Search results for: active and reactive power
7661 Thermodynamic Evaluation of Coupling APR-1400 with a Thermal Desalination Plant
Authors: M. Gomaa Abdoelatef, Robert M. Field, Lee, Yong-Kwan
Abstract:
Growing human populations have placed increased demands on water supplies and a heightened interest in desalination infrastructure. Key elements of the economics of desalination projects are thermal and electrical inputs. With growing concerns over the use of fossil fuels to (indirectly) supply these inputs, coupling of desalination with nuclear power production represents a significant opportunity. Individually, nuclear and desalination technologies have a long history and are relatively mature. For desalination, Reverse Osmosis (RO) has the lowest energy inputs. However, the economically driven output quality of the water produced using RO, which uses only electrical inputs, is lower than the output water quality from thermal desalination plants. Therefore, modern desalination projects consider that RO should be coupled with thermal desalination technologies (MSF, MED, or MED-TVC) with attendant steam inputs to permit blending to produce various qualities of water. A large nuclear facility is well positioned to dispatch large quantities of both electrical and thermal power. This paper considers the supply of thermal energy to a large desalination facility to examine heat balance impact on the nuclear steam cycle. The APR1400 nuclear plant is selected as prototypical from both a capacity and turbine cycle heat balance perspective to examine steam supply and the impact on electrical output. Extraction points and quantities of steam are considered parametrically along with various types of thermal desalination technologies to form the basis for further evaluations of economically optimal approaches to the interface of nuclear power production with desalination projects. In our study, the thermodynamic evaluation will be executed by DE-TOP which is the IAEA desalination program, it is approved to be capable of analyzing power generation systems coupled to desalination systems through various steam extraction positions, taking into consideration the isolation loop between the APR-1400 and the thermal desalination plant for safety concern.Keywords: APR-1400, desalination, DE-TOP, IAEA, MSF, MED, MED-TVC, RO
Procedia PDF Downloads 5327660 Internal Power Recovery in Cryogenic Cooling Plants, Part II: Compressor Development
Authors: Ambra Giovannelli, Erika Maria Archilei
Abstract:
The electrical power consumption related to refrigeration systems is evaluated to be in the order of 15% of the total electricity consumption worldwide. For this reason, in the last years several energy saving techniques have been suggested to reduce the power demand of refrigeration and air conditioning plants. The research work deals with the development of an innovative internal power recovery system for industrial cryogenic cooling plants. Such system is based on a Compressor-Expander Group (CEG). Both the expander and the compressor have been designed starting from automotive turbocharging components, strongly modified to take refrigerant fluid properties and specific system requirements into consideration. A preliminary choice of the machines (radial compressors and expanders) among existing components available on the market was realised according to the rules of the similarity theory. Once the expander was selected, it was strongly modified and performance verified by means of steady-state 3D CFD simulations. This paper focuses the attention on the development of the second CEG main component: the compressor. Once the preliminary selection has been done, the compressor geometry has been modified to take the new boundary conditions into account. In particular, the impeller has been machined to address the required total enthalpy increase. Such evaluation has been carried out by means of a simplified 1D model. Moreover, a vaneless diffuser has been added, modifying the shape of casing rear and front disks. To verify the performance of the modified compressor geometry and suggest improvements, a numerical fluid dynamic model has been set up and the commercial Ansys-CFX software has been used to perform steady-state 3D simulations. In this work, all the numerical results will be shown, highlighting critical aspects and suggesting further developments to increase compressor performance and flexibility.Keywords: vapour compression systems, energy saving, refrigeration plant, organic fluids, centrifugal compressor
Procedia PDF Downloads 2187659 Demand and Supply Management for Electricity Markets: Econometric Analysis of Electricity Prices
Authors: Ioana Neamtu
Abstract:
This paper investigates the potential for demand-side management for the system price in the Nordic electricity market and the price effects of introducing wind-power into the system. The model proposed accounts for the micro-structure of the Nordic electricity market by modeling each hour individually, while still accounting for the relationship between the hours within a day. This flexibility allows us to explore the differences between peak and shoulder demand hours. Preliminary results show potential for demand response management, as indicated by the price elasticity of demand as well as a small but statistically significant decrease in price, given by the wind power penetration. Moreover, our study shows that these effects are stronger during day-time and peak hours,compared to night-time and shoulder hours.Keywords: structural model, GMM estimation, system of equations, electricity market
Procedia PDF Downloads 4377658 Simulation and Experimentation Investigation of Infrared Non-Destructive Testing on Thermal Insulation Material
Authors: Bi Yan-Qiang, Shang Yonghong, Lin Boying, Ji Xinyan, Li Xiyuan
Abstract:
The heat-resistant material has important application in the aerospace field. The reliability of the connection between the heat-resisting material and the body determines the success or failure of the project. In this paper, lock-in infrared thermography non-destructive testing technology is used to detect the stability of the thermal-resistant structure. The phase relationship between the temperature and the heat flow is calculated by the numerical method, and the influence of the heating frequency and power is obtained. The correctness of the analysis is verified by the experimental method. Through the research, it can provide the basis for the parameter setting of heat flux including frequency and power, improve the efficiency of detection and the reliability of connection between the heat-resisting material and the body.Keywords: infrared non-destructive, thermal insulation material, reliability, connection
Procedia PDF Downloads 3857657 Exploring Coping Strategies among Caregivers of Children Who Have Survived Cancer
Authors: Noor Ismael, Somaya Malkawi, Sherin Al Awady, Taleb Ismael
Abstract:
Background/Significance: Cancer is a serious health condition that affects individuals’ quality of life during and after the course of this condition. Children who have survived cancer and their caregivers may deal with residual physical, cognitive or social disabilities. There is little research on caregivers’ health and wellbeing after cancer. To the authors’ best knowledge; there is no specific research about how caregivers cope with everyday stressors after cancer. Therefore, this study aimed to explore the coping strategies that caregivers of children who have survived cancer utilize to overcome everyday stressors. Methods: This study utilized a descriptive survey design. The sample consisted of 103 caregivers, who visited the health and wellness clinic at a national cancer center (additional demographics are presented in the results). The sample included caregivers of children who were off cancer treatments for at least two years from the beginning of data collection. The institution’s internal review board approved this study. Caregivers who agreed to participate completed the survey. The survey collected caregiver reported demographic information and the Brief COPE which measures caregivers' frequency of engaging in certain coping strategies. The Brief COPE consisted of 14 coping sub-scales, which are self-distraction, active coping, denial, substance use, use of emotional support, use of instrumental support, behavioral disengagement, venting, positive reframing, planning, humor, acceptance, religion, and self-blame. Data analyses included calculating sub-scales’ scores for the fourteen coping strategies and analysis of frequencies of demographics and coping strategies. Results: The 103 caregivers who participated in this study were 62% mothers, 80% married, 45% finished high school, 50% do not work outside the house, and 60% have low family income. Result showed that religious coping (66%) and acceptance (60%) were the most utilized coping strategies, followed by positive reframing (45%), active coping (44%) and planning (43%). The least utilized coping strategies in our sample were humor (5%), behavioral disengagement (8%), and substance-use (10%). Conclusions: Caregivers of children who have survived cancer mostly utilize religious coping and acceptance in dealing with everyday stressors. Because these coping strategies do not directly solve stressors like active coping and planning coping strategies, it is important to support caregivers in choosing and implementing effective coping strategies. Knowing from our results that some caregivers may utilize substance use as a coping strategy, which has negative health effects on caregivers and their children, there must be direct interventions that target these caregivers and their families.Keywords: caregivers, cancer, stress, coping
Procedia PDF Downloads 1697656 Urban Waste Management for Health and Well-Being in Lagos, Nigeria
Authors: Bolawole F. Ogunbodede, Mokolade Johnson, Adetunji Adejumo
Abstract:
High population growth rate, reactive infrastructure provision, inability of physical planning to cope with developmental pace are responsible for waste water crisis in the Lagos Metropolis. Septic tank is still the most prevalent waste-water holding system. Unfortunately, there is a dearth of septage treatment infrastructure. Public waste-water treatment system statistics relative to the 23 million people in Lagos State is worrisome. 1.85 billion Cubic meters of wastewater is generated on daily basis and only 5% of the 26 million population is connected to public sewerage system. This is compounded by inadequate budgetary allocation and erratic power supply in the last two decades. This paper explored community participatory waste-water management alternative at Oworonshoki Municipality in Lagos. The study is underpinned by decentralized Waste-water Management systems in built-up areas. The initiative accommodates 5 step waste-water issue including generation, storage, collection, processing and disposal through participatory decision making in two Oworonshoki Community Development Association (CDA) areas. Drone assisted mapping highlighted building footage. Structured interviews and focused group discussion of land lord associations in the CDA areas provided collaborator platform for decision-making. Water stagnation in primary open drainage channels and natural retention ponds in framing wetlands is traceable to frequent of climate change induced tidal influences in recent decades. Rise in water table resulting in septic-tank leakage and water pollution is reported to be responsible for the increase in the water born infirmities documented in primary health centers. This is in addition to unhealthy dumping of solid wastes in the drainage channels. The effect of uncontrolled disposal system renders surface waters and underground water systems unsafe for human and recreational use; destroys biotic life; and poisons the fragile sand barrier-lagoon urban ecosystems. Cluster decentralized system was conceptualized to service 255 households. Stakeholders agreed on public-private partnership initiative for efficient wastewater service delivery.Keywords: health, infrastructure, management, septage, well-being
Procedia PDF Downloads 1757655 Sensitivity Analysis Optimization of a Horizontal Axis Wind Turbine from Its Aerodynamic Profiles
Authors: Kevin Molina, Daniel Ortega, Manuel Martinez, Andres Gonzalez-Estrada, William Pinto
Abstract:
Due to the increasing environmental impact, the wind energy is getting strong. This research studied the relationship between the power produced by a horizontal axis wind turbine (HAWT) and the aerodynamic profiles used for its construction. The analysis is studied using the Computational Fluid Dynamic (CFD), presenting the parallel between the energy generated by a turbine designed with selected profiles and another one optimized. For the study, a selection process was carried out from profile NACA 6 digits recommended by the National Renewable Energy Laboratory (NREL) for the construction of this type of turbines. The selection was taken into account different characteristics of the wind (speed and density) and the profiles (aerodynamic coefficients Cl and Cd to different Reynolds and incidence angles). From the selected profiles, was carried out a sensitivity analysis optimization process between its geometry and the aerodynamic forces that are induced on it. The 3D model of the turbines was realized using the Blade Element Momentum method (BEM) and both profiles. The flow fields on the turbines were simulated, obtaining the forces induced on the blade, the torques produced and an increase of 3% in power due to the optimized profiles. Therefore, the results show that the sensitivity analysis optimization process can assist to increment the wind turbine power.Keywords: blade element momentum, blade, fluid structure interaction, horizontal axis wind turbine, profile design
Procedia PDF Downloads 2597654 Innovative Three Wire Capacitor Circuit System for Efficiency and Comfort Improvement of Ceiling Fans
Authors: R. K. Saket, K. S. Anand Kumar
Abstract:
This paper presents an innovative 3-wire capacitor circuit system used to increase the efficiency and comfort improvement of permanent split-capacitor ceiling fan. In this innovative circuit, current has been reduced to save electrical power. The system could be used to replace standard single phase motor 2-wire capacitor configuration by cost effective split value X rated of optimized AC capacitors with the auxiliary winding to provide reliable ceiling fan operation and improved machine performance to save power. In basic system operations, comparisons with conventional ceiling fan are described.Keywords: permanent split-capacitor motor, innovative 3-wire capacitor circuit system, standard 2-wire capacitor circuit system, metalized film X-rated capacitor
Procedia PDF Downloads 5237653 Stochastic Edge Based Anomaly Detection for Supervisory Control and Data Acquisitions Systems: Considering the Zambian Power Grid
Authors: Lukumba Phiri, Simon Tembo, Kumbuso Joshua Nyoni
Abstract:
In Zambia recent initiatives by various power operators like ZESCO, CEC, and consumers like the mines to upgrade power systems into smart grids target an even tighter integration with information technologies to enable the integration of renewable energy sources, local and bulk generation, and demand response. Thus, for the reliable operation of smart grids, its information infrastructure must be secure and reliable in the face of both failures and cyberattacks. Due to the nature of the systems, ICS/SCADA cybersecurity and governance face additional challenges compared to the corporate networks, and critical systems may be left exposed. There exist control frameworks internationally such as the NIST framework, however, there are generic and do not meet the domain-specific needs of the SCADA systems. Zambia is also lagging in cybersecurity awareness and adoption, therefore there is a concern about securing ICS controlling key infrastructure critical to the Zambian economy as there are few known facts about the true posture. In this paper, we introduce a stochastic Edged-based Anomaly Detection for SCADA systems (SEADS) framework for threat modeling and risk assessment. SEADS enables the calculation of steady-steady probabilities that are further applied to establish metrics like system availability, maintainability, and reliability.Keywords: anomaly, availability, detection, edge, maintainability, reliability, stochastic
Procedia PDF Downloads 1107652 Reconstructing the Trace of Mesozoic Subduction and Its Implication on Stratigraphy Correlation between Deep Marine Sediment and Granite: Case Study of Garba Complex, South Sumatera
Authors: Fadlan Atmaja Nursiwan, Ugi Kurnia Gusti
Abstract:
Garba Hill, located in Tekana Village, South Sumatera Province is comprised to South Sumatra Basin and classified as back arc basin. This area is entered as an active margin of Sundaland which experiences subduction several times since Mesozoic to recent time. The traces of Mesozoic subduction in the southern part of Sumatra island are exposed in Garba Hill area. The aim of this investigation is to study the tectonic changes in the first phase in Mesozoic era at the active margin of Sundaland which causes the rocks assemblage in Garba hill consist of continental and oceanic plate rocks which the correlation between those rocks show indistinct relation. This investigation is conducted by field observation in Tekana village and Lubar Village, Muara Dua, South Sumatra along with laboratory analysis included fossil and geochemistry analysis of radiolarian chert, petrography analysis of granite and basalt, and structural modelling. Fossil and geochemistry analysis of radiolarian chert and geochemistry of granite rocks shown the relation between the two rocks and Mesozoic subduction of Woyla terrane on western margin of Sundaland. Petrography analysis from granite and basalt depict the tectonic affinity of rocks. Moreover, structural analysis showed the changes of lineation direction from N-S to WNW-ESE.Keywords: granite, mesozoic, radiolarian, subduction traces
Procedia PDF Downloads 3387651 University-Industry Technology Transfer and Technology Transfer Offices in Emerging Economies
Authors: José Carlos Rodríguez, Mario Gómez
Abstract:
The aim of this paper is to get insight on the nature of university-industry technology transfer (UITT) and technology transfer offices (TTOs) activity at universities in the case of emerging economies. In relation to the process of transferring knowledge/technology in the case of emerging economies, knowledge/technology transfer in these economies are more reactive than in developed economies due to differences in maturity of technologies. It is assumed in this paper that knowledge/technology transfer is a complex phenomenon, and thus the paper contributes to get insight on the nature of UITT and TTOs creation in the case of emerging economies by using a system dynamics model of knowledge/technology transfer in these countries. The paper recognizes the differences between industrialized countries and emerging economies on these phenomena.Keywords: university-industry technology transfer, technology transfer offices, technology transfer models, emerging economies
Procedia PDF Downloads 2507650 A Coupled Model for Two-Phase Simulation of a Heavy Water Pressure Vessel Reactor
Authors: D. Ramajo, S. Corzo, M. Nigro
Abstract:
A Multi-dimensional computational fluid dynamics (CFD) two-phase model was developed with the aim to simulate the in-core coolant circuit of a pressurized heavy water reactor (PHWR) of a commercial nuclear power plant (NPP). Due to the fact that this PHWR is a Reactor Pressure Vessel type (RPV), three-dimensional (3D) detailed modelling of the large reservoirs of the RPV (the upper and lower plenums and the downcomer) were coupled with an in-house finite volume one-dimensional (1D) code in order to model the 451 coolant channels housing the nuclear fuel. Regarding the 1D code, suitable empirical correlations for taking into account the in-channel distributed (friction losses) and concentrated (spacer grids, inlet and outlet throttles) pressure losses were used. A local power distribution at each one of the coolant channels was also taken into account. The heat transfer between the coolant and the surrounding moderator was accurately calculated using a two-dimensional theoretical model. The implementation of subcooled boiling and condensation models in the 1D code along with the use of functions for representing the thermal and dynamic properties of the coolant and moderator (heavy water) allow to have estimations of the in-core steam generation under nominal flow conditions for a generic fission power distribution. The in-core mass flow distribution results for steady state nominal conditions are in agreement with the expected from design, thus getting a first assessment of the coupled 1/3D model. Results for nominal condition were compared with those obtained with a previous 1/3D single-phase model getting more realistic temperature patterns, also allowing visualize low values of void fraction inside the upper plenum. It must be mentioned that the current results were obtained by imposing prescribed fission power functions from literature. Therefore, results are showed with the aim of point out the potentiality of the developed model.Keywords: PHWR, CFD, thermo-hydraulic, two-phase flow
Procedia PDF Downloads 4687649 Global and Diffuse Solar Radiation Studies over Seven Cities of Sindh, Pakistan for Power Generation
Authors: M. A. Ahmed, Sidra A. Shaik
Abstract:
Global and diffuse solar radiation on horizontal surface over seven cities of Sindh namely Karachi, Hyderabad, Chore, Padidan, Nawabshah, Rohri and Jacobabad were carried out using sunshine hour data of the area to assess the feasibility of solar energy utilization at Sindh province. The result obtained shows a variation of direct and diffuse component of solar radiation in summer and winter months in southern Sindh (50% direct and 50% diffuse for Karachi, and Hyderabad) where there is a large variation in direct and diffuse component of solar radiation in summer and winter months in northern region (80% direct and 20% diffuse for Rohri and Jacobabad). In southern Sindh, the contribution of diffuse solar radiation is higher during the monsoon months (July and August). The sky remains clear during September to June. In northern Sindh (Rohri and Jacobabad) the contribution of diffuse solar radiation is low even in monsoon months i,e in July and August. The Kt value for northern Sindh indicates a clear sky. In northern part of the Sindh percentage of diffuse radiation does not exceed more than 20%. The appearance of cloud is rare. From the point of view of power generation, the estimated values indicate that northern part of Sindh has high solar potential while the southern part has low solar potential.Keywords: global and diffuse solar radiation, solar potential, Province of Sindh, solar radiation studies for power generation
Procedia PDF Downloads 3177648 Optical Design and Modeling of Micro Light-Emitting Diodes for Display Applications
Authors: Chaya B. M., C. Dhanush, Inti Sai Srikar, Akula Pavan Parvatalu, Chirag Gowda R
Abstract:
Recently, there has been a lot of interest in µ-LED technology because of its exceptional qualities, including auto emission, high visibility, low consumption of power, rapid response and longevity. Light-emitting diodes (LED) using III-nitride, such as lighting sources, visible light communication (VLC) devices, and high-power devices, are finding increasing use as miniaturization technology advances. The use of micro-LED displays in place of traditional display technologies like liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) is one of the most prominent recent advances, which may even represent the next generation of displays. The development of fully integrated, multifunctional devices and the incorporation of extra capabilities into micro-LED displays, such as sensing, light detection, and solar cells, are the pillars of advanced technology. Due to the wide range of applications for micro-LED technology, the effectiveness and dependability of these devices in numerous harsh conditions are becoming increasingly important. Enough research has been conducted to overcome the under-effectiveness of micro-LED devices. In this paper, different Micro LED design structures are proposed in order to achieve optimized optical properties. In order to attain improved external quantum efficiency (EQE), devices' light extraction efficiency (LEE) has also been boosted.Keywords: finite difference time domain, light out coupling efficiency, far field intensity, power density, quantum efficiency, flat panel displays
Procedia PDF Downloads 797647 Premature Departure of Active Women from the Working World: One Year Retrospective Study in the Tunisian Center
Authors: Lamia Bouzgarrou, Amira Omrane, Malika Azzouzi, Asma Kheder, Amira Saadallah, Ilhem Boussarsar, Kamel Rejeb
Abstract:
Introduction: Increasing the women’s labor force participation is a political issue in countries with developed economies and those with low growth prospects. However, in the labor market, women continue to face several obstacles, either for the integration or for the maintenance at work. This study aims to assess the prevalence of premature withdrawal from working life -due to invalidity or medical justified early retirement- among active women in the Tunisian center and to identify its determinants. Material and methods: We conducted a cross-sectional study, over one year, focusing on the agreement for invalidity or early retirement for premature usury of the body- delivered by the medical commission of the National Health Insurance Fund (CNAM) in the central Tunisian district. We exhaustively selected women's files. Data related to Socio-demographic characteristics, professional and medical ones, were collected from the CNAM's administrative and medical files. Results: During the period of one year, 222 women have had an agreement for premature departure of their professional activity. Indeed, 149 women (67.11%) benefit of from invalidity agreement and 20,27% of them from favorable decision for early retirement. The average age was 50 ± 6 years with extremes of 23 and 62 years, and 18.9% of women were under 45 years. Married women accounted for 69.4% and 59.9% of them had at least one dependent child in charge. The average professional seniority in the sector was 23 ± 8 years. The textile-clothing sector was the most affected, with 70.7% of premature departure. Medical reasons for withdrawal from working life were mainly related to neuro-degenerative diseases in 46.8% of cases, rheumatic ones in 35.6% of cases and cardiovascular diseases in 22.1% of them. Psychiatric and endocrine disorders motivated respectively 17.1% and 13.5% of these departures. The evaluation of the sequels induced by these pathologies concluded to an average permanent partial disability equal to 61.4 ± 17.3%. The analytical study concluded that the agreement of disability or early retirement was correlated with the insured ‘age (p = 10-3), the professional seniority (p = 0.003) and the permanent partial incapacity (PPI) rate assessed by the expert physician (p = 0.04). No other social or professional factors were correlated with this decision. Conclusion: Despite many advances in labour law and Tunisian legal text on employability, women still exposed to several social and professional inequalities (payment inequality, precarious work ...). Indeed, women are often pushed to accept working in adverse conditions, thus they are more vulnerable to develop premature wear on the body and being forced to premature departures from the world of work. These premature withdrawals from active life are not only harmful to the concerned women themselves, but also associated with considerable costs for the insurance organism and the society. In order to ensure maintenance at work for women, a political commitment is imperative in the implementation of global prevention strategies and the improvement of working conditions, particularly in our socio-cultural context.Keywords: Active Women , Early Retirement , Invalidity , Maintenance at Work
Procedia PDF Downloads 1527646 Reliability and Validity Examinations of the Child Behavior Checklist (CBCL): One of the Achenbach System of Empirically Based Assessment
Authors: Zhidong Zhang, Zhi-Chao Zhang
Abstract:
In this study, three Chinese versions of the Achenbach systems of empirically based assessment (ASEBA) scales were used to examine adolescent psychological and behavioral problems. These three scales are CBCL, TRF, and YSR. In order to further understand the robustness of these scales, their reliability and construct validity have been examined. Each scale consists of about 113 items plus relevant background variables. These 113 items were further classified into 8 psychological and behavioral problems: emotionally reactive, anxious/depressed, somatic complaints, withdrawn, attention problems, aggressive behavior, social problems, thought problems, and association problems. The study explored the item and construct correlation relations and the correlations between the corresponding constructs among three scales. The results indicated that the associations between item and constructs varied. The construct validities were very robust.Keywords: ASEBA, construct validity, psychological and behavioral problems, reliability
Procedia PDF Downloads 6937645 Solid-State Sodium Conductor for Solid-State Battery
Authors: Yumei Wang, Xiaoyu Xu, Li Lu
Abstract:
Solid-state battery adopts solid-state electrolyte such as oxide- and composite-based solid electrolytes. With the adaption of nonflammable or less flammable solid electrolytes, the safety of solid-state batteries can be largely increased. NASICON (Na₃Zr₂Si₂PO₁₂, NZSP) is one of the sodium ion conductors that possess relatively high ionic conductivity, wide electrochemical stable range and good chemical stability. Therefore, it has received increased attention. We report the development of high-density NZSP through liquid phase sintering and its organic-inorganic composite electrolyte. Through reactive liquid phase sintering, the grain boundary conductivity can be largely enhanced while using an organic-inorganic composite electrolyte, interfacial wetting and impedance can be largely reduced hence being possible to fabricate scalable solid-state batteries.Keywords: solid-state electrolyte, composite electrolyte, electrochemical performance, conductivity
Procedia PDF Downloads 1247644 In silico Designing and Insight into Antimalarial Potential of Chalcone-Quinolinylpyrazole Hybrids by Preclinical Study in Mice
Authors: Deepika Saini, Sandeep Jain, Ajay Kumar
Abstract:
The quinoline scaffold is one of the most widely studied in the discovery of derivatives with various heterocyclic moieties due to its potential antimalarial activities. In the present study, a chalcone series of quinoline derivatives clubbed with pyrazole were synthesized to evaluate their antimalarial property by in vitro schizont maturation inhibition assay against both chloroquine sensitive, 3D7 and chloroquine resistant, RKL9 strain of Plasmodium falciparum. Further, top five compounds were studied for in vivo preclinical study for antimalarial potential against P. berghei in Swiss albino mice. To understand the mechanism of synthesized analogues, they were screened computationally by molecular docking techniques. Compounds were docked into the active site of a protein receptor, Plasmodium falciparum Cysteine Protease Falcipain-2. The compounds were successfully synthesized, and structural confirmation was performed by FTIR, 1H-NMR, mass spectrometry and elemental analysis. In vitro study suggested that the compounds 5b, 5g, 5l, 5s and 5u possessed best antimalarial activity and further tested for in vivo screening. Compound 5u (CH₃ on both rings) with EC₅₀ 0.313 & 0.801 µg/ml against CQ-S & CQ-R strains of P. falciparum respectively and 78.01% suppression of parasitemia. The molecular docking studies of the compounds helped in understanding the mechanism of action against falcipain-2. The present study reveals the binding signatures of the synthesized ligands within the active site of the protein, and it explains the results from in vitro study in their EC₅₀ values and percentage parasitemia.Keywords: antimalarial activity, chalcone, docking, quinoline
Procedia PDF Downloads 4097643 From Cultural Diversity to Cultural Diplomacy: The Practice of Normative Power Europe
Authors: Tzuli Lin
Abstract:
This paper aims to explore that the EU and Member State (UK) converges on cultural diplomacy to constitute an influential European external relations. It will address the development of EU cultural diplomacy and practice at Member state level. It also discusses the EU and Member States suffering in cultural resource overlapped. In contrast to the literature on the EU external relations, studies of the cultural dimension are rare. Thus, this paper will utilise the broad policy papers to explore how the cultural diversity among the Member States and the EU has a constructive progress at European level but not at Member State level. It can be argued that cultural component is the pivotal strategy for the stagnated EU external relations since the Euro crisis. The EU recognises that if it wants to promote the trade relations from the inside of Europe to outside, it requires the broad culture context among its traditional diplomacy, which brings the cultural component into a significant role. Even though in the area of Member State level, they share the fundamental value and idea, it does not elaborate Member States regarding the EU as a representative of European cultural diplomacy. In theory and practice, the discourse of Normative Power Europe (NPE) can be the analytic framework to construct the research of cultural diplomacy in Europe. NPE is an idea of the EU’s global role and spreading its norms to others. Moreover, Member States’ national interest has supreme priority rather than the EU. Therefore, this paper will utilise the UK as a case study to explore that cultural diplomacy shows fragmentation at European level. In the result, this paper will illustrate that the EU and the UK have mutual recognised each other as a partner not a leader.Keywords: EU cultural diplomacy, cultural policy, cultural diversity, normative power
Procedia PDF Downloads 3157642 The Influence of Meteorological Properties on the Power of Night Radiation Cooling
Authors: Othmane Fahim, Naoual Belouaggadia. Charifa David, Mohamed Ezzine
Abstract:
To make better use of cooling resources, systems have been derived on the basis of the use of night radiator systems for heat pumping. Using the TRNSYS tool we determined the influence of the climatic characteristics of the two zones in Morocco on the temperature of the outer surface of a Photovoltaic Thermal Panel “PVT” made of aluminum. The proposal to improve the performance of the panel allowed us to have little heat absorption during the day and give the same performance of a panel made of aluminum at night. The variation in the granite-based panel temperature recorded a deviation from the other materials of 0.5 °C, 2.5 °C on the first day respectively in Marrakech and Casablanca, and 0.2 °C and 3.2 °C on the second night. Power varied between 110.16 and 32.01 W/m² marked in Marrakech, to be the most suitable area to practice night cooling by night radiation.Keywords: smart buildings, energy efficiency, Morocco, radiative cooling
Procedia PDF Downloads 1537641 Enhancement Production and Development of Hot Dry Rock System by Using Supercritical CO2 as Working Fluid Instead of Water to Advance Indonesia's Geothermal Energy
Authors: Dhara Adhnandya Kumara, Novrizal Novrizal
Abstract:
Hot Dry Rock (HDR) is one of geothermal energy which is abundant in many provinces in Indonesia. Heat exploitation from HDR would need a method which injects fluid to subsurface to crack the rock and sweep the heat. Water is commonly used as the working fluid but known to be less effective in some ways. The new research found out that Supercritical CO2 (SCCO2) can be used to replace water as the working fluid. By studying heat transfer efficiency, pumping power, and characteristics of the returning fluid, we might decide how effective SCCO2 to replace water as working fluid. The method used to study those parameters quantitatively could be obtained from pre-existing researches which observe the returning fluids from the same reservoir with same pumping power. The result shows that SCCO2 works better than water. For cold and hot SCCO2 has lower density difference than water, this results in higher buoyancy in the system that allows the fluid to circulate with lower pumping power. Besides, lower viscosity of SCCO2 impacts in higher flow rate in circulation. The interaction between SCCO2 and minerals in reservoir could induce dehydration of the minerals and enhancement of rock porosity and permeability. While the dissolution and transportation of minerals by SCCO2 are unlikely to occur because of the nature of SCCO2 as poor solvent, and this will reduce the mineral scaling in the system. Under those conditions, using SCCO2 as working fluid for HDR extraction would give great advantages to advance geothermal energy in Indonesia.Keywords: geothermal, supercritical CO2, injection fluid, hot dry rock
Procedia PDF Downloads 2177640 Improving the Growth, Biochemical Parameters and Content and Composition of Essential Oil of Mentha piperita L. through Soil-Applied N, P, and K
Authors: Bilal Bhat, M. Masroor A. Khan, Moin Uddin, M. Naeem
Abstract:
Aromatic herb, peppermint (Mentha piperita L.), is a natural hybrid (M. aquatica × M. spicata) with immense therapeutic uses, apart from other potential uses. Peppermint oil is one of the most popular and widely used essential oil (EO), because of its main components menthol and menthone. In view of enhancing growth, yield and quality of this medicinally important herb, a pot experiment was conducted in the net-house of the department. The experiment was aimed at studying the effect of graded levels of N, P, and K on growth, biochemical characteristics, and content and composition of EO in Mentha piperita L. Six NPK treatments (viz. N0P0K0, N20P20K20, N40P40K40, N20+20 P20+20 K20+20, N60P60K60, and N30+30 P30+30 K30+30) were tested. The plants were harvested 150 days after transplanting. The crop performance was assessed in terms of growth attributes, physiological activities, herbage yield and content as well as yield of active constituents of Mentha piperita L. Biochemical parameters were analyzed spectrophotometrically. The EO was extracted using Clevenger’s apparatus and the active constituents of the oil were determined using Gas Chromatography. Split-dose application of N, P and K (N30+30 P30+30 K30+30) ameliorated most of the parameters significantly including, fresh and dry weight of plant, NPK content, chlorophyll and carotenoids content, and the activities of carbonic anhydrase and nitrate reductase in the leaves. It also enhanced the EO content (44.0%), EO yield (91.0%), menthol content (14.1%), menthone content (34.0%), menthyl acetate content (16.9%) and 1, 8-cineole content (43.7%) but decreased the pulegone content (36.8%). Conclusively, the fertilization proved useful in enhancing the EO content, yield and other EO components of the plant. Thus, the yield and quality of EO of peppermint may be improved by this agricultural strategy.Keywords: mentha piperita, menthol, menthone, EO
Procedia PDF Downloads 4987639 Development of Loop-Mediated Isothermal Amplification for Detection of Garlic in Food
Authors: Ting-Ying Su, Meng-Shiou Lee, Shyang-Chwen Sheu
Abstract:
Garlic is used commonly as a seasoning around the world. But some people suffer from allergy to garlic. Garlic may also cause burning of mouth, stomach, and throat. In some Buddhist traditions, consuming garlic is not allowed. The objective of this study is to develop a LAMP based method for detection of garlic in food. We designed specific primers targeted on ITS1-5.8S rRNA-ITS2 sequence of garlic DNA. The LAMP assay was performed using a set of four different primers F3, B3, FIP and BIP at 60˚C in less than 60 mins. Results showed that the primer was not cross-reactive to other commonly used spice including Chinese leek, Chinese onion, green onion, onion, pepper, basil, parsley, pepper and ginger. As low as 2% of garlic DNA could be detected. Garlic still could be detected by developed LAMP after boiled at 100˚C for 80 minutes and autoclaved at 121˚C for 60 minutes. Commercial products labeled with garlic ingredient could be identified by the developed method.Keywords: garlic, loop-mediated isothermal amplification, processing, DNA
Procedia PDF Downloads 3037638 Using Fractal Architectures for Enhancing the Thermal-Fluid Transport
Authors: Surupa Shaw, Debjyoti Banerjee
Abstract:
Enhancing heat transfer in compact volumes is a challenge when constrained by cost issues, especially those associated with requirements for minimizing pumping power consumption. This is particularly acute for electronic chip cooling applications. Technological advancements in microelectronics have led to development of chip architectures that involve increased power consumption. As a consequence packaging, technologies are saddled with needs for higher rates of power dissipation in smaller form factors. The increasing circuit density, higher heat flux values for dissipation and the significant decrease in the size of the electronic devices are posing thermal management challenges that need to be addressed with a better design of the cooling system. Maximizing surface area for heat exchanging surfaces (e.g., extended surfaces or “fins”) can enable dissipation of higher levels of heat flux. Fractal structures have been shown to maximize surface area in compact volumes. Self-replicating structures at multiple length scales are called “Fractals” (i.e., objects with fractional dimensions; unlike regular geometric objects, such as spheres or cubes whose volumes and surface area values scale as integer values of the length scale dimensions). Fractal structures are expected to provide an appropriate technology solution to meet these challenges for enhanced heat transfer in the microelectronic devices by maximizing surface area available for heat exchanging fluids within compact volumes. In this study, the effect of different fractal micro-channel architectures and flow structures on the enhancement of transport phenomena in heat exchangers is explored by parametric variation of fractal dimension. This study proposes a model that would enable cost-effective solutions for thermal-fluid transport for energy applications. The objective of this study is to ascertain the sensitivity of various parameters (such as heat flux and pressure gradient as well as pumping power) to variation in fractal dimension. The role of the fractal parameters will be instrumental in establishing the most effective design for the optimum cooling of microelectronic devices. This can help establish the requirement of minimal pumping power for enhancement of heat transfer during cooling. Results obtained in this study show that the proposed models for fractal architectures of microchannels significantly enhanced heat transfer due to augmentation of surface area in the branching networks of varying length-scales.Keywords: fractals, microelectronics, constructal theory, heat transfer enhancement, pumping power enhancement
Procedia PDF Downloads 3187637 Applications of Engineering Geology in Hydro Power Tunnel Projects in Himalayan Geological Regime
Authors: Rameh Chauhan
Abstract:
Tunnel construction in Himalayan rock is a challenging task due to fragile nature of the strata. Tunnel excavation carried out from lower Himalayas to high Himalayas in different metamorphic rock. Therefore application of engineering geology plays a vital role during various stage of the tunneling projects. Engineering geology is defined as application of geology to construction of civil structures through engineering practice. It is applied to the design, construction and performance aspects of engineering structure on the surface or sub-surface like dam, underground and surface power house, cut slopes, tunnels and underground storage cavern for nuclear material. But this paper emphasized mostly on underground structures like big caverns of Power house, desilting chambers, and tunnels of various sizes. Construction of these structures in the fragile rock conditions of Himalayan geology from Western Himalayas to Eastern Himalayas necessitated the application of the engineering geology on the micro-scale base for the stability, performance, and longevity of the civil structures. Number of hydropower projects have been constructed, some of them are under construction and under investigation stage. These projects are located in various parts of Himalayas under various seismic-tectonic zones. Tunneling works are involved in these projects. This paper represents the various engineering geological practices adopted in investigation and construction stage of various projects based on experiences gained during past construction histories in Himalayan geology of young mountains in very fragile geological conditions. Highlighting and sharing of use of these techniques on various platforms will definitely enhance the knowledge for carrying out the construction of various projects for the development of society. Construction of the tunnels, surface, and sub-surface caverns, dams, highway, metro, highway tunnels are all based on engineering geological parameters in combinations with other engineering considerations.Keywords: cavern-power house, desilting chambers and tunnels, seismic-tectonic-zones, earthquake-prone zones based on intensities
Procedia PDF Downloads 2237636 Recent Development of Materials for Proton Exchange Membrane Fuel Cell (PEMFC)
Authors: Mohammed Jourdani, Hamid Mounir, Abdellatif El Marjani
Abstract:
Proton exchange membrane fuel cells (PEMFCs) have been developed as a promising power source for transportation and stationary applications, and power devices for computers and mobile telephones. This paper discusses and summarizes the latest developments of materials and remaining challenges of PEMFC. The different contributions to the material of all components and the efficiencies are analyzed. Many technical advances are introduced to increase the PEMFC fuel cell efficiency and life time for transportation, stationary and portable utilization. By the last years the total cost of this system is decreasing. However, the remaining challenges that need to be overcome mean that it will be several years before full commercialization can take place.Keywords: PEMFC fuel cell, materials, recent development, efficiency, life time, commercialization possibility
Procedia PDF Downloads 3117635 A Contemplation of Iranian Islamic Architecture in the Age of Globalization
Authors: Maziar Asefi, Safa Salkhi Khasraghi
Abstract:
Despite the great development of Islamic Architecture in its conquered lands, its active performance in a vast geographical area, faded by the advent of industrial age. Now in the Information Age with great advances in technologies and increased interconnection among many societies, every aspect of life is affected by rapid spreading phenomenon called globalization which resulted in the world with less regional and cultural boundaries. So being proudly globalized in the past and becoming inactive in today's globalized world puts Islamic Architecture in a great challenge. Indeed, its important role has changed from transmitting cultural values to the world to importing dominated values even defectively. This study aimed to determine the factors influenced this controversial situation of Islamic Architecture, especially in current age. The paper focuses on performance of Islamic architecture in relation with Globalization as an ancient process. So qualitative method in terms of logic analysis was chosen to evaluate how Islamic architecture of Iran has contributed in Globalization subject in different time periods. Several works were analyzed as case studies in three categories: religious, monumental, commercial utilities and climate element. Theoretical and practical findings indicate that there is a mutual relationship between Islamic Architecture and Globalization which is transformed from the active mode to passive mode gradually in three periods of Globalization: proto, modern and communication Globalization. The proposed solution in the response to this challenge is finding a solution that makes an equilibrium between science, art, and technology, as well as taking the global performance of architecture.Keywords: Islamic architecture, globalisation, the relationship among art, science and technology, Iranian architecture
Procedia PDF Downloads 3007634 Study of a Cross-Flow Membrane to a Kidney Encapsulation Engineering Structures for Immunosuppression Filter
Authors: Sihyun Chae, Ryoto Arai, Waldo Concepcion, Paula Popescu
Abstract:
The kidneys perform an important role in the human hormones that regulate the blood pressure, produce an active form of vitamin D and control the production of red blood cells. Kidney disease can cause health problems, such as heart disease. Also, increase the chance of having a stroke or heart attack. There are mainly to types of treatments for kidney disease, dialysis, and kidney transplant. For a better quality of life, the kidney transplant is desirable. However, kidney transplant can cause antibody reaction and patients’ body would be attacked by immune system of their own. For solving that issue, patients with transplanted kidney always take immunosuppressive drugs which can hurt kidney as side effects. Patients willing to do a kidney transplant have a waiting time of 3.6 years in average searching to find an appropriate kidney, considering there are almost 96,380 patients waiting for kidney transplant. There is a promising method to solve these issues: bioartificial kidney. Our membrane is specially designed with unique perforations capable to filter the blood cells separating the white blood cells from red blood cells. White blood cells will not pass through the encapsulated kidney preventing the immune system to attack the new organ and eliminating the need of a matching donor. It is possible to construct life-time long encapsulation without needing pumps or a power supply on the cell’s separation method preventing futures surgeries due the Cross-Channel Flow inside the device. This technology allows the possibility to use an animal kidney, prevent cancer cells to spread through the body, arm and leg transplants in the future. This project aims to improve the quality of life of patients with kidney disease.Keywords: kidney encapsulation, immunosuppression filter, leukocyte filter, leukocyte
Procedia PDF Downloads 2017633 Economic Analysis of a Carbon Abatement Technology
Authors: Hameed Rukayat Opeyemi, Pericles Pilidis Pagone Emmanuele, Agbadede Roupa, Allison Isaiah
Abstract:
Climate change represents one of the single most challenging problems facing the world today. According to the National Oceanic and Administrative Association, Atmospheric temperature rose almost 25% since 1958, Artic sea ice has shrunk 40% since 1959 and global sea levels have risen more than 5.5cm since 1990. Power plants are the major culprits of GHG emission to the atmosphere. Several technologies have been proposed to reduce the amount of GHG emitted to the atmosphere from power plant, one of which is the less researched Advanced zero-emission power plant. The advanced zero emission power plants make use of mixed conductive membrane (MCM) reactor also known as oxygen transfer membrane (OTM) for oxygen transfer. The MCM employs membrane separation process. The membrane separation process was first introduced in 1899 when Walter Hermann Nernst investigated electric current between metals and solutions. He found that when a dense ceramic is heated, the current of oxygen molecules move through it. In the bid to curb the amount of GHG emitted to the atmosphere, the membrane separation process was applied to the field of power engineering in the low carbon cycle known as the Advanced zero emission power plant (AZEP cycle). The AZEP cycle was originally invented by Norsk Hydro, Norway and ABB Alstom power (now known as Demag Delaval Industrial turbomachinery AB), Sweden. The AZEP drew a lot of attention because its ability to capture ~100% CO2 and also boasts of about 30-50% cost reduction compared to other carbon abatement technologies, the penalty in efficiency is also not as much as its counterparts and crowns it with almost zero NOx emissions due to very low nitrogen concentrations in the working fluid. The advanced zero emission power plants differ from a conventional gas turbine in the sense that its combustor is substituted with the mixed conductive membrane (MCM-reactor). The MCM-reactor is made up of the combustor, low-temperature heat exchanger LTHX (referred to by some authors as air preheater the mixed conductive membrane responsible for oxygen transfer and the high-temperature heat exchanger and in some layouts, the bleed gas heat exchanger. Air is taken in by the compressor and compressed to a temperature of about 723 Kelvin and pressure of 2 Mega-Pascals. The membrane area needed for oxygen transfer is reduced by increasing the temperature of 90% of the air using the LTHX; the temperature is also increased to facilitate oxygen transfer through the membrane. The air stream enters the LTHX through the transition duct leading to inlet of the LTHX. The temperature of the air stream is then increased to about 1150 K depending on the design point specification of the plant and the efficiency of the heat exchanging system. The amount of oxygen transported through the membrane is directly proportional to the temperature of air going through the membrane. The AZEP cycle was developed using the Fortran software and economic analysis was conducted using excel and Matlab followed by optimization case study. The Simple bleed gas heat exchange layout (100 % CO2 capture), Bleed gas heat exchanger layout with flue gas turbine (100 % CO2 capture), Pre-expansion reheating layout (Sequential burning layout)–AZEP 85% (85% CO2 capture) and Pre-expansion reheating layout (Sequential burning layout) with flue gas turbine–AZEP 85% (85% CO2 capture). This paper discusses monte carlo risk analysis of four possible layouts of the AZEP cycle.Keywords: gas turbine, global warming, green house gas, fossil fuel power plants
Procedia PDF Downloads 3977632 Simulation and Analytical Investigation of Different Combination of Single Phase Power Transformers
Authors: M. Salih Taci, N. Tayebi, I. Bozkır
Abstract:
In this paper, the equivalent circuit of the ideal single-phase power transformer with its appropriate voltage current measurement was presented. The calculated values of the voltages and currents of the different connections single phase normal transformer and the results of the simulation process are compared. As it can be seen, the calculated results are the same as the simulated results. This paper includes eight possible different transformer connections. Depending on the desired voltage level, step-down and step-up application transformer is considered. Modelling and analysis of a system consisting of an equivalent source, transformer (primary and secondary), and loads are performed to investigate the combinations. The obtained values are simulated in PSpice environment and then how the currents, voltages and phase angle are distributed between them is explained based on calculation.Keywords: transformer, simulation, equivalent model, parallel series combinations
Procedia PDF Downloads 361