Search results for: word processing
1906 A Multifactorial Algorithm to Automate Screening of Drug-Induced Liver Injury Cases in Clinical and Post-Marketing Settings
Authors: Osman Turkoglu, Alvin Estilo, Ritu Gupta, Liliam Pineda-Salgado, Rajesh Pandey
Abstract:
Background: Hepatotoxicity can be linked to a variety of clinical symptoms and histopathological signs, posing a great challenge in the surveillance of suspected drug-induced liver injury (DILI) cases in the safety database. Additionally, the majority of such cases are rare, idiosyncratic, highly unpredictable, and tend to demonstrate unique individual susceptibility; these qualities, in turn, lend to a pharmacovigilance monitoring process that is often tedious and time-consuming. Objective: Develop a multifactorial algorithm to assist pharmacovigilance physicians in identifying high-risk hepatotoxicity cases associated with DILI from the sponsor’s safety database (Argus). Methods: Multifactorial selection criteria were established using Structured Query Language (SQL) and the TIBCO Spotfire® visualization tool, via a combination of word fragments, wildcard strings, and mathematical constructs, based on Hy’s law criteria and pattern of injury (R-value). These criteria excluded non-eligible cases from monthly line listings mined from the Argus safety database. The capabilities and limitations of these criteria were verified by comparing a manual review of all monthly cases with system-generated monthly listings over six months. Results: On an average, over a period of six months, the algorithm accurately identified 92% of DILI cases meeting established criteria. The automated process easily compared liver enzyme elevations with baseline values, reducing the screening time to under 15 minutes as opposed to multiple hours exhausted using a cognitively laborious, manual process. Limitations of the algorithm include its inability to identify cases associated with non-standard laboratory tests, naming conventions, and/or incomplete/incorrectly entered laboratory values. Conclusions: The newly developed multifactorial algorithm proved to be extremely useful in detecting potential DILI cases, while heightening the vigilance of the drug safety department. Additionally, the application of this algorithm may be useful in identifying a potential signal for DILI in drugs not yet known to cause liver injury (e.g., drugs in the initial phases of development). This algorithm also carries the potential for universal application, due to its product-agnostic data and keyword mining features. Plans for the tool include improving it into a fully automated application, thereby completely eliminating a manual screening process.Keywords: automation, drug-induced liver injury, pharmacovigilance, post-marketing
Procedia PDF Downloads 1521905 Instructional Consequences of the Transiency of Spoken Words
Authors: Slava Kalyuga, Sujanya Sombatteera
Abstract:
In multimedia learning, written text is often transformed into spoken (narrated) text. This transient information may overwhelm limited processing capacity of working memory and inhibit learning instead of improving it. The paper reviews recent empirical studies in modality and verbal redundancy effects within a cognitive load framework and outlines conditions under which negative effects of transiency may occur. According to the modality effect, textual information accompanying pictures should be presented in an auditory rather than visual form in order to engage two available channels of working memory – auditory and visual - instead of only one of them. However, some studies failed to replicate the modality effect and found differences opposite to those expected. Also, according to the multimedia redundancy effect, the same information should not be presented simultaneously in different modalities to avoid unnecessary cognitive load imposed by the integration of redundant sources of information. However, a few studies failed to replicate the multimedia redundancy effect too. Transiency of information is used to explain these controversial results.Keywords: cognitive load, transient information, modality effect, verbal redundancy effect
Procedia PDF Downloads 3801904 Improvement of Brain Tumors Detection Using Markers and Boundaries Transform
Authors: Yousif Mohamed Y. Abdallah, Mommen A. Alkhir, Amel S. Algaddal
Abstract:
This was experimental study conducted to study segmentation of brain in MRI images using edge detection and morphology filters. For brain MRI images each film scanned using digitizer scanner then treated by using image processing program (MatLab), where the segmentation was studied. The scanned image was saved in a TIFF file format to preserve the quality of the image. Brain tissue can be easily detected in MRI image if the object has sufficient contrast from the background. We use edge detection and basic morphology tools to detect a brain. The segmentation of MRI images steps using detection and morphology filters were image reading, detection entire brain, dilation of the image, filling interior gaps inside the image, removal connected objects on borders and smoothen the object (brain). The results of this study were that it showed an alternate method for displaying the segmented object would be to place an outline around the segmented brain. Those filters approaches can help in removal of unwanted background information and increase diagnostic information of Brain MRI.Keywords: improvement, brain, matlab, markers, boundaries
Procedia PDF Downloads 5161903 Solving Weighted Number of Operation Plus Processing Time Due-Date Assignment, Weighted Scheduling and Process Planning Integration Problem Using Genetic and Simulated Annealing Search Methods
Authors: Halil Ibrahim Demir, Caner Erden, Mumtaz Ipek, Ozer Uygun
Abstract:
Traditionally, the three important manufacturing functions, which are process planning, scheduling and due-date assignment, are performed separately and sequentially. For couple of decades, hundreds of studies are done on integrated process planning and scheduling problems and numerous researches are performed on scheduling with due date assignment problem, but unfortunately the integration of these three important functions are not adequately addressed. Here, the integration of these three important functions is studied by using genetic, random-genetic hybrid, simulated annealing, random-simulated annealing hybrid and random search techniques. As well, the importance of the integration of these three functions and the power of meta-heuristics and of hybrid heuristics are studied.Keywords: process planning, weighted scheduling, weighted due-date assignment, genetic search, simulated annealing, hybrid meta-heuristics
Procedia PDF Downloads 4691902 Sentinel-2 Based Burn Area Severity Assessment Tool in Google Earth Engine
Authors: D. Madhushanka, Y. Liu, H. C. Fernando
Abstract:
Fires are one of the foremost factors of land surface disturbance in diverse ecosystems, causing soil erosion and land-cover changes and atmospheric effects affecting people's lives and properties. Generally, the severity of the fire is calculated as the Normalized Burn Ratio (NBR) index. This is performed manually by comparing two images obtained afterward. Then by using the bitemporal difference of the preprocessed satellite images, the dNBR is calculated. The burnt area is then classified as either unburnt (dNBR<0.1) or burnt (dNBR>= 0.1). Furthermore, Wildfire Severity Assessment (WSA) classifies burnt areas and unburnt areas using classification levels proposed by USGS and comprises seven classes. This procedure generates a burn severity report for the area chosen by the user manually. This study is carried out with the objective of producing an automated tool for the above-mentioned process, namely the World Wildfire Severity Assessment Tool (WWSAT). It is implemented in Google Earth Engine (GEE), which is a free cloud-computing platform for satellite data processing, with several data catalogs at different resolutions (notably Landsat, Sentinel-2, and MODIS) and planetary-scale analysis capabilities. Sentinel-2 MSI is chosen to obtain regular processes related to burnt area severity mapping using a medium spatial resolution sensor (15m). This tool uses machine learning classification techniques to identify burnt areas using NBR and to classify their severity over the user-selected extent and period automatically. Cloud coverage is one of the biggest concerns when fire severity mapping is performed. In WWSAT based on GEE, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for both pre-fire and post-fire image compositing. The parallel processing capabilities and preloaded geospatial datasets of GEE facilitated the production of this tool. This tool consists of a Graphical User Interface (GUI) to make it user-friendly. The advantage of this tool is the ability to obtain burn area severity over a large extent and more extended temporal periods. Two case studies were carried out to demonstrate the performance of this tool. The Blue Mountain national park forest affected by the Australian fire season between 2019 and 2020 is used to describe the workflow of the WWSAT. This site detected more than 7809 km2, using Sentinel-2 data, giving an error below 6.5% when compared with the area detected on the field. Furthermore, 86.77% of the detected area was recognized as fully burnt out, of which high severity (17.29%), moderate-high severity (19.63%), moderate-low severity (22.35%), and low severity (27.51%). The Arapaho and Roosevelt National Forest Park, California, the USA, which is affected by the Cameron peak fire in 2020, is chosen for the second case study. It was found that around 983 km2 had burned out, of which high severity (2.73%), moderate-high severity (1.57%), moderate-low severity (1.18%), and low severity (5.45%). These spots also can be detected through the visual inspection made possible by cloud-free images generated by WWSAT. This tool is cost-effective in calculating the burnt area since satellite images are free and the cost of field surveys is avoided.Keywords: burnt area, burnt severity, fires, google earth engine (GEE), sentinel-2
Procedia PDF Downloads 2351901 Human Machine Interface for Controlling a Robot Using Image Processing
Authors: Ambuj Kumar Gautam, V. Vasu
Abstract:
This paper introduces a head movement based Human Machine Interface (HMI) that uses the right and left movements of head to control a robot motion. Here we present an approach for making an effective technique for real-time face orientation information system, to control a robot which can be efficiently used for Electrical Powered Wheelchair (EPW). Basically this project aims at application related to HMI. The system (machine) identifies the orientation of the face movement with respect to the pixel values of image in a certain areas. Initially we take an image and divide that whole image into three parts on the basis of its number of columns. On the basis of orientation of face, maximum pixel value of approximate same range of (R, G, and B value of a pixel) lie in one of divided parts of image. This information we transfer to the microcontroller through serial communication port and control the motion of robot like forward motion, left and right turn and stop in real time by using head movements.Keywords: electrical powered wheelchair (EPW), human machine interface (HMI), robotics, microcontroller
Procedia PDF Downloads 2921900 Self-Supervised Learning for Hate-Speech Identification
Authors: Shrabani Ghosh
Abstract:
Automatic offensive language detection in social media has become a stirring task in today's NLP. Manual Offensive language detection is tedious and laborious work where automatic methods based on machine learning are only alternatives. Previous works have done sentiment analysis over social media in different ways such as supervised, semi-supervised, and unsupervised manner. Domain adaptation in a semi-supervised way has also been explored in NLP, where the source domain and the target domain are different. In domain adaptation, the source domain usually has a large amount of labeled data, while only a limited amount of labeled data is available in the target domain. Pretrained transformers like BERT, RoBERTa models are fine-tuned to perform text classification in an unsupervised manner to perform further pre-train masked language modeling (MLM) tasks. In previous work, hate speech detection has been explored in Gab.ai, which is a free speech platform described as a platform of extremist in varying degrees in online social media. In domain adaptation process, Twitter data is used as the source domain, and Gab data is used as the target domain. The performance of domain adaptation also depends on the cross-domain similarity. Different distance measure methods such as L2 distance, cosine distance, Maximum Mean Discrepancy (MMD), Fisher Linear Discriminant (FLD), and CORAL have been used to estimate domain similarity. Certainly, in-domain distances are small, and between-domain distances are expected to be large. The previous work finding shows that pretrain masked language model (MLM) fine-tuned with a mixture of posts of source and target domain gives higher accuracy. However, in-domain performance of the hate classifier on Twitter data accuracy is 71.78%, and out-of-domain performance of the hate classifier on Gab data goes down to 56.53%. Recently self-supervised learning got a lot of attention as it is more applicable when labeled data are scarce. Few works have already been explored to apply self-supervised learning on NLP tasks such as sentiment classification. Self-supervised language representation model ALBERTA focuses on modeling inter-sentence coherence and helps downstream tasks with multi-sentence inputs. Self-supervised attention learning approach shows better performance as it exploits extracted context word in the training process. In this work, a self-supervised attention mechanism has been proposed to detect hate speech on Gab.ai. This framework initially classifies the Gab dataset in an attention-based self-supervised manner. On the next step, a semi-supervised classifier trained on the combination of labeled data from the first step and unlabeled data. The performance of the proposed framework will be compared with the results described earlier and also with optimized outcomes obtained from different optimization techniques.Keywords: attention learning, language model, offensive language detection, self-supervised learning
Procedia PDF Downloads 1051899 MindFlow: A Collective Intelligence-Based System for Helping Stress Pattern Diagnosis
Authors: Andres Frederic
Abstract:
We present the MindFlow system supporting the detection and the diagnosis of stresses. The heart of the system is a knowledge synthesis engine allowing occupational health stakeholders (psychologists, occupational therapists and human resource managers) to formulate queries related to stress and responding to users requests by recommending a pattern of stress if one exists. The stress pattern diagnosis is based on expert knowledge stored in the MindFlow stress ontology including stress feature vector. The query processing may involve direct access to the MindFlow system by occupational health stakeholders, online communication between the MindFlow system and the MindFlow domain experts, or direct dialog between a occupational health stakeholder and a MindFlow domain expert. The MindFlow knowledge model is generic in the sense that it supports the needs of psychologists, occupational therapists and human resource managers. The system presented in this paper is currently under development as part of a Dutch-Japanese project and aims to assist organisation in the quick diagnosis of stress patterns.Keywords: occupational stress, stress management, physiological measurement, accident prevention
Procedia PDF Downloads 4301898 Face Recognition Using Eigen Faces Algorithm
Authors: Shweta Pinjarkar, Shrutika Yawale, Mayuri Patil, Reshma Adagale
Abstract:
Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this, demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application. Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this , demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application.Keywords: face detection, face recognition, eigen faces, algorithm
Procedia PDF Downloads 3611897 Digital Mapping as a Tool for Finding Cities' DNA
Authors: Sanja Peter
Abstract:
Transformation of urban environments can be compared to evolutionary processes. Systematic digital mapping of historical data can enable capturing some of these processes and their outcomes. For example, it may help reveal the structure of a city’s historical DNA. Gathering historical data for automatic processing may be giving a basis for cultural algorithms. Gothenburg City museum is trying to make city’s heritage information accessible through GIS-platforms and is now partnering with academic institutions to find appropriate methods to make accessible the knowledge on the city’s historical fabric. Hopefully, this will be carried out through a project called Digital Twin Cities. One part of this large project, concerning matters of Cultural Heritage, will be in collaboration with Chalmers University of Technology. The aim is to create a layered map showing historical developments of the city and extracting quantitative data about its built heritage, above and below the earth. It will allow interpreting the information from historic maps through, for example, names of the streets/places, geography, structural changes in urban fabric and information gathered by archaeologists’ excavations. Through the study of these geographical, historical and local metamorphoses, urban environment will reveal its metaphorical DNA or its MEM (Dawkins).Keywords: Gothenburg, mapping, cultural heritage, city history
Procedia PDF Downloads 1401896 CSR Communication Strategies: Stakeholder and Institutional Theories Perspective
Authors: Stephanie Gracelyn Rahaman, Chew Yin Teng, Manjit Singh Sandhu
Abstract:
Corporate scandals have made stakeholders apprehensive of large companies and expect greater transparency in CSR matters. However, companies find it challenging to strategically communicate CSR to intended stakeholders and in the process may fall short on maximizing on CSR efforts. Given that stakeholders have the ability to either reward good companies or take legal action or boycott against corporate brands who do not act socially responsible, companies must create shared understanding of their CSR activities. As a result, communication has become a strategy for many companies to demonstrate CSR engagement and to minimize stakeholder skepticism. The main objective of this research is to examine the types of CSR communication strategies and predictors that guide CSR communication strategies. Employing Morsing & Schultz’s guide on CSR communication strategies, the study integrates stakeholder and institutional theory to develop a conceptual framework. The conceptual framework hypothesized that stakeholder (instrumental and normative) and institutional (regulatory environment, nature of business, mimetic intention, CSR focus and corporate objectives) dimensions would drive CSR communication strategies. Preliminary findings from semi-structured interviews in Malaysia are consistent with the conceptual model in that stakeholder and institutional expectations guide CSR communication strategies. Findings show that most companies use two-way communication strategies. Companies that identified employees, the public or customers as key stakeholders have started to embrace social media to be in-sync with new trends of communication. This is especially with the Gen Y which is their priority. Some companies creatively use multiple communication channels because they recognize different stakeholders favor different communication channels. Therefore, it appears that companies use two-way communication strategies to complement the perceived limitation of one-way communication strategies as some companies prefer a more interactive platform to strategically engage stakeholders in CSR communication. In addition to stakeholders, institutional expectations also play a vital role in influencing CSR communication. Due to industry peer pressures, corporate objectives (attract international investors and customers), companies may be more driven to excel in social performance. For these reasons companies tend to go beyond the basic mandatory requirement, excel in CSR activities and be known as companies that champion CSR. In conclusion, companies use more two-way than one-way communication and companies use a combination of one and two-way communication to target different stakeholders resulting from stakeholder and institutional dimensions. Finally, in order to find out if the conceptual framework actually fits the Malaysian context, companies’ responses for expected organizational outcomes from communicating CSR were gathered from the interview transcripts. Thereafter, findings are presented to show some of the key organizational outcomes (visibility and brand recognition, portray responsible image, attract prospective employees, positive word-of-mouth, etc.) that companies in Malaysia expect from CSR communication. Based on these findings the conceptual framework has been refined to show the new identified organizational outcomes.Keywords: CSR communication, CSR communication strategies, stakeholder theory, institutional theory, conceptual framework, Malaysia
Procedia PDF Downloads 2891895 The Healing 'Touch' of Music: A Neuro-Acoustics Approach to Understand Its Therapeutic Effect
Authors: Jagmeet S. Kanwal, Julia F. Langley
Abstract:
Music can heal the body, but a mechanistic understanding of this phenomenon is lacking. This study explores the effects of music presentation on neurologic and physiologic responses leading to metabolic changes in the human body. The mind and body co-exist in a corporeal entity and within this framework, sickness ensues when the mind-body balance goes awry. It is further hypothesized that music has the capacity to directly reset this balance. Two lines of inquiry taken together can provide a mechanistic understanding of this phenomenon 1) Empirical evidence for a sound-sensitive pressure sensor system in the body, and 2) The notion of a “healing center” within the brain that is activated by specific patterns of sounds. From an acoustics perspective, music is spatially distributed as pressure waves ranging from a few cm to several meters in wavelength. These waves interact and propagate in three-dimensions in unique ways, depending on the wavelength. Furthermore, music creates dynamically changing wave-fronts. Frequencies between 200 Hz and 1 kHz generate wavelengths that range from 5'6" to 1 foot. These dimensions are in the range of the body size of most people making it plausible that these pressure waves can geometrically interact with the body surface and create distinct patterns of pressure stimulation across the skin surface. For humans, short wavelength, high frequency (> 200 Hz) sounds are best received via cochlear receptors. For low frequency (< 200 Hz), long wavelength sound vibrations, however, the whole body may act as an ideal receiver. A vast array of highly sensitive pressure receptors (Pacinian corpuscles) is present just beneath the skin surface, as well as in the tendons, bones, several organs in the abdomen, and the sexual organs. Per the available empirical evidence, these receptors contribute to music perception by allowing the whole body to function as a sound receiver, and knowledge of how they function is essential to fully understanding the therapeutic effect of music. Neuroscientific studies have established that music stimulates the limbic system that can trigger states of anxiety, arousal, fear, and other emotions. These emotional states of brain activity play a crucial role in filtering top-down feedback from thoughts and bottom-up sensory inputs to the autonomic system, which automatically regulates bodily functions. Music likely exerts its pleasurable and healing effects by enhancing functional and effective connectivity and feedback mechanisms between brain regions that mediate reward, autonomic, and cognitive processing. Stimulation of pressure receptors under the skin by low-frequency music-induced sensations can activate multiple centers in the brain, including the amygdala, the cingulate cortex, and nucleus accumbens. Melodies in music in the low (< 600 Hz) frequency range may augment auditory inputs after convergence of the pressure-sensitive inputs from the vagus nerve onto emotive processing regions within the limbic system. The integration of music-generated auditory and somato-visceral inputs may lead to a synergistic input to the brain that promotes healing. Thus, music can literally heal humans through “touch” as it energizes the brain’s autonomic system for restoring homeostasis.Keywords: acoustics, brain, music healing, pressure receptors
Procedia PDF Downloads 1661894 Shifting of Global Energy Security: A Comparative Analysis of Indonesia and China’s Renewable Energy Policies
Authors: Widhi Hanantyo Suryadinata
Abstract:
Efforts undertaken by Indonesia and China to shift the strategies and security of renewable energy on a global stage involve approaches through policy construction related to rare minerals processing or value-adding in Indonesia and manufacturing policies through the New Energy Vehicles (NEVs) policy in China. Both policies encompass several practical regulations and policies that can be utilized for the implementation of Indonesia and China's grand efforts and ideas. Policy development in Indonesia and China can be analyzed using a comparative analysis method, as well as employing a pyramid illustration to identify policy construction phases based on the real conditions of the domestic market and implemented policies. This approach also helps to identify the potential integration of policies needed to enhance the policy development phase of a country within the pyramid. It also emphasizes the significance of integration policy to redefine renewable energy strategy and security on the global stage.Keywords: global renewable energy security, global energy security, policy development, comparative analysis, shifting of global energy security, Indonesia, China
Procedia PDF Downloads 691893 Health Literacy: Collaboration between Clinician and Patient
Authors: Cathy Basterfield
Abstract:
Issue: To engage in one’s own health care, health professionals need to be aware of an individual’s specific skills and abilities for best communication. One of the most discussed is health literacy. One of the assumed skills and abilities for adults is an individuals’ health literacy. Background: A review of publicly available health content appears to assume all adult readers will have a broad and full capacity to read at a high level of literacy, often at a post-school education level. Health information writers and clinicians need to recognise one critical area for why there may be little or no change in a person’s behaviour, or no-shows to appointments. Perhaps unintentionally, they are miscommunicating with the majority of the adult population. Health information contains many literacy domains. It usually includes technical medical terms or jargon. Many fact sheets and other information require scientific literacy with or without specific numerical literacy. It may include graphs, percentages, timing, distance, or weights. Each additional word or concept in these domains decreases the readers' ability to meaningfully read, understand and know what to do with the information. An attempt to begin to read the heading where long or unfamiliar words are used will reduce the readers' motivation to attempt to read. Critically people who have low literacy are overwhelmed when pages are covered with lots of words. People attending a health environment may be unwell or anxious about a diagnosis. These make it harder to read, understand and know what to do with the information. But access to health information must consider an even wider range of adults, including those with poor school attainment, migrants, and refugees. It is also homeless people, people with mental health illnesses, or people who are ageing. People with low literacy also may include people with lifelong disabilities, people with acquired disabilities, people who read English as a second (or third) language, people who are Deaf, or people who are vision impaired. Outcome: This paper will discuss Easy English, which is developed for adults. It uses the audiences’ everyday words, short sentences, short words, and no jargon. It uses concrete language and concrete, specific images to support the text. It has been developed in Australia since the mid-2000s. This paper will showcase various projects in the health domain which use Easy English to improve the understanding and functional use of written information for the large numbers of adults in our communities who do not have the health literacy to manage a range of day to day reading tasks. See examples from consent forms, fact sheets and choice options, instructions, and other functional documents, where Easy English has been developed. This paper will ask individuals to reflect on their own work practice and consider what written information must be available in Easy English. It does not matter how cutting-edge a new treatment is; when adults can not read or understand what it is about and the positive and negative outcomes, they are less likely to be engaged in their own health journey.Keywords: health literacy, inclusion, Easy English, communication
Procedia PDF Downloads 1251892 Detaching the ‘Criminal Justice Conveyor Belt’: Diversion as a Responsive Mechanism for Children in Kenya
Authors: Sarah Kinyanjui, Mahnaaz Mohamed
Abstract:
The child justice system in Kenya is organically departing from a managerial and retributive model to one that espouses restorative justice. Notably, the Children Act 2001, and the most recent, Children Act 2022, signalled an aspiration to facilitate meaningful interventions as opposed to ‘processing’ children through the justice system. In this vein, the Children Act 2022 formally recognises diversion and provides modalities for its implementation. This paper interrogates the diversion promise and reflects on the implementation of diversion as envisaged by the 2022 Act. Using restorative justice, labelling and differential association theories as well as the value of care lenses, the paper discusses diversion as a meaningful response to child offending. It further argues that while diversion presents a strong platform for the realisation of the restorative and rehabilitative ideals, in the absence of a well-planned, coordinated, and resourced framework, diversion may remain a mere alternative ‘conveyor belt’. Strategic multi-agency planning, capacity building and cooperation are highlighted as essential minimums for the realisation of the goals of diversion.Keywords: diversion for child offenders, restorative justice, responsive criminal justice system, children act 2022 kenya
Procedia PDF Downloads 681891 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis
Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu
Abstract:
Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing
Procedia PDF Downloads 1381890 A Study on Sentiment Analysis Using Various ML/NLP Models on Historical Data of Indian Leaders
Authors: Sarthak Deshpande, Akshay Patil, Pradip Pandhare, Nikhil Wankhede, Rushali Deshmukh
Abstract:
Among the highly significant duties for any language most effective is the sentiment analysis, which is also a key area of NLP, that recently made impressive strides. There are several models and datasets available for those tasks in popular and commonly used languages like English, Russian, and Spanish. While sentiment analysis research is performed extensively, however it is lagging behind for the regional languages having few resources such as Hindi, Marathi. Marathi is one of the languages that included in the Indian Constitution’s 8th schedule and is the third most widely spoken language in the country and primarily spoken in the Deccan region, which encompasses Maharashtra and Goa. There isn’t sufficient study on sentiment analysis methods based on Marathi text due to lack of available resources, information. Therefore, this project proposes the use of different ML/NLP models for the analysis of Marathi data from the comments below YouTube content, tweets or Instagram posts. We aim to achieve a short and precise analysis and summary of the related data using our dataset (Dates, names, root words) and lexicons to locate exact information.Keywords: multilingual sentiment analysis, Marathi, natural language processing, text summarization, lexicon-based approaches
Procedia PDF Downloads 741889 Sustainability in the Purchase of Airline Tickets: Analysis of Digital Communication from the Perspective of Neuroscience
Authors: Rodríguez Sánchez Carla, Sancho-Esper Franco, Guillen-Davo Marina
Abstract:
Tourism is one of the most important sectors worldwide since it is an important economic engine for today's society. It is also one of the sectors that most negatively affect the environment in terms of CO₂ emissions due to this expansion. In light of this, airlines are developing Voluntary Carbon Offset (VCO). There is important evidence focused on analyzing the features of these VCO programs and their efficacy in reducing CO₂ emissions, and findings are mixed without a clear consensus. Different research approaches have centered on analyzing factors and consequences of VCO programs, such as economic modelling based on panel data, survey research based on traveler responses or experimental research analyzing customer decisions in a simulated context. This study belongs to the latter group because it tries to understand how different characteristics of an online ticket purchase website affect the willingness of a traveler to choose a sustainable one. The proposed behavioral model is based on several theories, such as the nudge theory, the dual processing ELM and the cognitive dissonance theory. This randomized experiment aims at overcoming previous studies based on self-reported measures that mainly study sustainable behavioral intention rather than actual decision-making. It also complements traditional self-reported independent variables by gathering objective information from an eye-tracking device. This experiment analyzes the influence of two characteristics of the online purchase website: i) the type of information regarding flight CO₂ emissions (quantitative vs. qualitative) and the comparison framework related to the sustainable purchase decision (negative: alternative with more emissions than the average flight of the route vs. positive: alternative with less emissions than the average flight of the route), therefore it is a 2x2 experiment with four alternative scenarios. A pretest was run before the actual experiment to refine the experiment features and to check the manipulations. Afterward, a different sample of students answered the pre-test questionnaire aimed at recruiting the cases and measuring several pre-stimulus measures. One week later, students came to the neurolab at the University setting to be part of the experiment, made their decision regarding online purchases and answered the post-test survey. A final sample of 21 students was gathered. The committee of ethics of the institution approved the experiment. The results show that qualitative information generates more sustainable decisions (less contaminant alternative) than quantitative information. Moreover, evidence shows that subjects are more willing to choose the sustainable decision to be more ecological (comparison of the average with the less contaminant alternative) rather than to be less contaminant (comparison of the average with the more contaminant alternative). There are also interesting differences in the information processing variables from the eye tracker. Both the total time to make the choice and the specific times by area of interest (AOI) differ depending on the assigned scenario. These results allow for a better understanding of the factors that condition the decision of a traveler to be part of a VCO program and provide useful information for airline managers to promote these programs to reduce environmental impact.Keywords: voluntary carbon offset, airline, online purchase, carbon emission, sustainability, randomized experiment
Procedia PDF Downloads 731888 Construction and Analysis of Tamazight (Berber) Text Corpus
Authors: Zayd Khayi
Abstract:
This paper deals with the construction and analysis of the Tamazight text corpus. The grammatical structure of the Tamazight remains poorly understood, and a lack of comparative grammar leads to linguistic issues. In order to fill this gap, even though it is small, by constructed the diachronic corpus of the Tamazight language, and elaborated the program tool. In addition, this work is devoted to constructing that tool to analyze the different aspects of the Tamazight, with its different dialects used in the north of Africa, specifically in Morocco. It also focused on three Moroccan dialects: Tamazight, Tarifiyt, and Tachlhit. The Latin version was good choice because of the many sources it has. The corpus is based on the grammatical parameters and features of that language. The text collection contains more than 500 texts that cover a long historical period. It is free, and it will be useful for further investigations. The texts were transformed into an XML-format standardization goal. The corpus counts more than 200,000 words. Based on the linguistic rules and statistical methods, the original user interface and software prototype were developed by combining the technologies of web design and Python. The corpus presents more details and features about how this corpus provides users with the ability to distinguish easily between feminine/masculine nouns and verbs. The interface used has three languages: TMZ, FR, and EN. Selected texts were not initially categorized. This work was done in a manual way. Within corpus linguistics, there is currently no commonly accepted approach to the classification of texts. Texts are distinguished into ten categories. To describe and represent the texts in the corpus, we elaborated the XML structure according to the TEI recommendations. Using the search function may provide us with the types of words we would search for, like feminine/masculine nouns and verbs. Nouns are divided into two parts. The gender in the corpus has two forms. The neutral form of the word corresponds to masculine, while feminine is indicated by a double t-t affix (the prefix t- and the suffix -t), ex: Tarbat (girl), Tamtut (woman), Taxamt (tent), and Tislit (bride). However, there are some words whose feminine form contains only the prefix t- and the suffix –a, ex: Tasa (liver), tawja (family), and tarwa (progenitors). Generally, Tamazight masculine words have prefixes that distinguish them from other words. For instance, 'a', 'u', 'i', ex: Asklu (tree), udi (cheese), ighef (head). Verbs in the corpus are for the first person singular and plural that have suffixes 'agh','ex', 'egh', ex: 'ghrex' (I study), 'fegh' (I go out), 'nadagh' (I call). The program tool permits the following characteristics of this corpus: list of all tokens; list of unique words; lexical diversity; realize different grammatical requests. To conclude, this corpus has only focused on a small group of parts of speech in Tamazight language verbs, nouns. Work is still on the adjectives, prounouns, adverbs and others.Keywords: Tamazight (Berber) language, corpus linguistic, grammar rules, statistical methods
Procedia PDF Downloads 661887 Expansive-Restrictive Style: Conceptualizing Knowledge Workers
Authors: Ram Manohar Singh, Meenakshi Gupta
Abstract:
Various terms such as ‘learning style’, ‘cognitive style’, ‘conceptual style’, ‘thinking style’, ‘intellectual style’ are used in literature to refer to an individual’s characteristic and consistent approach to organizing and processing information. However, style concepts are criticized for mutually overlapping definitions and confusing classification. This confusion should be addressed at the conceptual as well as empirical level. This paper is an attempt to bridge this gap in literature by proposing a new concept: expansive-restrictive intellectual style based on phenomenological analysis of an auto-ethnography and interview of 26 information technology (IT) professionals working in knowledge intensive organizations (KIOs) in India. Expansive style is an individual’s preference to expand his/her horizon of knowledge and understanding by gaining real meaning and structure of his/her work. On the contrary restrictive style is characterized by an individual’s preference to take minimalist approach at work reflected in executing a job efficiently without an attempt to understand the real meaning and structure of the work. The analysis suggests that expansive-restrictive style has three dimensions: (1) field dependence-independence (2) cognitive involvement and (3) epistemological beliefs.Keywords: expansive, knowledge workers, restrictive, style
Procedia PDF Downloads 4241886 An Overview on Aluminum Matrix Composites: Liquid State Processing
Authors: S. P. Jordan, G. Christian, S. P. Jeffs
Abstract:
Modern composite materials are increasingly being chosen in replacement of heavier metallic material systems within many engineering fields including aerospace and automotive industries. The increasing push towards satisfying environmental targets are fuelling new material technologies and manufacturing processes. This paper will introduce materials and manufacturing processes using metal matrix composites along with manufacturing processes optimized at Alvant Ltd., based in Basingstoke in the UK which offers modern, cost effective, selectively reinforced composites for light-weighting applications within engineering. An overview and introduction into modern optimized manufacturing methods capable of producing viable replacements for heavier metallic and lower temperature capable polymer composites are offered. A review of the capabilities and future applications of this viable material is discussed to highlight the potential involved in further optimization of old manufacturing techniques, to fully realize the potential to lightweight material using cost-effective methods.Keywords: aluminium matrix composites, light-weighting, hybrid squeeze casting, strategically placed reinforcements
Procedia PDF Downloads 991885 Facility Layout Improvement: Based on Safety and Health at Work and Standards of Food Production Facility
Authors: Asifa Fitriani, Galih Prakoso
Abstract:
This study aims to improve the design layout of a Micro, Small and Medium Enterprises (SMEs) to minimize material handling and redesigning the layout of production facilities based on the safety and health and standards of food production facilities. Problems layout in the one of chip making industry mushrooms in Indonesia is cross movement between work stations, work accidents, and the standard of facilities that do not conform with the standards of the food industry. Improvement layout design using CORELAP and 5S method to give recommendation and implementation of occupational health and safety standards of food production facilities. From the analysis, improved layout using CORELAP provide a smaller displacement distance is 155.84 meters from the initial displacement distance of 335.9 meters, and providing a shorter processing time than the original 112.726 seconds to 102.831 seconds. 5S method also has recommended the completion of occupational health and safety issues as well as the standard means of food production by changing the working environment better.Keywords: Layout Design, Corelap, 5S
Procedia PDF Downloads 5331884 Typical Emulsions as Probiotic Food Carrier: Effect of Cells Position on Its Viability
Authors: Mengfan Li, Filip Van Bockstaele, Wenyong Lou, Frank Devlighere
Abstract:
The development of probiotics-encapsulated emulsions that maintain the viability of probiotics during processing, storage and human gastrointestinal (GI) tract environment receives great scientific and commercial interest. In this study, typical W/O and O/W emulsions with and without oil gelation were used to encapsulate L. plantarum. The effects of emulsion types on the viability of L. plantarum during storage and GI tract were investigated. Besides, the position of L. plantarum in emulsion system and its number of viable cells when threating by adverse environment was correlated in order to figure out which type of emulsion is more suitable as food carrier for probiotics encapsulation and protection. As a result, probiotics tend to migrate from oil to water phase due to the natural hydrophilicity; however, it’s harmful for cells viability when surrounding by water for a long time. Oil gelation in emulsions is one of the promising strategies for inhibiting the cells mobility and decreasing the contact with adverse factors (e.g., water, exogenous enzymes and gastric acid), thus enhancing the number of viable cells that enough to exert its beneficial effects in host.Keywords: emulsion, gelation, encapsulation, probiotics
Procedia PDF Downloads 1091883 Electron Beam Processing of Ethylene-Propylene-Terpolymer-Based Rubber Mixtures
Authors: M. D. Stelescu, E. Manaila, G. Craciun, D. Ighigeanu
Abstract:
The goal of the paper is to present the results regarding the influence of the irradiation dose and amount of multifunctional monomer trimethylol-propane trimethacrylate (TMPT) on ethylene-propylene-diene terpolymer rubber (EPDM) mixtures irradiated in electron beam. Blends, molded on an electrically heated laboratory roller mill and compressed in an electrically heated hydraulic press, were irradiated using the ALID 7 of 5.5 MeV linear accelerator in the dose range of 22.6 kGy to 56.5 kGy in atmospheric conditions and at room temperature of 25 °C. The share of cross-linking and degradation reactions was evaluated by means of sol-gel analysis, cross-linking density measurements, FTIR studies and Charlesby-Pinner parameter (p0/q0) calculations. The blends containing different concentrations of TMPT (3 phr and 9 phr) and irradiated with doses in the mentioned range have present the increasing of gel content and cross-linking density. Modified and new bands in FTIR spectra have appeared, because of both cross-linking and chain scission reactions.Keywords: electron beam irradiation, EPDM rubber, crosslinking density, gel fraction
Procedia PDF Downloads 1551882 Investigation of the Properties of Biochar Obtained by Dry and Wet Torrefaction in a Fixed and in a Fluidized Bed
Authors: Natalia Muratova, Dmitry Klimov, Rafail Isemin, Sergey Kuzmin, Aleksandr Mikhalev, Oleg Milovanov
Abstract:
We investigated the processing of poultry litter into biochar using dry torrefaction methods (DT) in a fixed and fluidized bed of quartz sand blown with nitrogen, as well as wet torrefaction (WT) in a fluidized bed in a medium of water steam at a temperature of 300 °C. Torrefaction technology affects the duration of the heat treatment process and the characteristics of the biochar: the process of separating CO₂, CO, H₂ and CH₄ from a portion of fresh poultry litter during torrefaction in a fixed bed is completed after 2400 seconds, but in a fluidized bed — after 480 seconds. During WT in a fluidized bed of quartz sand, this process ends in 840 seconds after loading a portion of fresh litter, but in a fluidized bed of litter particles previously subjected to torrefaction, the process ends in 350 - 450 seconds. In terms of the ratio between (H/C) and (O/C), the litter obtained after DT and WT treatment corresponds to lignite. WT in a fluidized bed allows one to obtain biochar, in which the specific pore area is two times larger than the specific pore area of biochar obtained after DT in a fluidized bed. Biochar, obtained as a result of the poultry litter treatment in a fluidized bed using DT or WT method, is recommended to be used not only as a biofuel but also as an adsorbent or the soil fertilizer.Keywords: biochar, poultry litter, dry and wet torrefaction, fixed bed, fluidized bed
Procedia PDF Downloads 1571881 Investigating Learners’ Online Learning Experiences in a Blended-Learning School Environment
Authors: Abraham Ampong
Abstract:
BACKGROUND AND SIGNIFICANCE OF THE STUDY: The development of information technology and its influence today is inevitable in the world of education. The development of information technology and communication (ICT) has an impact on the use of teaching aids such as computers and the Internet, for example, E-learning. E-learning is a learning process attained through electronic means. But learning is not merely technology because learning is essentially more about the process of interaction between teacher, student, and source study. The main purpose of the study is to investigate learners’ online learning experiences in a blended learning approach, evaluate how learners’ experience of an online learning environment affects the blended learning approach and examine the future of online learning in a blended learning environment. Blended learning pedagogies have been recognized as a path to improve teacher’s instructional strategies for teaching using technology. Blended learning is perceived to have many advantages for teachers and students, including any-time learning, anywhere access, self-paced learning, inquiry-led learning and collaborative learning; this helps institutions to create desired instructional skills such as critical thinking in the process of learning. Blended learning as an approach to learning has gained momentum because of its widespread integration into educational organizations. METHODOLOGY: Based on the research objectives and questions of the study, the study will make use of the qualitative research approach. The rationale behind the selection of this research approach is that participants are able to make sense of their situations and appreciate their construction of knowledge and understanding because the methods focus on how people understand and interpret their experiences. A case study research design is adopted to explore the situation under investigation. The target population for the study will consist of selected students from selected universities. A simple random sampling technique will be used to select the targeted population. The data collection instrument that will be adopted for this study will be questions that will serve as an interview guide. An interview guide is a set of questions that an interviewer asks when interviewing respondents. Responses from the in-depth interview will be transcribed into word and analyzed under themes. Ethical issues to be catered for in this study include the right to privacy, voluntary participation, and no harm to participants, and confidentiality. INDICATORS OF THE MAJOR FINDINGS: It is suitable for the study to find out that online learning encourages timely feedback from teachers or that online learning tools are okay to use without issues. Most of the communication with the teacher can be done through emails and text messages. It is again suitable for sampled respondents to prefer online learning because there are few or no distractions. Learners can have access to technology to do other activities to support their learning”. There are, again, enough and enhanced learning materials available online. CONCLUSION: Unlike the previous research works focusing on the strengths and weaknesses of blended learning, the present study aims at the respective roles of its two modalities, as well as their interdependencies.Keywords: online learning, blended learning, technologies, teaching methods
Procedia PDF Downloads 861880 Enhancing the Bionic Eye: A Real-time Image Optimization Framework to Encode Color and Spatial Information Into Retinal Prostheses
Authors: William Huang
Abstract:
Retinal prostheses are currently limited to low resolution grayscale images that lack color and spatial information. This study develops a novel real-time image optimization framework and tools to encode maximum information to the prostheses which are constrained by the number of electrodes. One key idea is to localize main objects in images while reducing unnecessary background noise through region-contrast saliency maps. A novel color depth mapping technique was developed through MiniBatchKmeans clustering and color space selection. The resulting image was downsampled using bicubic interpolation to reduce image size while preserving color quality. In comparison to current schemes, the proposed framework demonstrated better visual quality in tested images. The use of the region-contrast saliency map showed improvements in efficacy up to 30%. Finally, the computational speed of this algorithm is less than 380 ms on tested cases, making real-time retinal prostheses feasible.Keywords: retinal implants, virtual processing unit, computer vision, saliency maps, color quantization
Procedia PDF Downloads 1531879 Use of Artificial Intelligence and Two Object-Oriented Approaches (k-NN and SVM) for the Detection and Characterization of Wetlands in the Centre-Val de Loire Region, France
Authors: Bensaid A., Mostephaoui T., Nedjai R.
Abstract:
Nowadays, wetlands are the subject of contradictory debates opposing scientific, political and administrative meanings. Indeed, given their multiple services (drinking water, irrigation, hydrological regulation, mineral, plant and animal resources...), wetlands concentrate many socio-economic and biodiversity issues. In some regions, they can cover vast areas (>100 thousand ha) of the landscape, such as the Camargue area in the south of France, inside the Rhone delta. The high biological productivity of wetlands, the strong natural selection pressures and the diversity of aquatic environments have produced many species of plants and animals that are found nowhere else. These environments are tremendous carbon sinks and biodiversity reserves depending on their age, composition and surrounding environmental conditions, wetlands play an important role in global climate projections. Covering more than 3% of the earth's surface, wetlands have experienced since the beginning of the 1990s a tremendous revival of interest, which has resulted in the multiplication of inventories, scientific studies and management experiments. The geographical and physical characteristics of the wetlands of the central region conceal a large number of natural habitats that harbour a great biological diversity. These wetlands, one of the natural habitats, are still influenced by human activities, especially agriculture, which affects its layout and functioning. In this perspective, decision-makers need to delimit spatial objects (natural habitats) in a certain way to be able to take action. Thus, wetlands are no exception to this rule even if it seems to be a difficult exercise to delimit a type of environment as whose main characteristic is often to occupy the transition between aquatic and terrestrial environment. However, it is possible to map wetlands with databases, derived from the interpretation of photos and satellite images, such as the European database Corine Land cover, which allows quantifying and characterizing for each place the characteristic wetland types. Scientific studies have shown limitations when using high spatial resolution images (SPOT, Landsat, ASTER) for the identification and characterization of small wetlands (1 hectare). To address this limitation, it is important to note that these wetlands generally represent spatially complex features. Indeed, the use of very high spatial resolution images (>3m) is necessary to map small and large areas. However, with the recent evolution of artificial intelligence (AI) and deep learning methods for satellite image processing have shown a much better performance compared to traditional processing based only on pixel structures. Our research work is also based on spectral and textural analysis on THR images (Spot and IRC orthoimage) using two object-oriented approaches, the nearest neighbour approach (k-NN) and the Super Vector Machine approach (SVM). The k-NN approach gave good results for the delineation of wetlands (wet marshes and moors, ponds, artificial wetlands water body edges, ponds, mountain wetlands, river edges and brackish marshes) with a kappa index higher than 85%.Keywords: land development, GIS, sand dunes, segmentation, remote sensing
Procedia PDF Downloads 721878 Dynamics of the Coupled Fitzhugh-Rinzel Neurons
Authors: Sanjeev Kumar Sharma, Arnab Mondal, Ranjit Kumar Upadhyay
Abstract:
Excitable cells often produce different oscillatory activities that help us to understand the transmitting and processing of signals in the neural system. We consider a FitzHugh-Rinzel (FH-R) model and studied the different dynamics of the model by considering the parameter c as the predominant parameter. The model exhibits different types of neuronal responses such as regular spiking, mixed-mode bursting oscillations (MMBOs), elliptic bursting, etc. Based on the bifurcation diagram, we consider the three regimes (MMBOs, elliptic bursting, and quiescent state). An analytical treatment for the occurrence of the supercritical Hopf bifurcation is studied. Further, we extend our study to a network of a hundred neurons by considering the bi-directional synaptic coupling between them. In this article, we investigate the alternation of spiking propagation and bursting phenomena of an uncoupled and coupled FH-R neurons. We explore that the complete graph of heterogenous desynchronized neurons can exhibit different types of bursting oscillations for certain coupling strength. For higher coupling strength, all the neurons in the network show complete synchronization.Keywords: excitable neuron model, spiking-bursting, stability and bifurcation, synchronization networks
Procedia PDF Downloads 1271877 Feature Weighting Comparison Based on Clustering Centers in the Detection of Diabetic Retinopathy
Authors: Kemal Polat
Abstract:
In this paper, three feature weighting methods have been used to improve the classification performance of diabetic retinopathy (DR). To classify the diabetic retinopathy, features extracted from the output of several retinal image processing algorithms, such as image-level, lesion-specific and anatomical components, have been used and fed them into the classifier algorithms. The dataset used in this study has been taken from University of California, Irvine (UCI) machine learning repository. Feature weighting methods including the fuzzy c-means clustering based feature weighting, subtractive clustering based feature weighting, and Gaussian mixture clustering based feature weighting, have been used and compered with each other in the classification of DR. After feature weighting, five different classifier algorithms comprising multi-layer perceptron (MLP), k- nearest neighbor (k-NN), decision tree, support vector machine (SVM), and Naïve Bayes have been used. The hybrid method based on combination of subtractive clustering based feature weighting and decision tree classifier has been obtained the classification accuracy of 100% in the screening of DR. These results have demonstrated that the proposed hybrid scheme is very promising in the medical data set classification.Keywords: machine learning, data weighting, classification, data mining
Procedia PDF Downloads 325