Search results for: sound propagation models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8106

Search results for: sound propagation models

5646 Environmental Effects on Energy Consumption of Smart Grid Consumers

Authors: S. M. Ali, A. Salam Khan, A. U. Khan, M. Tariq, M. S. Hussain, B. A. Abbasi, I. Hussain, U. Farid

Abstract:

Environment and surrounding plays a pivotal rule in structuring life-style of the consumers. Living standards intern effect the energy consumption of the consumers. In smart grid paradigm, climate drifts, weather parameter and green environmental directly relates to the energy profiles of the various consumers, such as residential, commercial and industrial. Considering above factors helps policy in shaping utility load curves and optimal management of demand and supply. Thus, there is a pressing need to develop correlation models of load and weather parameters and critical analysis of the factors effecting energy profiles of smart grid consumers. In this paper, we elaborated various environment and weather parameter factors effecting demand of consumers. Moreover, we developed correlation models, such as Pearson, Spearman, and Kendall, an inter-relation between dependent (load) parameter and independent (weather) parameters. Furthermore, we validated our discussion with real-time data of Texas State. The numerical simulations proved the effective relation of climatic drifts with energy consumption of smart grid consumers.

Keywords: climatic drifts, correlation analysis, energy consumption, smart grid, weather parameter

Procedia PDF Downloads 375
5645 Fire Characteristic of Commercial Retardant Flame Polycarbonate under Different Oxygen Concentration: Ignition Time and Heat Blockage

Authors: Xuelin Zhang, Shouxiang Lu, Changhai Li

Abstract:

The commercial retardant flame polycarbonate samples as the main high speed train interior carriage material with different thicknesses were investigated in Fire Propagation Apparatus with different external heat fluxes under different oxygen concentration from 12% to 40% to study the fire characteristics and quantitatively analyze the ignition time, mass loss rate and heat blockage. The additives of commercial retardant flame polycarbonate were intumescent and maintained a steady height before ignition when heated. The results showed the transformed ignition time (1/t_ig)ⁿ increased linearly with external flux under different oxygen concentration after deducting the heat blockage due to pyrolysis products, the mass loss rate was taken on linearly with external heat fluxes and the slop of the fitting line for mass loss rate and external heat fluxes decreased with the enhanced oxygen concentration and the heat blockage independent on external heat fluxes rose with oxygen concentration increasing. The inquired data as the input of the fire simulation model was the most important to be used to evaluate the fire risk of commercial retardant flame polycarbonate.

Keywords: ignition time, mass loss rate, heat blockage, fire characteristic

Procedia PDF Downloads 282
5644 Characterising Stable Model by Extended Labelled Dependency Graph

Authors: Asraful Islam

Abstract:

Extended dependency graph (EDG) is a state-of-the-art isomorphic graph to represent normal logic programs (NLPs) that can characterize the consistency of NLPs by graph analysis. To construct the vertices and arcs of an EDG, additional renaming atoms and rules besides those the given program provides are used, resulting in higher space complexity compared to the corresponding traditional dependency graph (TDG). In this article, we propose an extended labeled dependency graph (ELDG) to represent an NLP that shares an equal number of nodes and arcs with TDG and prove that it is isomorphic to the domain program. The number of nodes and arcs used in the underlying dependency graphs are formulated to compare the space complexity. Results show that ELDG uses less memory to store nodes, arcs, and cycles compared to EDG. To exhibit the desirability of ELDG, firstly, the stable models of the kernel form of NLP are characterized by the admissible coloring of ELDG; secondly, a relation of the stable models of a kernel program with the handles of the minimal, odd cycles appearing in the corresponding ELDG has been established; thirdly, to our best knowledge, for the first time an inverse transformation from a dependency graph to the representing NLP w.r.t. ELDG has been defined that enables transferring analytical results from the graph to the program straightforwardly.

Keywords: normal logic program, isomorphism of graph, extended labelled dependency graph, inverse graph transforma-tion, graph colouring

Procedia PDF Downloads 212
5643 Studying the Impact of Soil Characteristics in Displacement of Retaining Walls Using Finite Element

Authors: Mojtaba Ahmadabadi, Akbar Masoudi, Morteza Rezai

Abstract:

In this paper, using the finite element method, the effect of soil and wall characteristics was investigated. Thirty and two different models were studied by different parameters. These studies could calculate displacement at any height of the wall for frictional-cohesive soils. The main purpose of this research is to determine the most effective soil characteristics in reducing the wall displacement. Comparing different models showed that the overall increase in internal friction angle, angle of friction between soil and wall and modulus of elasticity reduce the replacement of the wall. In addition, increase in special weight of soil will increase the wall displacement. Based on results, it can be said that all wall displacements were overturning and in the backfill, soil was bulging. Results show that the highest impact is seen in reducing wall displacement, internal friction angle, and the angle friction between soil and wall. One of the advantages of this study is taking into account all the parameters of the soil and walls replacement distribution in wall and backfill soil. In this paper, using the finite element method and considering all parameters of the soil, we investigated the impact of soil parameter in wall displacement. The aim of this study is to provide the best conditions in reducing the wall displacement and displacement wall and soil distribution.

Keywords: retaining wall, fem, soil and wall interaction, angle of internal friction of the soil, wall displacement

Procedia PDF Downloads 387
5642 Predictive Analysis of the Stock Price Market Trends with Deep Learning

Authors: Suraj Mehrotra

Abstract:

The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.

Keywords: machine learning, testing set, artificial intelligence, stock analysis

Procedia PDF Downloads 95
5641 Creating Energy Sustainability in an Enterprise

Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala

Abstract:

As we enter the new era of Artificial Intelligence (AI) and Cloud Computing, we mostly rely on the Machine and Natural Language Processing capabilities of AI, and Energy Efficient Hardware and Software Devices in almost every industry sector. In these industry sectors, much emphasis is on developing new and innovative methods for producing and conserving energy and sustaining the depletion of natural resources. The core pillars of sustainability are economic, environmental, and social, which is also informally referred to as the 3 P's (People, Planet and Profits). The 3 P's play a vital role in creating a core Sustainability Model in the Enterprise. Natural resources are continually being depleted, so there is more focus and growing demand for renewable energy. With this growing demand, there is also a growing concern in many industries on how to reduce carbon emissions and conserve natural resources while adopting sustainability in corporate business models and policies. In our paper, we would like to discuss the driving forces such as Climate changes, Natural Disasters, Pandemic, Disruptive Technologies, Corporate Policies, Scaled Business Models and Emerging social media and AI platforms that influence the 3 main pillars of Sustainability (3P’s). Through this paper, we would like to bring an overall perspective on enterprise strategies and the primary focus on bringing cultural shifts in adapting energy-efficient operational models. Overall, many industries across the globe are incorporating core sustainability principles such as reducing energy costs, reducing greenhouse gas (GHG) emissions, reducing waste and increasing recycling, adopting advanced monitoring and metering infrastructure, reducing server footprint and compute resources (Shared IT services, Cloud computing, and Application Modernization) with the vision for a sustainable environment.

Keywords: climate change, pandemic, disruptive technology, government policies, business model, machine learning and natural language processing, AI, social media platform, cloud computing, advanced monitoring, metering infrastructure

Procedia PDF Downloads 111
5640 End-to-End Spanish-English Sequence Learning Translation Model

Authors: Vidhu Mitha Goutham, Ruma Mukherjee

Abstract:

The low availability of well-trained, unlimited, dynamic-access models for specific languages makes it hard for corporate users to adopt quick translation techniques and incorporate them into product solutions. As translation tasks increasingly require a dynamic sequence learning curve; stable, cost-free opensource models are scarce. We survey and compare current translation techniques and propose a modified sequence to sequence model repurposed with attention techniques. Sequence learning using an encoder-decoder model is now paving the path for higher precision levels in translation. Using a Convolutional Neural Network (CNN) encoder and a Recurrent Neural Network (RNN) decoder background, we use Fairseq tools to produce an end-to-end bilingually trained Spanish-English machine translation model including source language detection. We acquire competitive results using a duo-lingo-corpus trained model to provide for prospective, ready-made plug-in use for compound sentences and document translations. Our model serves a decent system for large, organizational data translation needs. While acknowledging its shortcomings and future scope, it also identifies itself as a well-optimized deep neural network model and solution.

Keywords: attention, encoder-decoder, Fairseq, Seq2Seq, Spanish, translation

Procedia PDF Downloads 175
5639 Corporate Governance of State-Owned Enterprises: A Comparative Analysis

Authors: Adeyemi Adebayo, Barry Ackers

Abstract:

This paper comparatively analyses the corporate governance of SOEs in South Africa and Singapore in the context of the World Bank’s framework for corporate governance of SOEs. This framework ensured that the analysis holistically covered key aspects of corporate governance of SOEs in these states. In order to ground our understanding of the paths taken by SOEs in the states, the paper presents the evolution and reforms of SOEs in the states before analyzing key aspects of their corporate governance. The analysis shows that even though SOEs in South Africa and Singapore are comparable in a number of ways, there are notable differences. In this context, this paper finds that the main difference between corporate governance of SOEs in South Africa and Singapore is their organizing model. Further, the analysis, among other findings, shows that SOEs Boards in Singapore are better remunerated. Further finding reveals that, even though some board members are politically connected, Singaporean SOEs boards are better constituted based on skills and experience compared to SOEs boards in South Africa. Overall, the analysis opens up new debates and as such concludes by providing avenues for further research.

Keywords: corporate governance, comparative corporate governance, corporate governance framework, government business enterprises, government linked companies, organizing models, ownership models, state-owned companies, state-owned enterprises

Procedia PDF Downloads 219
5638 A Vertical-Axis Unidirectional Rotor with Nested Blades for Wave Energy Conversion

Authors: Yingchen Yang

Abstract:

In the present work, development of a new vertical-axis unidirectional wave rotor is reported. The wave rotor is a key component of a wave energy converter (WEC), which harvests energy from ocean waves. Differing from the huge majority of WEC designs that perform reciprocating motions (heaving up and down, swaying back and forth, etc.), our wave rotor performs unidirectional rotation about a vertical axis when directly exposed in waves. The unidirectional feature of the rotor makes the rotor respond well in a wide range of the wave frequency. The vertical axis arrangement of the rotor makes the rotor insensitive to the wave propagation direction. The rotor employs blades with a cross-section in an airfoil shape and a span curled into a semi-oval shape. Two sets of blades, with one nested inside the other, constitute the rotor. In waves, water particles perform an omnidirectional motion that constantly changes in both spatial and temporal domains. The blade nesting permits a compact rotor configuration that ‘sees’ a relatively uniform local flow in the spatial domain. The rotor was experimentally tested in simulated waves in a wave flume under various conditions. The testing results show a promising unidirectional rotor that is capable of extracting energy from waves at a capture width ratio of 0.08 to 0.15, depending on detailed wave conditions.

Keywords: unidirectional, vertical axis, wave energy converter, wave rotor

Procedia PDF Downloads 236
5637 Evaluating Radiative Feedback Mechanisms in Coastal West Africa Using Regional Climate Models

Authors: Akinnubi Rufus Temidayo

Abstract:

Coastal West Africa is highly sensitive to climate variability, driven by complex ocean-atmosphere interactions that shape temperature, precipitation, and extreme weather. Radiative feedback mechanisms—such as water vapor feedback, cloud-radiation interactions, and surface albedo—play a critical role in modulating these patterns. Yet, limited research addresses these feedbacks in climate models specific to West Africa’s coastal zones, creating challenges for accurate climate projections and adaptive planning. This study aims to evaluate the influence of radiative feedbacks on the coastal climate of West Africa by quantifying the effects of water vapor, cloud cover, and sea surface temperature (SST) on the region’s radiative balance. The study uses a regional climate model (RCM) to simulate feedbacks over a 20-year period (2005-2025) with high-resolution data from CORDEX and satellite observations. Key mechanisms investigated include (1) Water Vapor Feedback—the amplifying effect of humidity on warming, (2) Cloud-Radiation Interactions—the impact of cloud cover on radiation balance, especially during the West African Monsoon, and (3) Surface Albedo and Land-Use Changes—effects of urbanization and vegetation on the radiation budget. Preliminary results indicate that radiative feedbacks strongly influence seasonal climate variability in coastal West Africa. Water vapor feedback amplifies dry-season warming, cloud-radiation interactions moderate surface temperatures during monsoon seasons, and SST variations in the Atlantic affect the frequency and intensity of extreme rainfall events. The findings suggest that incorporating these feedbacks into climate planning can strengthen resilience to climate impacts in West African coastal communities. Further research should refine regional models to capture anthropogenic influences like greenhouse gas emissions, guiding sustainable urban and resource planning to mitigate climate risks.

Keywords: west africa, radiative, climate, resilence, anthropogenic

Procedia PDF Downloads 9
5636 AI and the Future of Misinformation: Opportunities and Challenges

Authors: Noor Azwa Azreen Binti Abd. Aziz, Muhamad Zaim Bin Mohd Rozi

Abstract:

Moving towards the 4th Industrial Revolution, artificial intelligence (AI) is now more popular than ever. This subject is gaining significance every day and is continually expanding, often merging with other fields. Instead of merely being passive observers, there are benefits to understanding modern technology by delving into its inner workings. However, in a world teeming with digital information, the impact of AI on the spread of disinformation has garnered significant attention. The dissemination of inaccurate or misleading information is referred to as misinformation, posing a serious threat to democratic society, public debate, and individual decision-making. This article delves deep into the connection between AI and the dissemination of false information, exploring its potential, risks, and ethical issues as AI technology advances. The rise of AI has ushered in a new era in the dissemination of misinformation as AI-driven technologies are increasingly responsible for curating, recommending, and amplifying information on online platforms. While AI holds the potential to enhance the detection and mitigation of misinformation through natural language processing and machine learning, it also raises concerns about the amplification and propagation of false information. AI-powered deepfake technology, for instance, can generate hyper-realistic videos and audio recordings, making it increasingly challenging to discern fact from fiction.

Keywords: artificial intelligence, digital information, disinformation, ethical issues, misinformation

Procedia PDF Downloads 91
5635 Error Amount in Viscoelasticity Analysis Depending on Time Step Size and Method used in ANSYS

Authors: A. Fettahoglu

Abstract:

Theory of viscoelasticity is used by many researchers to represent behavior of many materials such as pavements on roads or bridges. Several researches used analytical methods and rheology to predict the material behaviors of simple models. Today, more complex engineering structures are analyzed using Finite Element Method, in which material behavior is embedded by means of three dimensional viscoelastic material laws. As a result, structures of unordinary geometry and domain like pavements of bridges can be analyzed by means of Finite Element Method and three dimensional viscoelastic equations. In the scope of this study, rheological models embedded in ANSYS, namely, generalized Maxwell elements and Prony series, which are two methods used by ANSYS to represent viscoelastic material behavior, are presented explicitly. Subsequently, a practical problem, which has an analytical solution given in literature, is used to verify the applicability of viscoelasticity tool embedded in ANSYS. Finally, amount of error in the results of ANSYS is compared with the analytical results to indicate the influence of used method and time step size.

Keywords: generalized Maxwell model, finite element method, prony series, time step size, viscoelasticity

Procedia PDF Downloads 369
5634 Failure Analysis and Verification Using an Integrated Method for Automotive Electric/Electronic Systems

Authors: Lei Chen, Jian Jiao, Tingdi Zhao

Abstract:

Failures of automotive electric/electronic systems, which are universally considered to be safety-critical and software-intensive, may cause catastrophic accidents. Analysis and verification of failures in these kinds of systems is a big challenge with increasing system complexity. Model-checking is often employed to allow formal verification by ensuring that the system model conforms to specified safety properties. The system-level effects of failures are established, and the effects on system behavior are observed through the formal verification. A hazard analysis technique, called Systems-Theoretic Process Analysis, is capable of identifying design flaws which may cause potential failure hazardous, including software and system design errors and unsafe interactions among multiple system components. This paper provides a concept on how to use model-checking integrated with Systems-Theoretic Process Analysis to perform failure analysis and verification of automotive electric/electronic systems. As a result, safety requirements are optimized, and failure propagation paths are found. Finally, an automotive electric/electronic system case study is used to verify the effectiveness and practicability of the method.

Keywords: failure analysis and verification, model checking, system-theoretic process analysis, automotive electric/electronic system

Procedia PDF Downloads 120
5633 Virtual Modelling of Turbulent Fibre Flow in a Low Consistency Refiner for a Sustainable and Energy Efficient Process

Authors: Simon Ingelsten, Anton Lundberg, Vijay Shankar, Lars-Olof Landström, Örjan Johansson

Abstract:

The flow in a low consistency disc refiner is simulated with the aim of identifying flow structures possibly being of importance for a future study to optimise the energy efficiency in refining processes. A simplified flow geometry is used, where a single groove of a refiner disc is modelled. Two different fibre models are used to simulate turbulent fibre suspension flow in the groove. The first model is a Bingham viscoplastic fluid model where the fibre suspension is treated as a non-Newtonian fluid with a yield stress. The second model is a new model proposed in a recent study where the suspended fibres effect on flow is accounted for through a modelled orientation distribution function (ODF). Both models yielded similar results with small differences. Certain flow characteristics that were expected and that was found in the literature were identified. Some of these flow characteristics may be of importance in a future process to optimise the refiner geometry to increase the energy efficiency. Further study and a more detailed flow model is; however, needed in order for the simulations to yield results valid for quantitative use in such an optimisation study. An outline of the next steps in such a study is proposed.

Keywords: disc refiner, fibre flow, sustainability, turbulence modelling

Procedia PDF Downloads 406
5632 Shedding Light on the Black Box: Explaining Deep Neural Network Prediction of Clinical Outcome

Authors: Yijun Shao, Yan Cheng, Rashmee U. Shah, Charlene R. Weir, Bruce E. Bray, Qing Zeng-Treitler

Abstract:

Deep neural network (DNN) models are being explored in the clinical domain, following the recent success in other domains such as image recognition. For clinical adoption, outcome prediction models require explanation, but due to the multiple non-linear inner transformations, DNN models are viewed by many as a black box. In this study, we developed a deep neural network model for predicting 1-year mortality of patients who underwent major cardio vascular procedures (MCVPs), using temporal image representation of past medical history as input. The dataset was obtained from the electronic medical data warehouse administered by Veteran Affairs Information and Computing Infrastructure (VINCI). We identified 21,355 veterans who had their first MCVP in 2014. Features for prediction included demographics, diagnoses, procedures, medication orders, hospitalizations, and frailty measures extracted from clinical notes. Temporal variables were created based on the patient history data in the 2-year window prior to the index MCVP. A temporal image was created based on these variables for each individual patient. To generate the explanation for the DNN model, we defined a new concept called impact score, based on the presence/value of clinical conditions’ impact on the predicted outcome. Like (log) odds ratio reported by the logistic regression (LR) model, impact scores are continuous variables intended to shed light on the black box model. For comparison, a logistic regression model was fitted on the same dataset. In our cohort, about 6.8% of patients died within one year. The prediction of the DNN model achieved an area under the curve (AUC) of 78.5% while the LR model achieved an AUC of 74.6%. A strong but not perfect correlation was found between the aggregated impact scores and the log odds ratios (Spearman’s rho = 0.74), which helped validate our explanation.

Keywords: deep neural network, temporal data, prediction, frailty, logistic regression model

Procedia PDF Downloads 153
5631 How Unicode Glyphs Revolutionized the Way We Communicate

Authors: Levi Corallo

Abstract:

Typed language made by humans on computers and cell phones has made a significant distinction from previous modes of written language exchanges. While acronyms remain one of the most predominant markings of typed language, another and perhaps more recent revolution in the way humans communicate has been with the use of symbols or glyphs, primarily Emojis—globally introduced on the iPhone keyboard by Apple in 2008. This paper seeks to analyze the use of symbols in typed communication from both a linguistic and machine learning perspective. The Unicode system will be explored and methods of encoding will be juxtaposed with the current machine and human perception. Topics in how typed symbol usage exists in conversation will be explored as well as topics across current research methods dealing with Emojis like sentiment analysis, predictive text models, and so on. This study proposes that sequential analysis is a significant feature for analyzing unicode characters in a corpus with machine learning. Current models that are trying to learn or translate the meaning of Emojis should be starting to learn using bi- and tri-grams of Emoji, as well as observing the relationship between combinations of different Emoji in tandem. The sociolinguistics of an entire new vernacular of language referred to here as ‘typed language’ will also be delineated across my analysis with unicode glyphs from both a semantic and technical perspective.

Keywords: unicode, text symbols, emojis, glyphs, communication

Procedia PDF Downloads 194
5630 Qsar Studies of Certain Novel Heterocycles Derived From bis-1, 2, 4 Triazoles as Anti-Tumor Agents

Authors: Madhusudan Purohit, Stephen Philip, Bharathkumar Inturi

Abstract:

In this paper we report the quantitative structure activity relationship of novel bis-triazole derivatives for predicting the activity profile. The full model encompassed a dataset of 46 Bis- triazoles. Tripos Sybyl X 2.0 program was used to conduct CoMSIA QSAR modeling. The Partial Least-Squares (PLS) analysis method was used to conduct statistical analysis and to derive a QSAR model based on the field values of CoMSIA descriptor. The compounds were divided into test and training set. The compounds were evaluated by various CoMSIA parameters to predict the best QSAR model. An optimum numbers of components were first determined separately by cross-validation regression for CoMSIA model, which were then applied in the final analysis. A series of parameters were used for the study and the best fit model was obtained using donor, partition coefficient and steric parameters. The CoMSIA models demonstrated good statistical results with regression coefficient (r2) and the cross-validated coefficient (q2) of 0.575 and 0.830 respectively. The standard error for the predicted model was 0.16322. In the CoMSIA model, the steric descriptors make a marginally larger contribution than the electrostatic descriptors. The finding that the steric descriptor is the largest contributor for the CoMSIA QSAR models is consistent with the observation that more than half of the binding site area is occupied by steric regions.

Keywords: 3D QSAR, CoMSIA, triazoles, novel heterocycles

Procedia PDF Downloads 444
5629 Excitation Modeling for Hidden Markov Model-Based Speech Synthesis Based on Wavelet Analysis

Authors: M. Kiran Reddy, K. Sreenivasa Rao

Abstract:

The conventional Hidden Markov Model (HMM)-based speech synthesis system (HTS) uses only a pulse excitation model, which significantly differs from natural excitation signal. Hence, buzziness can be perceived in the speech generated using HTS. This paper proposes an efficient excitation modeling method that can significantly reduce the buzziness, and improve the quality of HMM-based speech synthesis. The proposed approach models the pitch-synchronous residual frames extracted from the residual excitation signal. Each pitch synchronous residual frame is parameterized using 30 wavelet coefficients. These 30 wavelet coefficients are found to accurately capture the perceptually important information present in the residual waveform. In synthesis phase, the residual frames are reconstructed from the generated wavelet coefficients and are pitch-synchronously overlap-added to generate the excitation signal. The proposed excitation modeling method is integrated into HMM-based speech synthesis system. Evaluation results indicate that the speech synthesized by the proposed excitation model is significantly better than the speech generated using state-of-the-art excitation modeling methods.

Keywords: excitation modeling, hidden Markov models, pitch-synchronous frames, speech synthesis, wavelet coefficients

Procedia PDF Downloads 248
5628 Nonreciprocal Optical Effects in Plasmonic Nanoparticle Aggregates

Authors: Ward Brullot, Thierry Verbiest

Abstract:

Nonreciprocal optical effects, such as Faraday rotation or magnetic circular dichroism, are very useful both for fundamental studies as for applications such as magnetic field sensors or optical isolators. In this study, we developed layer-by-layer deposited 20nm thick plasmonic nanoparticle aggregates consisting of gold, silver and magnetite nanoparticles that show broadband nonreciprocal asymmetric transmission. As such, the optical transmittance, or absorbance, depends on the direction of light propagation in the material, which means that looking from one direction or the other, more or less light passes through the sample. Theoretical analysis showed that strong electric quadrupole fields, which are electric field gradients, occur in the aggregates and that these quadrupole fields are responsible for the observed asymmetric transmission and the nonreciprocity of the effect. Apart from nonreciprocal asymmetric transmission, also other effects such as, but not limited to, optical rotation, circular dichroism or nonlinear optical responses were measured in the plasmonic nanoparticle aggregates and the influences of the intense electric quadrupole fields determined. In conclusion, the presence of strong electric quadrupole fields make the developed plasmonic nanoparticle aggregates ideal candidates for the study and application of various nonreciprocal optical effects.

Keywords: asymmetric transmission, electric quadrupoles, nanoparticle aggregates, nonreciprocity

Procedia PDF Downloads 424
5627 Naked Machismo: Uncovered Masculinity in an Israeli Home Design Campaign

Authors: Gilad Padva, Sigal Barak Brandes

Abstract:

This research centers on an unexpected Israeli advertising campaign for Elemento, a local furniture company, which eroticizes male nudity. The discussed campaign includes a series of printed ads that depict naked male models in effeminate positions. This campaign included a series of ads published in Haaretz, a small-scaled yet highly prestigious daily newspaper which is typically read by urban middle-upper-class left-winged Israelis. Apparently, this campaign embodies an alternative masculinity that challenges the prevalent machismo in Israeli society and advertising. Although some of the ads focus on young men in effeminate positions, they never expose their genitals and anuses, and their bodies are never permeable. The 2010s Elemento male models are seemingly contrasted to conventional representation of manhood in contemporary mainstream advertising. They display a somewhat inactive, passive and self-indulgent masculinity which involves 'conspicuous leisure'. In the process of commodity fetishism, the advertised furniture are emptied of the original meaning of their production, and then filled with new meanings in ways that both mystify the product and turn it into a fetish object. Yet, our research critically reconsiders this sensational campaign as sophisticated patriarchal parody that does not subvert but rather reconfirms and even fetishizes patriarchal premises; it parodizes effeminacy rather than the prevalent (Israeli) machismo. Following Pierre Bourdieu's politics of cultural taste, our research reconsiders and criticizes the male models' domesticated masculinity in a fantasized and cosmopolitan hedonistic habitus. Notwithstanding, we suggest that the Elemento campaign, despite its conformity, does question some Israeli and global axioms about gender roles, corporeal ideologies, idealized bodies, and domesticated phalluses and anuses. Although the naked truth is uncovered by this campaign, it does erect a vibrant discussion of contemporary masculinities and their exploitation in current mass consumption.

Keywords: male body, campaign, advertising, gender studies, men's studies, Israeli culture, masculinity, parody, effeminacy

Procedia PDF Downloads 211
5626 Logical-Probabilistic Modeling of the Reliability of Complex Systems

Authors: Sergo Tsiramua, Sulkhan Sulkhanishvili, Elisabed Asabashvili, Lazare Kvirtia

Abstract:

The paper presents logical-probabilistic methods, models and algorithms for reliability assessment of complex systems, based on which a web application for structural analysis and reliability assessment of systems was created. The reliability assessment process included the following stages, which were reflected in the application: 1) Construction of a graphical scheme of the structural reliability of the system; 2) Transformation of the graphic scheme into a logical representation and modeling of the shortest ways of successful functioning of the system; 3) Description of system operability condition with logical function in the form of disjunctive normal form (DNF); 4) Transformation of DNF into orthogonal disjunction normal form (ODNF) using the orthogonalization algorithm; 5) Replacing logical elements with probabilistic elements in ODNF, obtaining a reliability estimation polynomial and quantifying reliability; 6) Calculation of weights of elements. Using the logical-probabilistic methods, models and algorithms discussed in the paper, a special software was created, by means of which a quantitative assessment of the reliability of systems of a complex structure is produced. As a result, structural analysis of systems, research and designing of optimal structure systems are carried out.

Keywords: Complex systems, logical-probabilistic methods, orthogonalization algorithm, reliability, weight of element

Procedia PDF Downloads 73
5625 Large-Eddy Simulations for Flow Control

Authors: Reda Mankbadi

Abstract:

There are several technologically-important flow situations in which there is a need to control the outcome of the fluid flow. This could include flow separation, drag, noise, as well as particulate separations, to list only a few. One possible approach is the passive control, in which the design geometry is changed. An alternative approach is the Active Flow Control (AFC) technology in which an actuator is imbedded in the flow field to change the outcome. Examples of AFC are pulsed jets, synthetic jets, plasma actuators, heating and cooling, Etc. In this work will present an overview of the development of this field. Some examples will include: Airfoil Noise Suppression: LES is used to simulate the effect of the synthetic jet actuator on controlling the far field sound of a transitional airfoil. The results show considerable suppression of the noise if the synthetic jet is operated at frequencies. Mixing Enhancement and suppression: Results will be presented to show that imposing acoustic excitations at the nozzle exit can lead to enhancement or reduction of the jet plume mixing. In a vertical takeoff of Aircraft or in Space Launch, we will present results on the effects of water injection on reducing noise, and on protect the structure and pay load from fatigue damage. Other applications will include airfoil-gust interaction and propulsion systems optimizations.

Keywords: aerodynamics, simulations, aeroacoustics, active flow control (AFC), Large-Eddy Simulations (LES)

Procedia PDF Downloads 282
5624 Development of an Information System Based on the Establishment and Evaluation of Performance Rating by Application Part/Type of Remodeling Element Technologies

Authors: Sungwon Jung

Abstract:

The percentage of 20 years or older apartment houses in South Korea is approximately 20% (1.55 million houses), and the explosive increase of aged houses is expected around the first planned new towns. Accordingly, we should prepare for social issues such as difficulty of housing lease and degradation of housing performance. The improvement of performance of aged houses is essential for achieving the national energy and carbon reduction goals, and we should develop techniques to respond to the changing construction environment. Furthermore, we should develop a performance evaluation system that is appropriate for the demands of residents such as the improvement of remodeling floor plan by performance improvement in line with the residence type of the housing vulnerable groups such as low-income group and elderly people living alone. For this purpose, remodeling techniques and business models optimized for the target complexes must be spread through the development of various business models. In addition, it is necessary to improve the remodeling business by improving the laws and systems related to the improvement of the residential performance and to prepare techniques to respond to the increasing business demands. In other words, performance improvement and evaluation and knowledge systems need to be researched as new issues related to remodeling that has not been addressed in the existing research.

Keywords: remodelling, performance evaluation, web-based system, big data

Procedia PDF Downloads 224
5623 Machines Hacking Humans: Performances Practices in Electronic Music during the 21st Century

Authors: Zimasa Siyasanga Gysman

Abstract:

This paper assesses the history of electronic music and its performance to illustrate that machines and technology have largely influenced how humans perform electronic music. The history of electronic music mainly focuses on the composition and production of electronic music with little to no attention paid to its performance by the majority of scholars in this field. Therefore, establishing a history of performance involves investigating what compositions of electronic music called for in the production of electronic music performance. This investigation into seminal works in the history of electronic music, therefore, illustrates the aesthetics of electronic music performance and the aesthetics established in the very beginnings of electronic music performance demonstrate the aesthetics of electronic music which are still prevalent today. The key aesthetics are the repurposing of technology and the hybridisation of technology. Performers take familiar technology (technology that society has become accustomed to using in daily life), not necessarily related to music or performance and use it as an instrument in their performances, such as a rotary dial telephone. Likewise, since the beginnings of electronic music, producers have always experimented with the latest technologies available to them in their compositions and performances. The spirit of performers of electronic music, therefore, revolves around repurposing familiar technologies and using them in new ways, whilst similarly experimenting with new technologies in their performances. This process of hybridisation plays a key role in the production and performance of electronic music in the twentieth century. Through various interviews with performers of electronic music, it is shown that these aesthetics are driving performance practices in the twenty-first century.

Keywords: body, hybridisation, performance, sound

Procedia PDF Downloads 161
5622 Intervention of Self-Limiting L1 Inner Speech during L2 Presentations: A Study of Bangla-English Bilinguals

Authors: Abdul Wahid

Abstract:

Inner speech, also known as verbal thinking, self-talk or private speech, is characterized by the subjective language experience in the absence of overt or audible speech. It is a psychological form of verbal activity which is being rehearsed without the articulation of any sound wave. In Psychology, self-limiting speech means the type of speech which contains information that inhibits the development of the self. People, in most cases, experience inner speech in their first language. It is very frequent in Bangladesh where the Bangla (L1) speaking students lose track of speech during their presentations in English (L2). This paper investigates into the long pauses (more than 0.4 seconds long) in English (L2) presentations by Bangla speaking students (18-21 year old) and finds the intervention of Bangla (L1) inner speech as one of its causes. The overt speeches of the presenters are placed on Audacity Audio Editing software where the length of pauses are measured in milliseconds. Varieties of inner speech questionnaire (VISQ) have been conducted randomly amongst the participants out of whom 20 were selected who have similar phenomenology of inner speech. They have been interviewed to describe the type and content of the voices that went on in their head during the long pauses. The qualitative interview data are then codified and converted into quantitative data. It was observed that in more than 80% cases students experience self-limiting inner speech/self-talk during their unwanted pauses in L2 presentations.

Keywords: Bangla-English Bilinguals, inner speech, L1 intervention in bilingualism, motor schema, pauses, phonological loop, phonological store, working memory

Procedia PDF Downloads 152
5621 Conceptualizing the Cyber Insecurity Risk in the Ethics of Automated Warfare

Authors: Otto Kakhidze, Hoda Alkhzaimi, Adam Ramey, Nasir Memon

Abstract:

This paper provides an alternative, cyber security based a conceptual framework for the ethics of automated warfare. The large body of work produced on fully or partially autonomous warfare systems tends to overlook malicious security factors as in the possibility of technical attacks on these systems when it comes to the moral and legal decision-making. The argument provides a risk-oriented justification to why technical malicious risks cannot be dismissed in legal, ethical and policy considerations when warfare models are being implemented and deployed. The assumptions of the paper are supported by providing a broader model that contains the perspective of technological vulnerabilities through the lenses of the Game Theory, Just War Theory as well as standard and non-standard defense ethics. The paper argues that a conventional risk-benefit analysis without considering ethical factors is insufficient for making legal and policy decisions on automated warfare. This approach will provide the substructure for security and defense experts as well as legal scholars, ethicists and decision theorists to work towards common justificatory grounds that will accommodate the technical security concerns that have been overlooked in the current legal and policy models.

Keywords: automated warfare, ethics of automation, inherent hijacking, security vulnerabilities, risk, uncertainty

Procedia PDF Downloads 357
5620 MhAGCN: Multi-Head Attention Graph Convolutional Network for Web Services Classification

Authors: Bing Li, Zhi Li, Yilong Yang

Abstract:

Web classification can promote the quality of service discovery and management in the service repository. It is widely used to locate developers desired services. Although traditional classification methods based on supervised learning models can achieve classification tasks, developers need to manually mark web services, and the quality of these tags may not be enough to establish an accurate classifier for service classification. With the doubling of the number of web services, the manual tagging method has become unrealistic. In recent years, the attention mechanism has made remarkable progress in the field of deep learning, and its huge potential has been fully demonstrated in various fields. This paper designs a multi-head attention graph convolutional network (MHAGCN) service classification method, which can assign different weights to the neighborhood nodes without complicated matrix operations or relying on understanding the entire graph structure. The framework combines the advantages of the attention mechanism and graph convolutional neural network. It can classify web services through automatic feature extraction. The comprehensive experimental results on a real dataset not only show the superior performance of the proposed model over the existing models but also demonstrate its potentially good interpretability for graph analysis.

Keywords: attention mechanism, graph convolutional network, interpretability, service classification, service discovery

Procedia PDF Downloads 135
5619 Forecast of Polyethylene Properties in the Gas Phase Polymerization Aided by Neural Network

Authors: Nasrin Bakhshizadeh, Ashkan Forootan

Abstract:

A major problem that affects the quality control of polymer in the industrial polymerization is the lack of suitable on-line measurement tools to evaluate the properties of the polymer such as melt and density indices. Controlling the polymerization in ordinary method is performed manually by taking samples, measuring the quality of polymer in the lab and registry of results. This method is highly time consuming and leads to producing large number of incompatible products. An online application for estimating melt index and density proposed in this study is a neural network based on the input-output data of the polyethylene production plant. Temperature, the level of reactors' bed, the intensity of ethylene mass flow, hydrogen and butene-1, the molar concentration of ethylene, hydrogen and butene-1 are used for the process to establish the neural model. The neural network is taught based on the actual operational data and back-propagation and Levenberg-Marquart techniques. The simulated results indicate that the neural network process model established with three layers (one hidden layer) for forecasting the density and the four layers for the melt index is able to successfully predict those quality properties.

Keywords: polyethylene, polymerization, density, melt index, neural network

Procedia PDF Downloads 144
5618 Impact of Organic Architecture in Building Design

Authors: Zainab Yahaya Suleiman

Abstract:

Physical fitness, as one of the most important keys to a healthy wellbeing, is the basis of dynamic and creative intellectual activity. As a result, the fitness world is expanding every day. It is believed that a fitness centre is a place of healing and also the natural environment is vital to speedy recovery. The aim of this paper is to propose and designs a suitable location for a fitness centre in Batagarawa metropolis. Batagarawa city is enriched with four tertiary institutions with diverse commerce and culture but lacks the facility of a well-equipped fitness centre. The proposed fitness centre intends to be an organically sound centre that will make use of principles of organic architecture to create a new pleasant environment between man and his environments. Organic architecture is the science of designing a building within pleasant natural resources and features surrounding the environment. It is regarded as visual poetry and reinterpretation of nature’s principles; as well as embodies a settlement of person, place, and materials. Using organic architecture, the design was interlaced with the dynamic, organic and monumental features surrounding the environment. The city has inadequate/no facility that is considered organic where one can keep fit in a friendly, conducive and adequate location. Thus, the need for establishing a fitness centre to cater for this need cannot be over-emphasised. Conclusively, a fitness centre will be an added advantage to this fast growing centre of learning.

Keywords: organic architecture, fitness center, environment, natural resources, natural features, building design

Procedia PDF Downloads 412
5617 Statistical Analysis with Prediction Models of User Satisfaction in Software Project Factors

Authors: Katawut Kaewbanjong

Abstract:

We analyzed a volume of data and found significant user satisfaction in software project factors. A statistical significance analysis (logistic regression) and collinearity analysis determined the significance factors from a group of 71 pre-defined factors from 191 software projects in ISBSG Release 12. The eight prediction models used for testing the prediction potential of these factors were Neural network, k-NN, Naïve Bayes, Random forest, Decision tree, Gradient boosted tree, linear regression and logistic regression prediction model. Fifteen pre-defined factors were truly significant in predicting user satisfaction, and they provided 82.71% prediction accuracy when used with a neural network prediction model. These factors were client-server, personnel changes, total defects delivered, project inactive time, industry sector, application type, development type, how methodology was acquired, development techniques, decision making process, intended market, size estimate approach, size estimate method, cost recording method, and effort estimate method. These findings may benefit software development managers considerably.

Keywords: prediction model, statistical analysis, software project, user satisfaction factor

Procedia PDF Downloads 124