewerage plan and the numerical analysis the interaction of the soil around the shaft, shaft walls and the Jacking frame direction and finally, the suitable or unsuitable location of the pipe jacking shaft will be determined.Keywords: underground structure, micro-tunneling, fatigue analysis, dynamic-soil–structure interaction, underground water, finite element analysis
Procedia PDF Downloads 3181383 System Response of a Variable-Rate Aerial Application System
Authors: Daniel E. Martin, Chenghai Yang
Abstract:
Variable-rate aerial application systems are becoming more readily available; however, aerial applicators typically only use the systems for constant-rate application of materials, allowing the systems to compensate for upwind and downwind ground speed variations. Much of the resistance to variable-rate aerial application system adoption in the U.S. pertains to applicator’s trust in the systems to turn on and off automatically as desired. The objectives of this study were to evaluate a commercially available variable-rate aerial application system under field conditions to demonstrate both the response and accuracy of the system to desired application rate inputs. This study involved planting oats in a 35-acre fallow field during the winter months to establish a uniform green backdrop in early spring. A binary (on/off) prescription application map was generated and a variable-rate aerial application of glyphosate was made to the field. Airborne multispectral imagery taken before and two weeks after the application documented actual field deposition and efficacy of the glyphosate. When compared to the prescription application map, these data provided application system response and accuracy information. The results of this study will be useful for quantifying and documenting the response and accuracy of a commercially available variable-rate aerial application system so that aerial applicators can be more confident in their capabilities and the use of these systems can increase, taking advantage of all that aerial variable-rate technologies have to offer.Keywords: variable-rate, aerial application, remote sensing, precision application
Procedia PDF Downloads 4751382 Overcoming the Obstacles to Green Campus Implementation in Indonesia
Authors: Mia Wimala, Emma Akmalah, Ira Irawati, M. Rangga Sururi
Abstract:
One way that has been aggressively implemented in creating a sustainable environment nowadays is through the implementation of green building concept. In order to ensure the success of its implementation, the support and initiation from educational institutions, especially higher education institutions are indispensable. This research was conducted to figure out the obstacles restraining the success of green campus implementation in Indonesia, as well as to propose strategies to overcome those obstacles. The data presented in this paper are mainly derived from interview and questionnaire distributed randomly to the staffs and students in 10 (ten) major institutions around Jakarta and West Java area. The data were further analyzed using ANOVA and SWOT analysis. According to 182 respondents, it is found that resistance to change, inadequate knowledge, information and understanding, no penalty for any environmental violation, lack of reward for green campus practices, lack of stringent regulations/laws, lack of management commitment, insufficient funds are the obstacles to the green campus movement in Indonesia. In addition, out of 6 criteria considered in UI GreenMetric World Ranking, education was the only criteria that had no significant difference between public and private universities in generating the green campus performance. The work concludes with recommendation of strategies to improve the implementation of green campus in the future.Keywords: green campus, obstacles, sustainable, higher education institutions
Procedia PDF Downloads 2241381 Application of Box-Behnken Response Surface Design for Optimization of Essential Oil Based Disinfectant on Mixed Species Biofilm
Authors: Anita Vidacs, Robert Rajko, Csaba Vagvolgyi, Judit Krisch
Abstract:
With the optimization of a new disinfectant the number of tests could be decreased and the cost of processing too. Good sanitizers are eco-friendly and allow no resistance evolvement of bacteria. The essential oils (EOs) are natural antimicrobials, and most of them have the Generally Recognized As Safe (GRAS) status. In our study, the effect of the EOs cinnamon, marjoram, and thyme was investigated against mixed species bacterial biofilms of Escherichia coli, Listeria monocytogenes, Pseudomonas putida, and Staphylococcus aureus. The optimal concentration of EOs, disinfection time and level of pH were evaluated with the aid of Response Surface Box-Behnken Design (RSD) on 1 day and 7 days old biofilms on metal, plastic, and wood surfaces. The variable factors were in the range of 1-3 times of minimum bactericide concentration (MBC); 10-110 minutes acting time and 4.5- 7.5 pH. The optimized EO disinfectant was compared to industrial used chemicals (HC-DPE, Hypo). The natural based disinfectants were applicable; the acting time was below 30 minutes. EOs were able to eliminate the biofilm from the used surfaces except from wood. The disinfection effect of the EO based natural solutions was in most cases equivalent or better compared to chemical sanitizers used in food industry.Keywords: biofilm, Box-Behnken design, disinfectant, essential oil
Procedia PDF Downloads 2201380 An Update on Linezolid against Methicillin-Resistant Staphylococcus Aureus Clinical Isolates from Pakistan
Authors: Tayaba Dastgeer, Farhan Rasheed, Muhammad Saeed, Maqsood Ahmad, Zia Ashraf, Abdul Waheed, Muhammad Kamran, Mohsin Khurshid
Abstract:
Objectives: The study aimed to determine the efficacy of linezolid against clinical isolates of methicillin-resistant staphylococcus aureus (MRSA). Methodology: This cross-sectional study was conducted in the microbiology department of Allama Iqbal Medical College Lahore from August 2017 to September 2019. Isolates were confirmed as MRSA via the presence of the mec-A gene. Confirmed MRSA isolates were processed for susceptibility testing against different antimicrobials, especially linezolid, via the disc diffusion method. Zone sizes were interpreted according to CLSI guidelines. Results: Various types of clinical samples were included in the study; however, the highest frequency of MRSA isolates was found in pus samples, followed by other clinical samples. Among hospitalized patients, most MRSA isolates were obtained from patients in the surgical ward. Of 243 mec-A gene detected isolates, Vancomycin and linezolid showed 100% susceptibility, chloramphenicol showed declining resistance 78 (32.09%), and emerging sensitivity 165 (67.90%) against MRSA. Conclusion: Linezolid is a very efficient drug against MRSA, but the use of this novel drug must be conserved for vancomycin-resistant Staphylococcus aureus or when more resistant pathogens are suspected.Keywords: MRSA, chloramphenicol, linezolid, nosocomial infections
Procedia PDF Downloads 971379 Refinement of Existing Benzthiazole lead Targeting Lysine Aminotransferase in Dormant Stage of Mycobacterium tuberculosis
Authors: R. Reshma srilakshmi, S. Shalini, P. Yogeeswari, D. Sriram
Abstract:
Lysine aminotransferase is a crucial enzyme for dormancy in M. tuberculosis. It is involved in persistence and antibiotic resistance. In present work, we attempted to develop benzthiazole derivatives as lysine aminotransferase inhibitors. In our attempts, we also unexpectedly arrived at an interesting compound 21 (E)-4-(5-(2-(benzo[d]thiazol-2-yl)-2-cyanovinyl)thiophen-2-yl)benzoic acid which even though has moderate activity against persistent phase of mycobacterium, it has significant potency against active phase. In the entire series compound 22 (E)-4-(5-(2-(benzo[d]thiazol-2-yl)-2-cyanovinyl)thiophen-2-yl)isophthalic acid emerged as potent molecule with LAT IC50 of 2.62 µM. It has a significant log reduction of 2.9 and 2.3 fold against nutrient starved and biofilm forming mycobacteria. It was found to be inactive in MABA assay and M.marinum induced zebra fish model. It is also devoid of cytotoxicity. Compound 22 was also found to possess bactericidal effect which is independent of concentration and time. It was found to be effective in combination with Rifampicin in 3D granuloma model. The results are very encouraging as the hit molecule shows activity against active as well as persistent forms of tuberculosis. The identified hit needs further more pharmacokinetic and dynamic screening for development as new drug candidate.Keywords: benzothiazole, latent tuberculosis, LAT, nutrient starvation
Procedia PDF Downloads 3301378 Bodies in Transit: The African Woman and Migration Ordeals
Authors: Okikiola Olusanu
Abstract:
The us/other relationship between the colonizer and the colonized, which continues to inform the oppression of Africans and highlights the intersectional oppression of postcolonial African women because of the colonialization of the identity of African women, inspired this poem. It reflects 'the body' and the 'embodied' as it journeys through the constructed distance between the white feminine body and colonized bodies in the context of travel. Through vivid imagery, repetition, and powerful language, this poem analyzes the effect of otherness on African women as they struggle with their internalized otherness and a poor sense of belonging, which hinges on the politics of difference which makes it impossible to complement the sameness of another within the liminal space of transition. This poem examines the discourse on the complexities of migration for the African woman by critically examining bodies, space, mobility, and how they interact. Our focus is on their relationship and how it affects African women's place and pace when moving to and through the First World. Through literary and feminist perspectives, this study aims to represent the portrait of the African woman and to decolonize the concept of border. It seeks to address the uniqueness of the African woman’s body, not as the same or different, but as distinct and wholesome to foster fairness, friendship, belonging, and equity in travel. To develop our argument and to establish our findings, we look at the dynamics of the oppression of the postcolonial African woman's body and her resistance.Keywords: body, identity, African woman, decolonization
Procedia PDF Downloads 121377 Numerical Predictions of Trajectory Stability of a High-Speed Water-Entry and Water-Exit Projectile
Authors: Lin Lu, Qiang Li, Tao Cai, Pengjun Zhang
Abstract:
In this study, a detailed analysis of trajectory stability and flow characteristics of a high-speed projectile during the water-entry and water-exit process has been investigated numerically. The Zwart-Gerber-Belamri (Z-G-B) cavitation model and the SST k-ω turbulence model based on the Reynolds Averaged Navier-Stokes (RANS) method are employed. The numerical methodology is validated by comparing the experimental photograph of cavitation shape and the experimental underwater velocity with the numerical simulation results. Based on the numerical methodology, the influences of rotational speed, water-entry and water-exit angle of the projectile on the trajectory stability and flow characteristics have been carried out in detail. The variation features of projectile trajectory and total resistance have been conducted, respectively. In addition, the cavitation characteristics of water-entry and water-exit have been presented and analyzed. Results show that it may not be applicable for the water-entry and water-exit to achieve the projectile stability through the rotation of projectile. Furthermore, there ought to be a critical water-entry angle for the water-entry stability of practical projectile. The impact of water-exit angle on the trajectory stability and cavity phenomenon is not as remarkable as that of the water-entry angle.Keywords: cavitation characteristics, high-speed projectile, numerical predictions, trajectory stability, water-entry, water-exit
Procedia PDF Downloads 1361376 Simultaneous Improvement of Wear Performance and Toughness of Ledeburitic Tool Steels by Sub-Zero Treatment
Authors: Peter Jurči, Jana Ptačinová, Mária Hudáková, Mária Dománková, Martin Kusý, Martin Sahul
Abstract:
The strength, hardness, and toughness (ductility) are in strong conflict for the metallic materials. The only possibility how to make their simultaneous improvement is to provide the microstructural refinement, by cold deformation, and subsequent recrystallization. However, application of this kind of treatment is impossible for high-carbon high-alloyed ledeburitic tool steels. Alternatively, it has been demonstrated over the last few years that sub-zero treatment induces some microstructural changes in these materials, which might favourably influence their complex of mechanical properties. Commercially available PM ledeburitic steel Vanadis 6 has been used for the current investigations. The paper demonstrates that sub-zero treatment induces clear refinement of the martensite, reduces the amount of retained austenite, enhances the population density of fine carbides, and makes alterations in microstructural development that take place during tempering. As a consequence, the steel manifests improved wear resistance at higher toughness and fracture toughness. Based on the obtained results, the key question “can the wear performance be improved by sub-zero treatment simultaneously with toughness” can be answered by “definitely yes”.Keywords: ledeburitic tool steels, microstructure, sub-zero treatment, mechanical properties
Procedia PDF Downloads 3181375 The Synthesis and Characterization of Highly Water-Soluble Silane Coupling Agents for Increasing Silica Filler Content in Styrene-Butadiene Rubber
Authors: Jun Choi, Bo Ram Lee, Ji Hye Choi, Jung Soo Kim, No-Hyung Park, Dong Hyun Kim
Abstract:
The synthetic rubber compound, which is widely used as the core material for automobile tire industry, is manufactured by mixing styrene-butadiene rubber (SBR) and organic/inorganic fillers. It is known that the most important factor for the physical properties of rubber compound is the interaction between the filler and the rubber, which affects the rotational, braking and abrasion resistance. Silica filler has hydrophilic groups such as a silanol group on their surface which has a low affinity with hydrophobic rubbers. In order to solve this problem, researches on an efficient silane coupling agent (SCA) has been continuously carried out. In this study, highly water-soluble SCAs which are expected to show higher hydrolysis efficiency were synthesized. The hydrophobization process of the silica with the prepared SCAs was economical and environment-friendly. The SCAs structures were analysed by gas chromatography-mass spectrometry (GC/MS) and nuclear magnetic resonance (1H-NMR) spectroscopy. In addition, their hydrolysis efficiency and condensation side reaction in SBR wet master batch were examined by Fourier transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC), respectively.Keywords: rubber, silane coupling agent, synthesis, water-soluble
Procedia PDF Downloads 2931374 Impact of Environmental Stressors on Microbial Community Dynamics and Ecosystem Functioning: Implications for Bioremediation and Restoration Strategies
Authors: Nazanin Nikanmajd
Abstract:
Microorganisms are essential for influencing environmental processes, such as nutrient cycling, pollutant breakdown, and ecosystem well-being. Recent developments in high-throughput sequencing technologies and metagenomic methods have given us fresh understandings about the range and capabilities of microorganisms in different settings. This research examines how environmental stressors like climate change, pollution, and habitat degradation affect the composition and roles of microbial communities in soil and water ecosystems. We show that human-caused disruptions change the makeup of microbial communities, causing changes in important metabolic pathways for biogeochemical processes. More precisely, we pinpoint important microbial groups that show resistance or susceptibility to certain stress factors, emphasizing their possible uses in bioremediation and ecosystem rehabilitation. The results highlight the importance of adopting a holistic approach to comprehend microbial changes in evolving environments, impacting sustainable environmental conservation and management strategies. This research helps develop new solutions to reduce the impacts of environmental degradation on microbial ecosystem services by understanding the intricate relationships between microorganisms and their surroundings.Keywords: environmental microbiology, microbial communities, climate change, pollution, bioremediation, metagenomics, ecosystem services, ecosystem restoration
Procedia PDF Downloads 6