Search results for: content- and task-based learning
10053 Critical Reflection in Teaching and Learning Mathematics towards Perspective Transformation: Practices in Public and Private Schools
Authors: Arturo Tobias Calizon Jr.
Abstract:
The study investigated the practices in critical reflection being employed in teaching and learning mathematics in public and private schools for students to achieve perspective transformation in psychological, convictional and behavioral dimensions. There were 1,969 senior high school and college student-respondents selected at random from 33 schools. Process reflection is most commonly practiced in both public and private schools. Convictional dimension of perspective transformation is most frequently achieved. There is no significant difference in practices of process reflection between senior high school and college students. However, there is a significant difference in perspective transformation in behavioral dimension achieved by students from public and private schools. Also, there are significant differences in psychological, convictional and behavioral dimensions of perspective transformation achieved by senior high school and college students. There is a high and significant relationship between critical reflection practices and perspective transformation of students. The researcher concludes that there are teaching strategies that facilitate critical thinking, and there are learning activities that alter perspective of students about mathematics as an abstract field. The researcher further concludes that consistent use of appropriate teaching and learning activities could bring about perspective transformation in students with success.Keywords: critical reflection, perspective transformation, process reflection, convictional dimension, teaching and learning mathematics
Procedia PDF Downloads 15410052 Comparative Study of Calcium Content on in vitro Biological and Antibacterial Properties of Silicon-Based Bioglass
Authors: Morteza Elsa, Amirhossein Moghanian
Abstract:
The major aim of this study was to evaluate the effect of CaO content on in vitro hydroxyapatite formation, MC3T3 cells cytotoxicity and proliferation as well as antibacterial efficiency of sol-gel derived SiO2–CaO–P2O5 ternary system. For this purpose, first two grades of bioactive glass (BG); BG-58s (mol%: 60%SiO2–36%CaO–4%P2O5) and BG-68s (mol%: 70%SiO2–26%CaO–4%P2O5)) were synthesized by sol-gel method. Second, the effect of CaO content in their composition on in vitro bioactivity was investigated by soaking the BG-58s and BG-68s powders in simulated body fluid (SBF) for time periods up to 14 days and followed by characterization inductively coupled plasma atomic emission spectrometry (ICP-AES), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. Additionally, live/dead staining, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and alkaline phosphatase (ALP) activity assays were conducted respectively, as qualitatively and quantitatively assess for cell viability, proliferation and differentiations of MC3T3 cells in presence of 58s and 68s BGs. Results showed that BG-58s with higher CaO content showed higher in vitro bioactivity with respect to BG-68s. Moreover, the dissolution rate was inversely proportional to oxygen density of the BG. Live/dead assay revealed that both 58s and 68s increased the mean number live cells which were in good accordance with MTT assay. Furthermore, BG-58s showed more potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) bacteria. Taken together, BG-58s with enhanced MC3T3 cells proliferation and ALP activity, acceptable bioactivity and significant high antibacterial effect against MRSA bacteria is suggested as a suitable candidate in order to further functionalizing for delivery of therapeutic ions and growth factors in bone tissue engineering.Keywords: antibacterial, bioactive glass, hydroxyapatite, proliferation, sol-gel processes
Procedia PDF Downloads 14710051 Trust and Conflict Resolution: Relationship Building for Learning
Authors: Jeff Dickie
Abstract:
This research paper combined grounded coding and research questions with the objective to investigate conflict resolution in the classroom. The students’ answers concerning teaching were coded according to phrasal meanings which revealed concepts. These concept codes then became input data into theoretical frameworks. The investigation indicated two conflicts: whether the information was valid and whether to make the study effort which was discussed as perceptions of teacher’s competence in helping to learn. The relevant factors in helping to learn were predominately emotional. These factors were important in the negotiation process to develop relationships. Information validity seemed to be the motivator to begin and participate effectively with the learning process. In effect, confidence in the learning negotiation process with the focus towards relationship building with the subject matter seemed to be the motivator to make the study effort.Keywords: coding, confidence, competence, conflict resolution, risk, trust, relationship building
Procedia PDF Downloads 43110050 Depth of Field: Photographs, Narrative and Reflective Learning Resource for Health Professions Educators
Authors: Gabrielle Brand, Christopher Etherton-Beer
Abstract:
The learning landscape of higher education environment is changing, with an increased focus over the past decade on how educators might begin to cultivate reflective skills in health professions students. In addition, changing professional requirements demand that health professionals are adequately prepared to practice in today’s complex Australian health care systems, including responding to changing demographics of population ageing. To counteract a widespread perception of health professions students’ disinterest in caring for older persons, the authors will report on an exploratory, mixed method research study that used photographs, narrative and small group work to enhance medical and nursing students’ reflective learning experience. An innovative photo-elicitation technique and reflective questioning prompts were used to increase engagement, and challenge students to consider new perspectives (around ageing) by constructing shared storylines in small groups. The qualitative themes revealed how photographs, narratives and small group work created learning spaces for reflection whereby students could safely explore their own personal and professional values, beliefs and perspectives around ageing. By providing the space for reflection, the students reported how they found connection and meaning in their own learning through a process of self-exploration that often challenged their assumptions of both older people and themselves as future health professionals. By integrating cognitive and affective elements into the learning process, this research demonstrates the importance of embedding visual methodologies that enhance reflection and transformative learning. The findings highlight the importance of integrating the arts into predominantly empirically driven health professional curricula and can be used as a catalyst for individual and/or collective reflection which can potentially enhance empathy, insight and understanding of the lived experiences of older patients. Based on these findings, the authors have developed ‘Depth of Field: Exploring Ageing’ an innovative, interprofessional, digital reflective learning resource that uses Prezi Inc. software (storytelling tool that presents ideas on a virtual canvas) to enhance students’ reflective capacity in the higher education environment.Keywords: narrative, photo-elicitation, reflective learning, qualitative research
Procedia PDF Downloads 28410049 Analysis of Bio-Oil Produced from Sugar Cane Bagasse Pyrolysis
Authors: D. S. Fardhyanti, M. Megawati, H. Prasetiawan, U. Mediaty
Abstract:
Currently, fossil fuel is supplying most of world’s energy resources. However, fossil fuel resources are depleted rapidly and require an alternative energy to overcome the increasing of energy demands. Bio-oil is one of a promising alternative renewable energy resources which is converted from biomass through pyrolysis or fast pyrolysis process. Bio-oil is a dark liquid fuel, has a smelling smoke and usually obtained from sugar cane, wood, coconut shell and any other biomass. Sugar cane content analysis showed that the content of oligosaccharide, hemicellulose, cellulose and lignin was 16.69%, 25.66%, 51.27% and 6.38% respectively. Sugar cane is a potential sources for bio-oil production shown by its high content of cellulose. In this study, production of bio-oil from sugar cane bagasse was investigated via fast pyrolysis reactor. Fast pyrolysis was carried out at 500 °C with a heating rate of 10 °C and 1 hour holding time at pyrolysis temperature. Physical properties and chemical composition of bio-oil were analyzed. The viscosity, density, calorific value and molecular weight of produced bio-oil was 3.12 cp, 2.78 g/cm3, 11,048.44 cals/g, and 222.67 respectively. The Bio-oil chemical composition was investigated using GC-MS. Percentage value of furfural, phenol, 3-methyl 1,2-cyclopentanedione, 5-methyl-3-methylene 5-hexen-2-one, 4-methyl phenol, 4-ethyl phenol, 1,2-benzenediol, and 2,6-dimethoxy phenol was 20.76%, 16.42%, 10.86%, 7.54%, 7.05%, 7.72%, 5.27% and 6.79% respectively.Keywords: bio-oil, pyrolysis, bagasse, sugar cane, gas chromatography-mass spectroscopy
Procedia PDF Downloads 14210048 Elucidation of Physiological and Biochemical Mechanisms of an Endemic Halophyte Centaurea Tuzgoluensis under Salt Stress
Authors: Mustafa Kucukoduk, Evren Yildiztugay, A. Hediye Sekmen, Ismail Turkan, Yavuz Bagci
Abstract:
In this study, physiological and biochemical responses of Centaurea tuzgoluensis, a Turkish endemic halophyte, to salinity were studied. Therefore, the changes in shoot growth, leaf relative water content (RWC), ion concentrations, lipid peroxidation, hydroxyl (OH.) radical scavenging activity, proline (Pro) content, and antioxidant system [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR)] were investigated. The 60 days (d) old C. tuzgoluensis seedlings were subjected to 0, 150 and 300 mM NaCl for 7 d and 14 d. The relative shoot growth was generally did not change in the 150 mM NaCl, but reduced with 300 mM NaCl stress at 7 d and 14 d. RWC was higher in 150 mM NaCl-treated leaves than that of 300 mM NaCl. Salinity decreased K+/Na+ ratio, but increased Na+, Cl, Ca+2 and Na+/Cl ratio in the leaves. On the other hand, it did not change or increase the K+ content at 150 and 300 mM NaCl, respectively. MDA content in the 150 and 300 mM NaCl-treated leaves remained close to control at 7 d. This was related to enhanced activities of SOD, CAT, APX and GR enzymes, and their isoenzymes especially Fe-SOD in the leaves. On the other hand, the higher sensitivity to 300 mM NaCl at 14 d was associated with inadequate increase in antioxidant enzymes and the decreased OH radical scavenging activity. All these results suggest that C. tuzgoluensis has different antioxidant metabolisms between short- (7 d) and long-term (14 d) salt treatments and salinity tolerance of C. tuzgoluensis might be closely related to increased capacity of antioxidative system to scavenge reactive oxygen species (ROS) and accumulation of osmoprotectant proline under salinity conditions.Keywords: antioxidant enzymes, endemic halophyte, ion exchange, lipid peroxidation, antioxidant, enzymes, endemic halophyte, ion exchange, lipid peroxidation, proline, Centaurea tuzgoluensis
Procedia PDF Downloads 29710047 Assessing the Self-Directed Learning Skills of the Undergraduate Nursing Students in a Medical University in Bahrain: A Quantitative Study
Authors: Catherine Mary Abou-Zaid
Abstract:
This quantitative study discusses the concerns with the self-directed learning (SDL) skills of the undergraduate nursing students in a medical university in Bahrain. The nursing undergraduate student SDL study was conducted taking all 4 years and compiling data collected from the students themselves by survey questionnaire. The aim of the study is to understand and change the attitudes of self-directed learning among the undergraduate students. The SDL of the undergraduate student nurses has been noticed to be lacking and motivation to actually perform without supervision while out-with classrooms are very low. Their use of the resources available on the virtual learning environment and also within the university is not as good as it should be for a university student at this level. They do not use them to their own advantage. They are not prepared for the transition from high school to an academic environment such as a university or college. For some students it is the first time in their academic lives that they have faced sharing a classroom with the opposite sex. For some this is a major issue and we as academics need to be aware of all issues that they come to higher education with. Design Methodology: The design methodology that was chosen was a quantitative design using convenience sampling of the students who would be asked to complete survey questionnaire. This sampling method was chosen because of the time constraint. This was completed by the undergraduate students themselves while in class. The questionnaire was analyzed by the statistical package for social sciences (SPSS), the results interpreted by the researcher and the findings published in the paper. The analyzed data will also be reported on and from this information we as educators will be able to see the student’s weaknesses regarding self-directed learning. The aims and objectives of the research will be used as recommendations for the improvement of resources for the students to improve their SDL skills. Conclusion: The results will be able to give the educators an insight to how we can change the self-directed learning techniques of the students and enable them to embrace the skills and to focus more on being self-directed in their studies rather than having to be put on to a SDL pathway from the educators themselves. This evidence will come from the analysis of the statistical data. It may even change the way in which the students are selected for the nursing programme. These recommendations will be reported to the head of school and also to the nursing faculty.Keywords: self-directed learning, undergraduate students, transition, statistical package for social sciences (SPSS), higher education
Procedia PDF Downloads 31510046 Reclamation of Molding Sand: A Chemical Approach to Recycle Waste Foundry Sand
Authors: Mohd Moiz Khan, S. M. Mahajani, G. N. Jadhav
Abstract:
Waste foundry sand (total clay content 15%) contains toxic heavy metals and particulate matter which make dumping of waste sand an environmental and health hazard. Disposal of waste foundry sand (WFS) remains one of the substantial challenges faced by Indian foundries nowadays. To cope up with this issue, the chemical method was used to reclaim WFS. A stirrer tank reactor was used for chemical reclamation. Experiments were performed to reduce the total clay content from 15% to as low as 0.9% in chemical reclamation. This method, although found to be effective for WFS reclamation, it may face a challenge due to the possibly high operating cost. Reclaimed sand was found to be satisfactory in terms of sand qualities such as total clay (0.9%), active clay (0.3%), acid demand value (ADV) (2.6%), loss on igniting (LOI) (3 %), grain fineness number (GFN) (56), and compressive strength (60 kPa). The experimental data generated on chemical reactor under different conditions is further used to optimize the design and operating parameters (rotation speed, sand to acidic solution ratio, acid concentration, temperature and time) for the best performance. The use of reclaimed sand within the foundry would improve the economics and efficiency of the process and reduce environmental concerns.Keywords: chemical reclamation, clay content, environmental concerns, recycle, waste foundry sand
Procedia PDF Downloads 14710045 Freedom and the Value of Games: How to Overcome the Challenges in the Gamification of Necessary Learning Tasks
Authors: Jonathan May
Abstract:
This paper argues that the value of games relates to the sensation of freedom they create, and this in turn results from their nature as voluntary, non-necessary tasks. Attempts to gamify necessary learning tasks are therefore challenged to create this sensation of freedom and so they often fail to create the pleasure and value found in traditional games. It then demonstrates a route to creating this sensation of freedom through the maximization of varied and creative solutions to such problems.Keywords: gamification, games, philosophy of games, freedom, voluntary action, necessity, motivation, value of games
Procedia PDF Downloads 17610044 Influence of Social Media on Perceived Learning Outcome of Agricultural Students in Tertiary Institutions in Oyo State, Nigeria
Authors: Adedoyin Opeyemi Osokoya
Abstract:
The study assesses the influence of social media on perceived learning outcome of agricultural science students in tertiary institutions in Oyo state, Nigeria. The four-stage sampling procedure was used to select participants. All students in the seven tertiary institutions that offer agriculture science as a course of study in Oyo State was the population. A university, a college of agriculture and a college of education were sampled, and a department from each was randomly selected. Twenty percent of the students’ population in the respective selected department gave a sample size of 165. Questionnaire was used to collect information on respondents’ personal characteristics and information related to access to social media. Data were analysed using descriptive statistics, chi-square, correlation, and multiple regression at the 0.05 confidence level. Age and household size were 21.13 ± 2.64 years and 6 ± 2.1 persons respectively. All respondents had access to social media, majority (86.1%) owned Android phone, 57.6% and 52.7% use social media for course work and entertainment respectively, while the commonly visited sites were WhatsApp, Facebook, Google, Opera mini. Over half (53.9%) had an unfavourable attitude towards the use of social media for learning; benefits of the use of social media for learning was high (56.4%). Removal of information barrier created by distance (x̄=1.58) was the most derived benefit, while inadequate power supply (x̄=2.36), was the most severe constraints. Age (β=0.23), sex (β=0.37), ownership of Android phone (β=-1.29), attitude (β=0.37), constraints (β =-0.26) and use of social media (β=0.23) were significant predictors of influence on perceived learning outcomes.Keywords: use of social media, agricultural science students, undergraduates of tertiary institutions, Oyo State of Nigeria
Procedia PDF Downloads 14010043 Loan Repayment Prediction Using Machine Learning: Model Development, Django Web Integration and Cloud Deployment
Authors: Seun Mayowa Sunday
Abstract:
Loan prediction is one of the most significant and recognised fields of research in the banking, insurance, and the financial security industries. Some prediction systems on the market include the construction of static software. However, due to the fact that static software only operates with strictly regulated rules, they cannot aid customers beyond these limitations. Application of many machine learning (ML) techniques are required for loan prediction. Four separate machine learning models, random forest (RF), decision tree (DT), k-nearest neighbour (KNN), and logistic regression, are used to create the loan prediction model. Using the anaconda navigator and the required machine learning (ML) libraries, models are created and evaluated using the appropriate measuring metrics. From the finding, the random forest performs with the highest accuracy of 80.17% which was later implemented into the Django framework. For real-time testing, the web application is deployed on the Alibabacloud which is among the top 4 biggest cloud computing provider. Hence, to the best of our knowledge, this research will serve as the first academic paper which combines the model development and the Django framework, with the deployment into the Alibaba cloud computing application.Keywords: k-nearest neighbor, random forest, logistic regression, decision tree, django, cloud computing, alibaba cloud
Procedia PDF Downloads 13510042 A Unified Constitutive Model for the Thermoplastic/Elastomeric-Like Cyclic Response of Polyethylene with Different Crystal Contents
Authors: A. Baqqal, O. Abduhamid, H. Abdul-Hameed, T. Messager, G. Ayoub
Abstract:
In this contribution, the effect of crystal content on the cyclic response of semi-crystalline polyethylene is studied over a large strain range. Experimental observations on a high-density polyethylene with 72% crystal content and an ultralow density polyethylene with 15% crystal content are reported. The cyclic stretching does appear a thermoplastic-like response for high crystallinity and an elastomeric-like response for low crystallinity, both characterized by a stress-softening, a hysteresis and a residual strain, whose amount depends on the crystallinity and the applied strain. Based on the experimental observations, a unified viscoelastic-viscoplastic constitutive model capturing the polyethylene cyclic response features is proposed. A two-phase representation of the polyethylene microstructure allows taking into consideration the effective contribution of the crystalline and amorphous phases to the intermolecular resistance to deformation which is coupled, to capture the strain hardening, to a resistance to molecular orientation. The polyethylene cyclic response features are captured by introducing evolution laws for the model parameters affected by the microstructure alteration due to the cyclic stretching.Keywords: cyclic loading unloading, polyethylene, semi-crystalline polymer, viscoelastic-viscoplastic constitutive model
Procedia PDF Downloads 22410041 Breast Cancer Diagnosing Based on Online Sequential Extreme Learning Machine Approach
Authors: Musatafa Abbas Abbood Albadr, Masri Ayob, Sabrina Tiun, Fahad Taha Al-Dhief, Mohammad Kamrul Hasan
Abstract:
Breast Cancer (BC) is considered one of the most frequent reasons of cancer death in women between 40 to 55 ages. The BC is diagnosed by using digital images of the FNA (Fine Needle Aspirate) for both benign and malignant tumors of the breast mass. Therefore, this work proposes the Online Sequential Extreme Learning Machine (OSELM) algorithm for diagnosing BC by using the tumor features of the breast mass. The current work has used the Wisconsin Diagnosis Breast Cancer (WDBC) dataset, which contains 569 samples (i.e., 357 samples for benign class and 212 samples for malignant class). Further, numerous measurements of assessment were used in order to evaluate the proposed OSELM algorithm, such as specificity, precision, F-measure, accuracy, G-mean, MCC, and recall. According to the outcomes of the experiment, the highest performance of the proposed OSELM was accomplished with 97.66% accuracy, 98.39% recall, 95.31% precision, 97.25% specificity, 96.83% F-measure, 95.00% MCC, and 96.84% G-Mean. The proposed OSELM algorithm demonstrates promising results in diagnosing BC. Besides, the performance of the proposed OSELM algorithm was superior to all its comparatives with respect to the rate of classification.Keywords: breast cancer, machine learning, online sequential extreme learning machine, artificial intelligence
Procedia PDF Downloads 11110040 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models
Authors: Jay L. Fu
Abstract:
Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction
Procedia PDF Downloads 14310039 Creating Gameful Experience as an Innovative Approach in the Digital Era: A Double-Mediation Model of Instructional Support, Group Engagement and Flow
Authors: Mona Hoyng
Abstract:
In times of digitalization nowadays, the use of games became a crucial new way for digital game-based learning (DGBL) in higher education. In this regard, the development of a gameful experience (GE) among students is decisive when examining DGBL as the GE is a necessary precondition determining the effectiveness of games. In this regard, the purpose of this study is to provide deeper insights into the GE and to empirically investigate whether and how these meaningful learning experiences within games, i.e., GE, among students are created. Based on the theory of experience and flow theory, a double-mediation model was developed considering instructional support, group engagement, and flow as determinants of students’ GE. Based on data of 337 students taking part in a business simulation game at two different universities in Germany, regression-based statistical mediation analysis revealed that instructional support promoted students’ GE. This relationship was further sequentially double mediated by group engagement and flow. Consequently, in the context of DGBL, meaningful learning experiences within games in terms of GE are created and promoted through appropriate instructional support, as well as high levels of group engagement and flow among students.Keywords: gameful experience, instructional support, group engagement, flow, education, learning
Procedia PDF Downloads 13610038 Becoming Multilingual’: Empowering College Students to Learn and Maintain Languages for Life
Authors: Peter Ecke
Abstract:
This research presents insights from a questionnaire study and autobiographic narrative analyses about the language and cultural backgrounds, challenges, interests, and needs, as well as perceptions about bilingualism and language learning of undergraduate students at a Public University in the southwestern United States. Participants were 650 students, enrolled in college-level general education courses, entitled “Becoming multilingual: Learning and maintaining two or more languages” between 2020 and 2024. Data were collected via pre- and post-course questionnaires administered online through the Qualtrix XM platform and complemented with analyses of excerpts from autobiographical narratives that students produced as part of the course assignments. Findings, for example, show that course participants have diverse linguistic backgrounds. The five most frequently reported L1s were English (about 50% of course participants), Spanish, Arabic, Mandarin, and Korean (in that order). The five most frequently reported L2s were English, Spanish, French, ASL, Japanese, German, and Mandarin (in that order). Participants also reported on their L2, L3, L4, and L5 if applicable. Most participants (over 60%) rated themselves bilingual or multilingual whereas 40% considered themselves to be monolingual or foreign language learners. Only about half of the participants reported feeling very or somewhat comfortable with their language skills, but these reports changed somewhat from the pre- to the post-course survey. About half of participants were mostly interested in learning how to effectively learn a foreign language. The other half of participants reported being most curious about learning about themselves as bi/multilinguals, (re)learning a language used in childhood, learning how to bring up a child as a bi/multilingual or learning about people who speak multiple languages (distributed about evenly). Participants’ comments about advantages and disadvantages of being bilingual remained relatively stable but their agreement with common myths about bilingualism and language learning changed from the pre- to the post-course survey. Students’ reflections in the autobiographical narratives and comments in (institutionally administered) anonymous course evaluations provided additional data on students’ concerns about their current language skills and uses as well as their perceptions about learning outcomes and the usefulness of the general education course for their current and future lives. It is hoped that the presented findings and discussion will spark interest among colleagues in offering similar courses as a resource for college students (and possibly other audiences), including those from migrant, indigenous, multilingual, and multicultural communities to contribute to a more harmonious bilingualism and well-being of college students who are or inspire to become bi-or multilingual.Keywords: autobiographic narratives, general education university course, harmonious bilingualism and well-being, multilingualism, questionnaire study
Procedia PDF Downloads 4810037 Efficacy of Pisum sativum and Arbuscular Mycorrhizal Symbiosis for Phytoextraction of Heavy Metalloids from Soil
Authors: Ritu Chaturvedi, Manoj Paul
Abstract:
A pot experiment was conducted to investigate the effect of Arbuscular mycorrhizal fungus (AMF) on metal(loid) uptake and accumulation efficiency of Pisum sativum along with physiological and biochemical response. Plants were grown in soil spiked with 50 and 100 mg kg-1 Pb, 25 and 50 mg kg-1 Cd, 50 and 100 mg kg-1 As and a combination of all three metal(loid)s. A parallel set was maintained and inoculated with arbuscular mycorrhizal fungus for comparison. After 60 days, plants were harvested and analysed for metal(loid) content. A steady increase in metal(loid) accumulation was observed on increment of metal(loid) dose and also on AMF inoculation. Plant height, biomass, chlorophyll, carotenoid and carbohydrate content reduced upon metal(loid) exposure. Increase in enzymatic (CAT, SOD and APX) and nonenzymatic (Proline) defence proteins was observed on metal(loid) exposure. AMF inoculation leads to an increase in plant height, biomass, chlorophyll, carotenoids, carbohydrate and enzymatic defence proteins (p≤0.001) under study; whereas proline content was reduced. Considering the accumulation efficiency and adaptive response of plants and alleviation of stress by AMF, this symbiosis can be applied for on-site remediation of Pb and Cd contaminated soil.Keywords: heavy metal, mycorrhiza, pea, phyroremediation
Procedia PDF Downloads 23410036 Evaluating the Effectiveness of Electronic Response Systems in Technology-Oriented Classes
Authors: Ahmad Salman
Abstract:
Electronic Response Systems such as Kahoot, Poll Everywhere, and Google Classroom are gaining a lot of popularity when surveying audiences in events, meetings, and classroom. The reason is mainly because of the ease of use and the convenience these tools bring since they provide mobile applications with a simple user interface. In this paper, we present a case study on the effectiveness of using Electronic Response Systems on student participation and learning experience in a classroom. We use a polling application for class exercises in two different technology-oriented classes. We evaluate the effectiveness of the usage of the polling applications through statistical analysis of the students performance in these two classes and compare them to the performances of students who took the same classes without using the polling application for class participation. Our results show an increase in the performances of the students who used the Electronic Response System when compared to those who did not by an average of 11%.Keywords: Interactive Learning, Classroom Technology, Electronic Response Systems, Polling Applications, Learning Evaluation
Procedia PDF Downloads 12910035 Issues and Challenges in Social Work Field Education: The Field Coordinator's Perspective
Authors: Tracy B.E. Omorogiuwa
Abstract:
Understanding the role of social work in improving societal well-being cannot be separated from the place of field education, which is an integral aspect of social work education. Field learning provides students with knowledge and opportunities to experience solving issues in the field and giving them a clue of the practice situation. Despite being a crucial component in social work curriculum, field education occupies a large space in learning outcome, given the issues and challenges pertaining to its purpose and significance in the society. The drive of this paper is to provide insight on the specific ways in which field education has been conceived, realized and valued in the society. Emphasis is on the significance of field instruction; the link with classroom learning; and the structure of field experience in social work education. Given documented analysis and experience, this study intends to contribute to the development of social work curriculum, by analyzing the pattern, issues and challenges fronting the social work field education in the University of Benin, Nigeria.Keywords: challenges, curriculum, field education, social work education
Procedia PDF Downloads 29810034 Online Think–Pair–Share in a Third-Age Information and Communication Technology Course
Authors: Daniele Traversaro
Abstract:
Problem: Senior citizens have been facing a challenging reality as a result of strict public health measures designed to protect people from the COVID-19 outbreak. These include the risk of social isolation due to the inability of the elderly to integrate with technology. Never before have information and communication technology (ICT) skills become essential for their everyday life. Although third-age ICT education and lifelong learning are widely supported by universities and governments, there is a lack of literature on which teaching strategy/methodology to adopt in an entirely online ICT course aimed at third-age learners. This contribution aims to present an application of the Think-Pair-Share (TPS) learning method in an ICT third-age virtual classroom with an intergenerational approach to conducting online group labs and review activities. This collaborative strategy can help increase student engagement, promote active learning and online social interaction. Research Question: Is collaborative learning applicable and effective, in terms of student engagement and learning outcomes, for an entirely online third-age ICT introductory course? Methods: In the TPS strategy, a problem is posed by the teacher, students have time to think about it individually, and then they work in pairs (or small groups) to solve the problem and share their ideas with the entire class. We performed four experiments in the ICT course of the University of the Third Age of Genova (University of Genova, Italy) on the Microsoft Teams platform. The study cohort consisted of 26 students over the age of 45. Data were collected through online questionnaires. Two have been proposed, one at the end of the first activity and another at the end of the course. They consisted of five and three close-ended questions, respectively. The answers were on a Likert scale (from 1 to 4) except two questions (which asked the number of correct answers given individually and in groups) and the field for free comments/suggestions. Results: Results show that groups perform better than individual students (with scores greater than one order of magnitude) and that most students found it helpful to work in groups and interact with their peers. Insights: From these early results, it appears that TPS is applicable to an online third-age ICT classroom and useful for promoting discussion and active learning. Despite this, our experimentation has a number of limitations. First of all, the results highlight the need for more data to be able to perform a statistical analysis in order to determine the effectiveness of this methodology in terms of student engagement and learning outcomes as a future direction.Keywords: collaborative learning, information technology education, lifelong learning, older adult education, think-pair-share
Procedia PDF Downloads 18810033 A Deep Learning Based Integrated Model For Spatial Flood Prediction
Authors: Vinayaka Gude Divya Sampath
Abstract:
The research introduces an integrated prediction model to assess the susceptibility of roads in a future flooding event. The model consists of deep learning algorithm for forecasting gauge height data and Flood Inundation Mapper (FIM) for spatial flooding. An optimal architecture for Long short-term memory network (LSTM) was identified for the gauge located on Tangipahoa River at Robert, LA. Dropout was applied to the model to evaluate the uncertainty associated with the predictions. The estimates are then used along with FIM to identify the spatial flooding. Further geoprocessing in ArcGIS provides the susceptibility values for different roads. The model was validated based on the devastating flood of August 2016. The paper discusses the challenges for generalization the methodology for other locations and also for various types of flooding. The developed model can be used by the transportation department and other emergency response organizations for effective disaster management.Keywords: deep learning, disaster management, flood prediction, urban flooding
Procedia PDF Downloads 14610032 Preliminary Study of Hand Gesture Classification in Upper-Limb Prosthetics Using Machine Learning with EMG Signals
Authors: Linghui Meng, James Atlas, Deborah Munro
Abstract:
There is an increasing demand for prosthetics capable of mimicking natural limb movements and hand gestures, but precise movement control of prosthetics using only electrode signals continues to be challenging. This study considers the implementation of machine learning as a means of improving accuracy and presents an initial investigation into hand gesture recognition using models based on electromyographic (EMG) signals. EMG signals, which capture muscle activity, are used as inputs to machine learning algorithms to improve prosthetic control accuracy, functionality and adaptivity. Using logistic regression, a machine learning classifier, this study evaluates the accuracy of classifying two hand gestures from the publicly available Ninapro dataset using two-time series feature extraction algorithms: Time Series Feature Extraction (TSFE) and Convolutional Neural Networks (CNNs). Trials were conducted using varying numbers of EMG channels from one to eight to determine the impact of channel quantity on classification accuracy. The results suggest that although both algorithms can successfully distinguish between hand gesture EMG signals, CNNs outperform TSFE in extracting useful information for both accuracy and computational efficiency. In addition, although more channels of EMG signals provide more useful information, they also require more complex and computationally intensive feature extractors and consequently do not perform as well as lower numbers of channels. The findings also underscore the potential of machine learning techniques in developing more effective and adaptive prosthetic control systems.Keywords: EMG, machine learning, prosthetic control, electromyographic prosthetics, hand gesture classification, CNN, computational neural networks, TSFE, time series feature extraction, channel count, logistic regression, ninapro, classifiers
Procedia PDF Downloads 3010031 Effect of Temperature and Feed Solution on Microencapsulation of Quercetin by Spray Drying Technique
Authors: S. Lekhavat, U. Srimongkoluk, P. Ratanachamnong, G. Laungsopapun
Abstract:
Quercetin was encapsulated with whey protein and high methoxyl pectin by spray drying technique. Feed solution, consisting of 0.1875 0.125 and 0.0625 % w/w quercetin, respectively, was prepared and then sprays at outlet temperature of 70, 80 and 90 °C. Quercetin contents either in feed solution or in spray dried powder were determined by HPLC technique. Physicochemical properties such as viscosity and total soluble solid of feed solution as well as moisture content and water activity of spray dried powder were examined. Particle morphology was imaged using scanning electron microscope. The results showed that feed solution has total soluble solid and viscosity in range of 1.73-5.60 ºBrix and 2.58-8.15 cP, in that order. After spray drying, the moisture content and water activity value of powder are in range of 0.58-2.72 % and 0.18-0.31, respectively. Quercetin content in dried sample increased along with outlet drying temperature but decreased when total soluble solid increased. It was shown that particles are likely to shrivel when spray drying at high temperature. The suggested conditions for encapsulation of quercetin are feed solution with 0.0625 % (w/w) quercetin and spray drying at drying outlet temperature of 90°C.Keywords: drying temperature, particle morphology, spray drying, quercetin
Procedia PDF Downloads 26010030 Delineation of Soil Physical Properties Using Electrical Conductivity, Case Study: Volcanic Soil Simulation Model
Authors: Twin Aji Kusumagiani, Eleonora Agustine, Dini Fitriani
Abstract:
The value changes of soil physical properties in the agricultural area are giving impacts on soil fertility. This can be caused by excessive usage of inorganic fertilizers and imbalances on organic fertilization. Soil physical parameters that can be measured include soil electrical conductivity, water content volume, soil porosity, dielectric permittivity, etc. This study used the electrical conductivity and volume water content as the measured physical parameters. The study was conducted on volcanic soil obtained from agricultural land conditioned with NPK fertilizer and salt in a certain amount. The dimension of the conditioned soil being used is 1 x 1 x 0.5 meters. By using this method, we can delineate the soil electrical conductivity value of land due to changes in the provision of inorganic NPK fertilizer and the salinity in the soil. Zone with the additional 1 kg of salt has the dimension of 60 cm in width, 20 cm in depth and 1 cm in thickness while zone with the additional of 10 kg NPK fertilizer has the dimensions of 70 cm in width, 20 cm in depth and 3 cm in thickness. This salt addition resulted in EC values changes from the original condition. Changes of the EC value tend to occur at a depth of 20 to 40 cm on the line 1B at 9:45 dS/cm and line 1C of 9.35 dS/cm and tend to have the direction to the Northeast.Keywords: EC, electrical conductivity, VWC, volume water content, NPK fertilizer, salt, volcanic soil
Procedia PDF Downloads 31210029 Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion
Authors: Adrià Arbués-Sangüesa, Coloma Ballester, Gloria Haro
Abstract:
Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances.Keywords: basketball, deep learning, feature extraction, single-camera, tracking
Procedia PDF Downloads 13810028 DLtrace: Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps
Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li
Abstract:
With the widespread popularity of mobile devices and the development of artificial intelligence (AI), deep learning (DL) has been extensively applied in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace; a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Moreover, using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. We conducted an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace has a more robust performance than FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.Keywords: mobile computing, deep learning apps, sensitive information, static analysis
Procedia PDF Downloads 17910027 Towards Human-Interpretable, Automated Learning of Feedback Control for the Mixing Layer
Authors: Hao Li, Guy Y. Cornejo Maceda, Yiqing Li, Jianguo Tan, Marek Morzynski, Bernd R. Noack
Abstract:
We propose an automated analysis of the flow control behaviour from an ensemble of control laws and associated time-resolved flow snapshots. The input may be the rich database of machine learning control (MLC) optimizing a feedback law for a cost function in the plant. The proposed methodology provides (1) insights into the control landscape, which maps control laws to performance, including extrema and ridge-lines, (2) a catalogue of representative flow states and their contribution to cost function for investigated control laws and (3) visualization of the dynamics. Key enablers are classification and feature extraction methods of machine learning. The analysis is successfully applied to the stabilization of a mixing layer with sensor-based feedback driving an upstream actuator. The fluctuation energy is reduced by 26%. The control replaces unforced Kelvin-Helmholtz vortices with subsequent vortex pairing by higher-frequency Kelvin-Helmholtz structures of lower energy. These efforts target a human interpretable, fully automated analysis of MLC identifying qualitatively different actuation regimes, distilling corresponding coherent structures, and developing a digital twin of the plant.Keywords: machine learning control, mixing layer, feedback control, model-free control
Procedia PDF Downloads 22310026 Social Networks as a Tool for Sports Marketing
Authors: Márcia Aparecida Teixeira
Abstract:
Sports, in particular football, boosts considerably the financial market of a certain locality, be it city or even a country. The financial transactions involving this medium stand out from other existing businesses, such as small industries. Strategically, social networks are inserted in this sporting environment, in order to promote and attract new fans of this modality. The present study analyzes the use of social networks in Sports Marketing with a focus on football. For the object of this study, it was chosen a specific club, the Club Atlético Mineiro, a Brazilian club of great national notoriety. The social networks on focus will be: Facebook, Twitter, and Instagram. It will be analyzed the content and frequency of the posts, reception of the target public in relation to the content made available and its feedback.Keywords: social network, sport, strategy, marketing
Procedia PDF Downloads 38810025 Effective Glosses in Reading to Help L2 Vocabulary Learning for Low-Intermediate Technology University Students in Taiwan
Authors: Pi-Lan Yang
Abstract:
It is controversial which type of gloss condition (i.e., gloss language or gloss position) is more effective in second or foreign language (L2) vocabulary learning. The present study compared the performance on learning ten English words in the conditions of L2 English reading with no glosses and with glosses of Chinese equivalents/translations and L2 English definitions at the side of a page and at an attached sheet for low-intermediate Chinese-speaking learners of English, who were technology university students in Taiwan. It is found first that the performances on the immediate posttest and the delayed posttest were overall better in the gloss condition than those in the no-gloss condition. Next, it is found that the glosses of Chinese translations were more effective and sustainable than those of L2 English definitions. Finally, the effects of L2 English glosses at the side of a page were observed to be less sustainable than those at an attached sheet. In addition, an opinion questionnaire used also showed a preference for the glosses of Chinese translations in L2 English reading. These results would be discussed in terms of automated lexical access, sentence processing mechanisms, and the trade-off nature of storage and processing functions in working memory system, proposed by the capacity theory of language comprehension.Keywords: glosses of Chinese equivalents/translations, glosses of L2 English definitions, L2 vocabulary learning, L2 English reading
Procedia PDF Downloads 24710024 Studies on the Mechanical Behavior of Bottom Ash for a Sustainable Environment
Authors: B. A. Mir, Asim Malik
Abstract:
Bottom ash is a by-product of the combustion process of coal in furnaces in the production of electricity in thermal power plants. In India, about 75% of total power is produced by using pulverized coal. The coal of India has a high ash content which leads to the generation of a huge quantity of bottom ash per year posing the dual problem of environmental pollution and difficulty in disposal. This calls for establishing strategies to use this industry by-product effectively and efficiently. However, its large-scale utilization is possible only in geotechnical applications, either alone or with soil. In the present investigation, bottom ash was collected from National Capital Power Station Dadri, Uttar Pradesh, India. Test samples of bottom ash admixed with 20% clayey soil were prepared and treated with different cement content by weight and subjected to various laboratory tests for assessing its suitability as an engineered construction material. This study has shown that use of 10% cement content is a viable chemical additive to enhance the mechanical properties of bottom ash, which can be used effectively as an engineered construction material in various geotechnical applications. More importantly, it offers an interesting potential for making use of an industrial waste to overcome challenges posed by bottom ash for a sustainable environment.Keywords: bottom ash, environmental pollution, solid waste, sustainable environment, waste utilization
Procedia PDF Downloads 259