Search results for: microbial electrolysis cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4538

Search results for: microbial electrolysis cell

2078 Microbiome Role in Tumor Environment

Authors: Chro Kavian

Abstract:

The studies conducted show that cancer is a disease caused by populations of microbes, a notion gaining traction as the interaction between the human microbiome and the tumor microenvironment (TME) increasingly shows how environment and microbes dictate the progress and treatment of neoplastic diseases. A person’s human microbiome is defined as a collection of bacteria, fungi, viruses, and other microorganisms whose structure and composition influence biological processes like immune system modulation and nutrient metabolism, which, in turn, affect how susceptible a person is to neoplastic diseases, and response to different therapies. Recent reports demonstrated the influence specific microbiome bacterial populations have on the TME, thereby altering tumoral behaviors and the TME’s contributing factors that impact patients' lives. In addition, gut microbes and their SCFA products are important determinants of the inflammatory landscape of tumors and augment anti-tumor immunity, which can influence immunotherapy outcomes. Studies have also found that dysbiosis, or microbial imbalance, correlates with biological processes such as cancer progression, metastasis, and therapy resistance, leading scientists to explore the use of microbiome deficiencies as adjunctive approaches to chemotherapy and other, more traditional treatments. Nonetheless, mental health practitioners struggling to comprehend the existent gap between cancer patients with pronounced resolutive capabilities and the profound clinical impact Microbiome-targeted cancer therapy has been proven to possess.

Keywords: microbiome, cancer, tumor, immune system

Procedia PDF Downloads 19
2077 Profile of Programmed Death Ligand-1 (PD-L1) Expression and PD-L1 Gene Amplification in Indonesian Colorectal Cancer Patients

Authors: Akterono Budiyati, Gita Kusumo, Teguh Putra, Fritzie Rexana, Antonius Kurniawan, Aru Sudoyo, Ahmad Utomo, Andi Utama

Abstract:

The presence of the programmed death ligand-1 (PD-L1) has been used in multiple clinical trials and approved as biomarker for selecting patients more likely to respond to immune checkpoint inhibitors. However, the expression of PD-L1 is regulated in different ways, which leads to a different significance of its presence. Positive PD-L1 within tumors may result from two mechanisms, induced PD-L1 expression by T-cell presence or genetic mechanism that lead to constitutive PD-L1 expression. Amplification of PD-L1 genes was found as one of genetic mechanism which causes an increase in PD-L1 expression. In case of colorectal cancer (CRC), targeting immune checkpoint inhibitor has been recommended for patients with microsatellite instable (MSI). Although the correlation between PD-L1 expression and MSI status has been widely studied, so far the precise mechanism of PD-L1 gene activation in CRC patients, particularly in MSI population have yet to be clarified. In this present study we have profiled 61 archived formalin fixed paraffin embedded CRC specimens of patients from Medistra Hospital, Jakarta admitted in 2010 - 2016. Immunohistochemistry was performed to measure expression of PD-L1 in tumor cells as well as MSI status using antibodies against PD-L1 and MMR (MLH1, MSH2, PMS2 and MSH6), respectively. PD-L1 expression was measured on tumor cells with cut off of 1% whereas loss of nuclear MMR protein expressions in tumor cells but not in normal or stromal cells indicated presence of MSI. Subset of PD-L1 positive patients was then assessed for copy number variations (CNVs) using single Tube TaqMan Copy Number Assays Gene CD247PD-L1. We also observed KRAS mutation to profile possible genetic mechanism leading to the presence or absence of PD-L1 expression. Analysis of 61 CRC patients revealed 15 patients (24%) expressed PD-L1 on their tumor cell membranes. The prevalence of surface membrane PD-L1 was significantly higher in patients with MSI (87%; 7/8) compared to patients with microsatellite stable (MSS) (15%; 8/53) (P=0.001). Although amplification of PD-L1 gene was not found among PD-L1 positive patients, low-level amplification of PD-L1 gene was commonly observed in MSS patients (75%; 6/8) than in MSI patients (43%; 3/7). Additionally, we found 26% of CRC patients harbored KRAS mutations (16/61), so far the distribution of KRAS status did not correlate with PD-L1 expression. Our data suggest genetic mechanism through amplification of PD-L1 seems not to be the mechanism underlying upregulation of PD-L1 expression in CRC patients. However, further studies are warranted to confirm the results.

Keywords: colorectal cancer, gene amplification, microsatellite instable, programmed death ligand-1

Procedia PDF Downloads 222
2076 Glucose Uptake Rate of Insulin-Resistant Human Liver Carcinoma Cells (IR/HepG2) by Flavonoids from Enicostema littorale via IR/IRS1/AKT Pathway

Authors: Priyanka Mokashi, Aparna Khanna, Nancy Pandita

Abstract:

Diabetes mellitus is a chronic metabolic disorder which will be the 7th leading cause of death by 2030. The current line of treatment for the diabetes mellitus is oral antidiabetic drugs (biguanides, sulfonylureas, meglitinides, thiazolidinediones and alpha-glycosidase inhibitors) and insulin therapy depending upon the type 1 or type 2 diabetes mellitus. But, these treatments have their disadvantages, ranging from the developing of resistance to the drugs and adverse effects caused by them. Alternative to these synthetic agents, natural products provides a new insight for the development of more efficient and safe drugs due to their therapeutic values. Enicostema littorale blume (A. Raynal) is a traditional Indian plant belongs to the Gentianaceae family. It is widely distributed in Asia, Africa, and South America. There are few reports on Swrtiamarin, major component of this plant for its antidiabetic activity. However, the antidiabetic activity of flavonoids from E. littorale and their mechanism of action have not yet been elucidated. Flavonoids have a positive relationship with disease prevention and can act on various molecular targets and regulate different signaling pathways in pancreatic β-cells, adipocytes, hepatocytes and skeletal myofibers. They may exert beneficial effects in diabetes by (i) improving hyperglycemia through regulation of glucose metabolism in hepatocytes; (ii) enhancing insulin secretion and reducing apoptosis and promoting proliferation of pancreatic β-cells; (iii) increasing glucose uptake in hepatocytes, skeletal muscle and white adipose tissue (iv) reducing insulin resistance, inflammation and oxidative stress. Therefore, we have isolated four flavonoid rich fractions, Fraction A (FA), Fraction B (FB), Fraction C (FC), Fraction D (FD) from crude alcoholic hot (AH) extract from E. littorale, identified by LC/MS. Total eight flavonoids were identified on the basis of fragmentation pattern. Flavonoid FA showed the presence of swertisin, isovitexin, and saponarin; FB showed genkwanin, quercetin, isovitexin, FC showed apigenin, swertisin, quercetin, 5-O-glucosylswertisin and 5-O-glucosylisoswertisin whereas FD showed the presence of swertisin. Further, these fractions were assessed for their antidiabetic activity on stimulating glucose uptake in insulin-resistant HepG2 cell line model (IR/HepG2). The results showed that FD containing C-glycoside Swertisin has significantly increased the glucose uptake rate of IR/HepG2 cells at the concentration of 10 µg/ml as compared to positive control Metformin (0.5mM) which was determined by glucose oxidase- peroxidase method. It has been reported that enhancement of glucose uptake of cells occurs due the translocation of Glut4 vesicles to cell membrane through IR/IRS1/AKT pathway. Therefore, we have studied expressions of three genes IRS1, AKT and Glut4 by real-time PCR to evaluate whether they follow the same pathway or not. It was seen that the glucose uptake rate has increased in FD treated IR/HepG2 cells due to the activation of insulin receptor substrate-1 (IRS1) followed by protein kinase B (AKT) through phosphoinositide 3-kinase (PI3K) leading to translocation of Glut 4 vesicles to cell membrane, thereby enhancing glucose uptake and insulin sensitivity of insulin resistant HepG2 cells. Hence, the up-regulation indicated the mechanism of action through which FD (Swertisin) acts as antidiabetic candidate in the treatment of type 2 diabetes mellitus.

Keywords: E. littorale, glucose transporter, glucose uptake rate, insulin resistance

Procedia PDF Downloads 307
2075 Synthesis of AgInS2–ZnS at Low Temperature with Tunable Photoluminescence for Photovoltaic Applications

Authors: Nitu Chhikaraa, S. B. Tyagia, Kiran Jainb, Mamta Kharkwala

Abstract:

The I–III–VI2 semiconductor Nanocrystals such as AgInS2 have great interest for various applications such as optical devices (solar cell and LED), cellular Imaging and bio tagging etc. we synthesized the phase and shape controlled chalcopyrite AgInS2 (AIS) colloidal nanoparticles by thermal decomposition of metal xanthate at low temperature in an organic solvent’s containing surfactant molecules. Here we are focusing on enhancements of photoluminescence of AgInS2 Nps by coating of ZnS at low temperature for application of optical devices. The size of core shell Nps was less than 50nm.by increasing the time and temperature the emission of the wavelength of the Zn coated AgInS2 Nps could be adjusted from visible region to IR the QY of the AgInS2 Nps could be increased by coating of ZnS from 20 to 80% which was reasonably good as compared to those of the previously reported. The synthesized NPs were characterized by PL, UV, XRD and TEM.

Keywords: PL, UV, XRD, TEM

Procedia PDF Downloads 376
2074 Structural and Morphological Study of Europium Doped ZnO

Authors: Abdelhak Nouri

Abstract:

Europium doped zinc oxide nanocolumns (ZnO:Eu) were deposited on indium tin oxide (ITO) substrate from an aqueous solution of 10⁻³M Zn(NO₃)₂ and 0.5M KNO₃ with different concentration of europium ions. The deposition was performed in a classical three-electrode electrochemical cell. The structural, morphology and optical properties have been characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM). The XRD results show high quality of crystallite with preferential orientation along c-axis. SEM images speculate ZnO: Eu has nanocolumnar form with hexagonal shape. The diameter of nanocolumns is around 230 nm. Furthermore, it was found that tail of crystallite, roughness, and band gap energy is highly influenced with increasing Eu ions concentration. The average grain size is about 102 nm to 125 nm.

Keywords: deterioration lattice, doping, nanostructures, Eu:ZnO

Procedia PDF Downloads 177
2073 Evaluation of Mito-Uncoupler Induced Hyper Metabolic and Aggressive Phenotype in Glioma Cells

Authors: Yogesh Rai, Saurabh Singh, Sanjay Pandey, Dhananjay K. Sah, B. G. Roy, B. S. Dwarakanath, Anant N. Bhatt

Abstract:

One of the most common signatures of highly malignant gliomas is their capacity to metabolize more glucose to lactic acid than normal brain tissues, even under normoxic conditions (Warburg effect), indicating that aerobic glycolysis is constitutively upregulated through stable genetic or epigenetic changes. However, oxidative phosphorylation (OxPhos) is also required to maintain the mitochondrial membrane potential for tumor cell survival. In the process of tumorigenesis, tumor cells during fastest growth rate exhibit both high glycolytic and high OxPhos. Therefore, metabolically reprogrammed cancer cells with combination of both aerobic glycolysis and altered OxPhos develop a robust metabolic phenotype, which confers a selective growth advantage. In our study, we grew the high glycolytic BMG-1 (glioma) cells with continuous exposure of mitochondrial uncoupler 2, 4, dinitro phenol (DNP) for 10 passages to obtain a phenotype of high glycolysis with enhanced altered OxPhos. We found that OxPhos modified BMG (OPMBMG) cells has similar growth rate and cell cycle distribution but high mitochondrial mass and functional enzymatic activity than parental cells. In in-vitro studies, OPMBMG cells showed enhanced invasion, proliferation and migration properties. Moreover, it also showed enhanced angiogenesis in matrigel plug assay. Xenografted tumors from OPMBMG cells showed reduced latent period, faster growth rate and nearly five folds reduction in the tumor take in nude mice compared to BMG-1 cells, suggesting that robust metabolic phenotype facilitates tumor formation and growth. OPMBMG cells which were found radio-resistant, showed enhanced radio-sensitization by 2-DG as compared to the parental BMG-1 cells. This study suggests that metabolic reprogramming in cancer cells enhances the potential of migration, invasion and proliferation. It also strengthens the cancer cells to escape the death processes, conferring resistance to therapeutic modalities. Our data also suggest that combining metabolic inhibitors like 2-DG with conventional therapeutic modalities can sensitize such metabolically aggressive cancer cells more than the therapies alone.

Keywords: 2-DG, BMG, DNP, OPM-BMG

Procedia PDF Downloads 226
2072 The Effect of Different Patterns of Upper, Lower and Whole Body Resistance Exercise Training on Systemic and Vascular Inflammatory Factors in Healthy Untrained Women

Authors: Leyla Sattarzadeh, Shahin Fathi Molk Kian, Maghsoud Peeri, Mohammadali Azarbaijani, Hasan Matin Homaee

Abstract:

Inflammation by various mechanisms may cause atherosclerosis. Systemic circulating inflammatory markers such as C-reactive protein (CRP), pro-inflammatory cytokines such as Interleukin-6 (IL-6), vascular inflammatory markers as adhesion molecules like Intracellular Adhesion Molecule-1 (ICAM-1) and Vascular Cell Adhesion Molecule-1 (VCAM-1) are the predictors of cardiovascular diseases. Regarding the conflicting results about the effect of different patterns of resistance exercise training on these inflammatory markers, present study aimed to examine the effect of different patterns of eight week resistance exercise training on CRP, IL-6, ICAM-1 and VCAM-1 levels in healthy untrained women. 56 healthy volunteered untrained female university students (aged: 21 ± 3 yr., Body Mass Index: 21.5 ± 3.5 kg/m²) were selected purposefully and divided into four groups. At the end of training protocol and after subject drop during the protocol, upper body exercise training (n=11), lower body (n=12) and whole body resistance exercise training group (n=11) completed the eight weeks of training period although the control group (n=7) did anything. Blood samples gathered pre and post-experimental period and CRP, IL-6, ICAM-1 and VCAM-1 levels were evaluated using special laboratory kits, then the difference of pre and post values of each indices analyzed using one-way analysis of variance (α < 0.05). The results of one way ANOVA for difference of pre and post values of CRP, ICAM-1 and VCAM-1 showed no significant changes due to the exercise training, but there were significant differences between groups about IL-6. Tukey post- hoc test indicated that there is significant difference between the differences of pre and post values of IL-6 between lower body exercise training group and control group, and eight weeks of lower body exercise training lead to significant changes in IL-6 values. There were no changes in anthropometric indices. The findings show that the different patterns of upper, lower and whole body exercise training by involving the different amounts of muscles altered the IL-6 values in lower body exercise training group probably because of engaging the bigger amount of muscles, but showed any significant changes about CRP, ICAM-1 and VCAM-1 probably due to intensity and duration of exercise or the lower levels of these markers at baseline of healthy people.

Keywords: resistance training, C-reactive protein, interleukin-6, intracellular adhesion molecule-1, vascular cell adhesion molecule-1

Procedia PDF Downloads 138
2071 Cardiotoxicity Associated with Radiation Therapy: The Role of Bone Marrow Mesenchymal Cells in Improvement of Heart Function

Authors: Isalira Peroba Ramos, Cherley Borba Vieira de Andrade, Grazielle Suhett, Camila Salata, Paulo Cesar Canary, Guilherme Visconde Brasil, Antonio Carlos Campos de Carvalho, Regina Coeli dos Santos Goldenberg

Abstract:

Background: The therapeutic options for patients with cancer now include increasingly complex combinations of medications, radiation therapy (RT), and surgical intervention. Many of these treatments have important potential adverse cardiac effects and are likely to have significant effects on patient outcomes. Cell therapy appears to be promising for the treatment of chronic and degenerative diseases, including cardiomyopathy induced by RT, as the current therapeutic options are insufficient. Aims: To evaluate the potential of bone marrow mesenchymal cells (BMMCs) in radioinduced cardiac damage Methods: Female Wistar rats, 3 months old (Ethics Committee 054/14), were divided into 2 groups, non-treated irradiated group (IR n=15) and irradiated and BMMC treated (IRT n=10). Echocardiography was performed to evaluate heart function. After euthanasia, 3 months post treatment; the left ventricle was removed and prepared for RT-qPCR (VEGF and Pro Collagen I) and histological (picrosirius) analysis. Results: In both groups, 45 days after irradiation, ejection fraction (EF) was in the normal range for these animals (> 70%). However, the BMMC treated group had EF (83.1%±2.6) while the non-treated IR group showed a significant reduction (76.1%±2.6) in relation to the treated group. In addition, we observed an increase in VEGF gene expression and a decrease in Pro Collagen I in IRT when compared to IR group. We also observed by histology that the collagen deposition was reduced in IRT (10.26%±0.83) when compared to IR group (25.29%±0.96). Conclusions: Treatment with BMMCs was able to prevent ejection fraction reduction and collagen deposition in irradiated animals. The increase of VEGF and the decrease of pro collagen I gene expression might explain, at least in part, the cell therapy benefits. All authors disclose no financial or personal relationships with individuals or organizations that could be perceived to bias their work. Sources of funding: FAPERJ, CAPES, CNPq, MCT.

Keywords: mesenchymal cells, radioation, cardiotoxicity, bone marrow

Procedia PDF Downloads 256
2070 Bioflocculation Using the Purified Wild Strain of P. aeruginosa Culture in Wastewater Treatment

Authors: Mohammad Hajjartabar, Tahereh Kermani Ranjbar

Abstract:

P. aeruginosa EF2 was isolated and identified from human infection sources before in our previous study. The present study was performed to determine the characteristics and activity role of bioflocculant produced by the bacterium in flocculation of the wastewater active sludge treatment. The bacterium was inoculated and then was grown in an orbital shaker at 250 rpm for 5 days at 35 °C under TSB and peptone water media. After incubation period, culture broths of the bacterial strain was collected and washed. The concentration of the bacteria was adjusted. For the extraction of the bacterial bioflocculant, culture was centrifuged at 6000 rpm for 20 min at 4 °C to remove bacterial cells. Supernatant was decanted and pellet containing bioflocculant was dried at 105 °C to a constant weight according to APHA, 2005. The chemical composition of the extracted bioflocculant from the bacterial sample was then analyzed. Wastewater active sludge sample obtained from aeration tank from one of wastewater treatment plants in Tehran, was first mixed thoroughly. After addition of bioflocculant, improvements in floc density were observed with an increase in bioflocculant. The results of this study strongly suggested that the extracted bioflucculant played a significant role in flocculation of the wastewater sample. The use of wild bacteria and nutrient regulation techniques instead of genetic manipulation opens wide investigation area in the future to improve wastewater treatment processes. Also this may put a new path in front of us to attain and improve the more effective bioflocculant using the purified microbial culture in wastewater treatment.

Keywords: wastewater treatment, P. aeruginosa, sludge treatment

Procedia PDF Downloads 156
2069 Retrospective Study of Bronchial Secretions Cultures Carried out in the Microbiology Department of General Hospital of Ioannina in 2017

Authors: S. Mantzoukis, M. Gerasimou, P. Christodoulou, N. Varsamis, G. Kolliopoulou, N. Zotos

Abstract:

Purpose: Patients in Intensive Care Units (ICU) are exposed to a different spectrum of microorganisms relative to the hospital. Due to the fact that the majority of these patients are intubated, bronchial secretions should be examined. Material and Method: Bronchial secretions should be taken with care so as not to be mixed with sputum or saliva. The bronchial secretions are placed in a sterile container and then inoculated into blood, Mac Conkey No2, Chocolate, Mueller Hinton, Chapman and Saboureaud agar. After this period, if any number of microbial colonies are detected, gram staining is performed and then the isolated organisms are identified by biochemical techniques in the automated Microscan system (Siemens) followed by a sensitivity test in the same system using the minimum inhibitory concentration MIC technique. The sensitivity test is verified by a Kirby Bauer test. Results: In 2017 the Laboratory of Microbiology received 365 samples of bronchial secretions from the Intensive Care Unit. 237 were found positive. S. epidermidis was identified in 1 specimen, A. baumannii in 60, K. pneumoniae in 42, P. aeruginosa in 50, C. albicans in 40, P. mirabilis in 4, E. coli in 4, S. maltophilia in 6, S. marcescens in 6, S. aureus in 12, S. pneumoniae in 1, S. haemolyticus in 4, P. fluorescens in 1, E. aerogenes in 1, E. cloacae in 5. Conclusions: The majority of ICU patients appear to be a fertile ground for the development of infections. The nature of the findings suggests that a significant part of the bacteria found comes from the unit (nosocomial infection).

Keywords: bronchial secretions, cultures, infections, intensive care units

Procedia PDF Downloads 185
2068 What Are the Problems in the Case of Analysis of Selenium by Inductively Coupled Plasma Mass Spectrometry in Food and Food Raw Materials?

Authors: Béla Kovács, Éva Bódi, Farzaneh Garousi, Szilvia Várallyay, Dávid Andrási

Abstract:

For analysis of elements in different food, feed and food raw material samples generally a flame atomic absorption spectrometer (FAAS), a graphite furnace atomic absorption spectrometer (GF-AAS), an inductively coupled plasma optical emission spectrometer (ICP-OES) and an inductively coupled plasma mass spectrometer (ICP-MS) are applied. All the analytical instruments have different physical and chemical interfering effects analysing food and food raw material samples. The smaller the concentration of an analyte and the larger the concentration of the matrix the larger the interfering effects. Nowadays, it is very important to analyse growingly smaller concentrations of elements. From the above analytical instruments generally the inductively coupled plasma mass spectrometer is capable of analysing the smallest concentration of elements. The applied ICP-MS instrument has Collision Cell Technology (CCT) also. Using CCT mode certain elements have better detection limits with 1-3 magnitudes comparing to a normal ICP-MS analytical method. The CCT mode has better detection limits mainly for analysis of selenium (arsenic, germanium, vanadium, and chromium). To elaborate an analytical method for selenium with an inductively coupled plasma mass spectrometer the most important interfering effects (problems) were evaluated: 1) isobaric elemental, 2) isobaric molecular, and 3) physical interferences. Analysing food and food raw material samples an other (new) interfering effect emerged in ICP-MS, namely the effect of various matrixes having different evaporation and nebulization effectiveness, moreover having different quantity of carbon content of food, feed and food raw material samples. In our research work the effect of different water-soluble compounds furthermore the effect of various quantity of carbon content (as sample matrix) were examined on changes of intensity of selenium. So finally we could find “opportunities” to decrease the error of selenium analysis. To analyse selenium in food, feed and food raw material samples, the most appropriate inductively coupled plasma mass spectrometer is a quadrupole instrument applying a collision cell technique (CCT). The extent of interfering effect of carbon content depends on the type of compounds. The carbon content significantly affects the measured concentration (intensities) of Se, which can be corrected using internal standard (arsenic or tellurium).

Keywords: selenium, ICP-MS, food, food raw material

Procedia PDF Downloads 508
2067 Spontaneous Tumour Lysis in Acute Myeloid Leukemia

Authors: Rojith K. Balakrishnan

Abstract:

Spontaneous tumour lysis syndrome is a constellation of electrolyte abnormalities and an acute renal failure which occurs in the setting of rapid cell turnover prior to the administration of cytotoxic chemotherapy. While spontaneous tumour lysis well-described in patients with Burkitt lymphoma, it is thought to occur less commonly in patients with other hematological malignancies. We present a case of forty-year-old female who presented with features of acute renal failure, on further evaluation turned out to be a newly diagnosed acute myeloid leukemia with spontaneous tumour lysis best of our knowledge only three cases of AML with spontaneous tumour lysis has reported world wide.

Keywords: AML, tumour lysis, renal failure, myeloid leukemia

Procedia PDF Downloads 294
2066 An Evaluative Microbiological Risk Assessment of Drinking Water Supply in the Carpathian Region: Identification of Occurrent Hazardous Bacteria with Quantitative Microbial Risk Assessment Method

Authors: Anikó Kaluzsa

Abstract:

The article's author aims to introduce and analyze those microbiological safety hazards which indicate the presence of secondary contamination in the water supply system. Since drinking water belongs to primary foods and is the basic condition of life, special attention should be paid on its quality. There are such indicators among the microbiological features can be found in water, which are clear evidence of the presence of water contamination, and based on this there is no need to perform other diagnostics, because they prove properly the contamination of the given water supply section. Laboratory analysis can help - both technologically and temporally – to identify contamination, but it does matter how long takes the removal and if the disinfection process takes place in time. The identification of the factors that often occur in the same places or the chance of their occurrence is greater than the average, facilitates our work. The pathogen microbiological risk assessment by the help of several features determines the most likely occurring microbiological features in the Carpathian basin. From among all the microbiological indicators, that are recommended targets for routine inspection by the World Health Organization, there is a paramount importance of the appearance of Escherichia coli in the water network, as its presence indicates the potential ubietiy of enteric pathogens or other contaminants in the water network. In addition, the author presents the steps of microbiological risk assessment analyzing those pathogenic micro-organisms registered to be the most critical.

Keywords: drinking water, E. coli, microbiological indicators, risk assessment, water safety plan

Procedia PDF Downloads 333
2065 The Quantitative Optical Modulation of Dopamine Receptor-Mediated Endocytosis Using an Optogenetic System

Authors: Qiaoyue Kuang, Yang Li, Mizuki Endo, Takeaki Ozawa

Abstract:

G protein-coupled receptors (GPCR) are the largest family of receptor proteins that detect molecules outside the cell and activate cellular responses. Of the GPCRs, dopamine receptors, which recognize extracellular dopamine, are essential to mammals due to their roles in numerous physiological events, including autonomic movement, hormonal regulation, emotions, and the reward system in the brain. To precisely understand the physiological roles of dopamine receptors, it is important to spatiotemporally control the signaling mediated by dopamine receptors, which is strongly dependent on their surface expression. Conventionally, chemical-induced interactions were applied to trigger the endocytosis of cell surface receptors. However, these methods were subjected to diffusion and therefore lacked temporal and special precision. To further understand the receptor-mediated signaling and to control the plasma membrane expression of receptors, an optogenetic tool called E-fragment was developed. The C-terminus of a light-sensitive photosensory protein cyptochrome2 (CRY2) was attached to β-Arrestin, and the E-fragment was generated by fusing the C-terminal peptide of vasopressin receptor (V2R) to CRY2’s binding partner protein CIB. The CRY2-CIB heterodimerization triggered by blue light stimulation brings β-Arrestin to the vicinity of membrane receptors and results in receptor endocytosis. In this study, the E-fragment system was applied to dopamine receptors 1 and 2 (DRD1 and DRD2) to control dopamine signaling. First, confocal fluorescence microscope observation qualitatively confirmed the light-induced endocytosis of E-fragment fused receptors. Second, NanoBiT bioluminescence assay verified quantitatively that the surface amount of E-fragment labeled receptors decreased after light treatment. Finally, GloSensor bioluminescence assay results suggested that the E-fragment-dependent receptor light-induced endocytosis decreased cAMP production in DRD1 signaling and attenuated the inhibition effect of DRD2 on cAMP production. The developed optogenetic tool was able to induce receptor endocytosis by external light, providing opportunities to further understand numerous physiological activities by controlling receptor-mediated signaling spatiotemporally.

Keywords: dopamine receptors, endocytosis, G protein-coupled receptors, optogenetics

Procedia PDF Downloads 102
2064 Bacteriological Culture Methods and its Uses in Clinical Pathology

Authors: Prachi Choudhary, Jai Gopal Sharma

Abstract:

Microbial cultures determine the type of organism, its abundance in the tested sample, or both. It is one of the primary diagnostic methods of microbiology. It is used to determine the cause of infectious disease by letting the agent multiply in a predetermined medium. Different bacteria produce colonies that may be very distinct from the bacterial species that produced them. To culture any pathogen or microorganism, we should first know about the types of media used in microbiology for culturing. Sometimes sub culturing is also done in various microorganisms if some mixed growth is seen in culture. Nearly 3 types of culture media based on consistency – solid, semi-solid, and liquid (broth) media; are further explained in the report. Then, The Five I's approach is a method for locating, growing, observing, and characterizing microorganisms, including inoculation and incubation. Isolation, inspection, and identification. For identification of bacteria, we have to culture the sample like urine, sputum, blood, etc., on suitable media; there are different methods of culturing the bacteria or microbe like pour plate method, streak plate method, swabbing by needle, pipetting, inoculation by loop, spreading by spreader, etc. After this, we see the bacterial growth after incubation of 24 hours, then according to the growth of bacteria antibiotics susceptibility test is conducted; this is done for sensitive antibiotics or resistance to that bacteria, and also for knowing the name of bacteria. Various methods like the dilution method, disk diffusion method, E test, etc., do antibiotics susceptibility tests. After that, various medicines are provided to the patients according to antibiotic sensitivity and resistance.

Keywords: inoculation, incubation, isolation, antibiotics suspectibility test, characterizing

Procedia PDF Downloads 82
2063 Using Hemicellulosic Liquor from Sugarcane Bagasse to Produce Second Generation Lactic Acid

Authors: Regiane A. Oliveira, Carlos E. Vaz Rossell, Rubens Maciel Filho

Abstract:

Lactic acid, besides a valuable chemical may be considered a platform for other chemicals. In fact, the feasibility of hemicellulosic sugars as feedstock for lactic acid production process, may represent the drop of some of the barriers for the second generation bioproducts, especially bearing in mind the 5-carbon sugars from the pre-treatment of sugarcane bagasse. Bearing this in mind, the purpose of this study was to use the hemicellulosic liquor from sugarcane bagasse as a substrate to produce lactic acid by fermentation. To release of sugars from hemicellulose it was made a pre-treatment with a diluted sulfuric acid in order to obtain a xylose's rich liquor with low concentration of inhibiting compounds for fermentation (≈ 67% of xylose, ≈ 21% of glucose, ≈ 10% of cellobiose and arabinose, and around 1% of inhibiting compounds as furfural, hydroxymethilfurfural and acetic acid). The hemicellulosic sugars associated with 20 g/L of yeast extract were used in a fermentation process with Lactobacillus plantarum to produce lactic acid. The fermentation process pH was controlled with automatic injection of Ca(OH)2 to keep pH at 6.00. The lactic acid concentration remained stable from the time when the glucose was depleted (48 hours of fermentation), with no further production. While lactic acid is produced occurs the concomitant consumption of xylose and glucose. The yield of fermentation was 0.933 g lactic acid /g sugars. Besides, it was not detected the presence of by-products, what allows considering that the microorganism uses a homolactic fermentation to produce its own energy using pentose-phosphate pathway. Through facultative heterofermentative metabolism the bacteria consume pentose, as is the case of L. plantarum, but the energy efficiency for the cell is lower than during the hexose consumption. This implies both in a slower cell growth, as in a reduction in lactic acid productivity compared with the use of hexose. Also, L. plantarum had shown to have a capacity for lactic acid production from hemicellulosic hydrolysate without detoxification, which is very attractive in terms of robustness for an industrial process. Xylose from hydrolyzed bagasse and without detoxification is consumed, although the hydrolyzed bagasse inhibitors (especially aromatic inhibitors) affect productivity and yield of lactic acid. The use of sugars and the lack of need for detoxification of the C5 liquor from sugarcane bagasse hydrolyzed is a crucial factor for the economic viability of second generation processes. Taking this information into account, the production of second generation lactic acid using sugars from hemicellulose appears to be a good alternative to the complete utilization of sugarcane plant, directing molasses and cellulosic carbohydrates to produce 2G-ethanol, and hemicellulosic carbohydrates to produce 2G-lactic acid.

Keywords: fermentation, lactic acid, hemicellulosic sugars, sugarcane

Procedia PDF Downloads 373
2062 Dynamic Analysis of the Heat Transfer in the Magnetically Assisted Reactor

Authors: Tomasz Borowski, Dawid Sołoducha, Rafał Rakoczy, Marian Kordas

Abstract:

The application of magnetic field is essential for a wide range of technologies or processes (i.e., magnetic hyperthermia, bioprocessing). From the practical point of view, bioprocess control is often limited to the regulation of temperature at constant values favourable to microbial growth. The main aim of this study is to determine the effect of various types of electromagnetic fields (i.e., static or alternating) on the heat transfer in a self-designed magnetically assisted reactor. The experimental set-up is equipped with a measuring instrument which controlled the temperature of the liquid inside the container and supervised the real-time acquisition of all the experimental data coming from the sensors. Temperature signals are also sampled from generator of magnetic field. The obtained temperature profiles were mathematically described and analyzed. The parameters characterizing the response to a step input of a first-order dynamic system were obtained and discussed. For example, the higher values of the time constant means slow signal (in this case, temperature) increase. After the period equal to about five-time constants, the sample temperature nearly reached the asymptotic value. This dynamical analysis allowed us to understand the heating effect under the action of various types of electromagnetic fields. Moreover, the proposed mathematical description can be used to compare the influence of different types of magnetic fields on heat transfer operations.

Keywords: heat transfer, magnetically assisted reactor, dynamical analysis, transient function

Procedia PDF Downloads 171
2061 Embryotoxicity of Nano-Iron Oxide (Fe2O3) to Bio-Indicator of Pollution of Land Helix Aspersa

Authors: S. Besnaci, S. Bensoltane, H. Locif, S. Saadi

Abstract:

To validate an ecotoxicological approach to assessing toxicological effects caused by the oxide powder of nano-iron Fe2O3, we searched in the ecotoxicology laboratory cell bodies bio accumulators and bio-indicators of soil pollution the snail Helix aspersa. In this study, we evaluated the toxicity of nano Fe2O3 during a very sensitive phase of development H.aspersa (embryonic stage). During embryonic development, we observed in treated with various concentrations of nano Fe2O3 (1.25 g/l, 1.5 g/l, and 2 g/l) compared to control, the deformation of the membrane of the egg and accumulation of this molecule at the rear of the egg proven by the photographs, as with the influence on the hatching percentage.

Keywords: eggs, embryotoxicity, Fe2O3, Helix aspersa, nanoparticles

Procedia PDF Downloads 376
2060 Removal of Heavy Metals Pb, Zn and Cu from Sludge Waste of Paper Industries Using Biosurfactant

Authors: Nurul Hidayati

Abstract:

Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as metals. Sludge waste of paper industries as toxic and hazardous material from specific source contains Pb, Zn, and Cu metal from waste soluble ink. An alternative and eco-friendly method of remediation technology is the use of biosurfactants and biosurfactant-producing microorganisms. Soil washing is among the methods available to remove heavy metal from sediments. The purpose of this research is to study effectiveness of biosurfactant with concentration = CMC for the removal of heavy metals, lead, zinc and copper in batch washing test under four different biosurfactant production by microbial origin. Pseudomonas putida T1(8), Bacillus subtilis 3K, Acinetobacter sp, and Actinobacillus sp was grown on mineral salt medium that had been already added with 2% concentration of molasses that it is a low cost application. The samples were kept in a shaker 120 rpm at room temperature for 3 days. Supernatants and sediments of sludge were separated by using a centrifuge and samples from supernatants were measured by atomic absorption spectrophotometer. The highest removal of Pb was up to 14,04% by Acinetobacter sp. Biosurfactant of Pseudomonas putida T1(8) have the highest removal for Zn and Cu up to 6,5% and 2,01% respectively. Biosurfactants have a role for removal process of the metals, including wetting, contact of biosurfactant to the surface of the sediments and detachment of the metals from the sediment. Biosurfactant has proven its ability as a washing agent in heavy metals removal from sediments, but more research is needed to optimize the process of removal heavy metals.

Keywords: biosurfactant, removal of heavy metals, sludge waste, paper industries

Procedia PDF Downloads 331
2059 3D Interactions in Under Water Acoustic Simulationseffect of Green Synthesized Metal Nanoparticles on Gene Expression in an In-Vitro Model of Non-alcoholic Steatohepatitis

Authors: Nendouvhada Livhuwani Portia, Nicole Sibuyi, Kwazikwakhe Gabuza, Adewale Fadaka

Abstract:

Metabolic dysfunction-associated liver disease (MASLD) is a chronic condition characterized by excessive fat accumulation in the liver, distinct from conditions caused by alcohol, viral hepatitis, or medications. MASLD is often linked with metabolic syndrome, including obesity, diabetes, hyperlipidemia, and hypertriglyceridemia. This disease can progress to metabolic dysfunction-associated steatohepatitis (MASH), marked by liver inflammation and scarring, potentially leading to cirrhosis. However, only 43-44% of patients with steatosis develop MASH, and 7-30% of those with MASH progress to cirrhosis. The exact mechanisms underlying MASLD and its progression remain unclear, and there are currently no specific therapeutic strategies for MASLD/MASH. While anti-obesity and anti-diabetic medications can reduce progression, they do not fully treat or reverse the disease. As an alternative, green-synthesized metal nanoparticles (MNPs) are emerging as potential treatments for liver diseases due to their anti-diabetic, anti-inflammatory, and anti-obesity properties with minimal side effects. MNPs like gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) have been shown to improve metabolic processes by lowering blood glucose, body fat, and inflammation. The study aimed to explore the effects of green-synthesized MNPs on gene expression in an in vitro model of MASH using C3A/HepG2 liver cells. The MASH model was created by exposing these cells to free fatty acids (FFAs) followed by lipopolysaccharide (LPS) to induce inflammation. Cell viability was assessed with the Water-Soluble Tetrazolium (WST)-1 assay, and lipid accumulation was measured using the Oil Red O (ORO) assay. Additionally, mitochondrial membrane potential was assessed by the tetramethyl rhodamine, methyl ester (TMRE) assay, and inflammation was measured with an Enzyme-Linked Immunosorbent Assay (ELISA). The study synthesized AuNPs from Carpobrotus edulis fruit (CeF) and avocado seed (AvoSE) and AgNPs from Salvia africana-lutea (SAL) using optimized conditions. The MNPs were characterized by UV-Vis spectrophotometry and Dynamic Light Scattering (DLS). The nanoparticles were tested at various concentrations for their impact on the C3A/HepG2-induced MASH model. Among the MNPs tested, AvoSE-AuNPs showed the most promise. They reduced cell proliferation and intracellular lipid content more effectively than CeFE-AuNPs and SAL-AgNPs. Molecular analysis using real-time polymerase chain reaction revealed that AvoSE-AuNPs could potentially reverse MASH effects by reducing the expression of key pro-inflammatory and metabolic genes, including tumor necrosis factor-alpha (TNF-α), Fas cell surface death receptor (FAS), Peroxisome proliferator-activated receptor (PPAR)-α, PPAR-γ, and Sterol regulatory element-binding protein (SREBPF)-1. Further research is needed to confirm the molecular mechanisms behind the effects of these MNPs and to identify the specific phytochemicals responsible for their synthesis and bioactivities.

Keywords: gold nanoparticles, green nanotechnology, metal nanoparticles, obesity

Procedia PDF Downloads 25
2058 Development and Experimental Validation of Coupled Flow-Aerosol Microphysics Model for Hot Wire Generator

Authors: K. Ghosh, S. N. Tripathi, Manish Joshi, Y. S. Mayya, Arshad Khan, B. K. Sapra

Abstract:

We have developed a CFD coupled aerosol microphysics model in the context of aerosol generation from a glowing wire. The governing equations can be solved implicitly for mass, momentum, energy transfer along with aerosol dynamics. The computationally efficient framework can simulate temporal behavior of total number concentration and number size distribution. This formulation uniquely couples standard K-Epsilon scheme with boundary layer model with detailed aerosol dynamics through residence time. This model uses measured temperatures (wire surface and axial/radial surroundings) and wire compositional data apart from other usual inputs for simulations. The model predictions show that bulk fluid motion and local heat distribution can significantly affect the aerosol behavior when the buoyancy effect in momentum transfer is considered. Buoyancy generated turbulence was found to be affecting parameters related to aerosol dynamics and transport as well. The model was validated by comparing simulated predictions with results obtained from six controlled experiments performed with a laboratory-made hot wire nanoparticle generator. Condensation particle counter (CPC) and scanning mobility particle sizer (SMPS) were used for measurement of total number concentration and number size distribution at the outlet of reactor cell during these experiments. Our model-predicted results were found to be in reasonable agreement with observed values. The developed model is fast (fully implicit) and numerically stable. It can be used specifically for applications in the context of the behavior of aerosol particles generated from glowing wire technique and in general for other similar large scale domains. Incorporation of CFD in aerosol microphysics framework provides a realistic platform to study natural convection driven systems/ applications. Aerosol dynamics sub-modules (nucleation, coagulation, wall deposition) have been coupled with Navier Stokes equations modified to include buoyancy coupled K-Epsilon turbulence model. Coupled flow-aerosol dynamics equation was solved numerically and in the implicit scheme. Wire composition and temperature (wire surface and cell domain) were obtained/measured, to be used as input for the model simulations. Model simulations showed a significant effect of fluid properties on the dynamics of aerosol particles. The role of buoyancy was highlighted by observation and interpretation of nucleation zones in the planes above the wire axis. The model was validated against measured temporal evolution, total number concentration and size distribution at the outlet of hot wire generator cell. Experimentally averaged and simulated total number concentrations were found to match closely, barring values at initial times. Steady-state number size distribution matched very well for sub 10 nm particle diameters while reasonable differences were noticed for higher size ranges. Although tuned specifically for the present context (i.e., aerosol generation from hotwire generator), the model can also be used for diverse applications, e.g., emission of particles from hot zones (chimneys, exhaust), fires and atmospheric cloud dynamics.

Keywords: nanoparticles, k-epsilon model, buoyancy, CFD, hot wire generator, aerosol dynamics

Procedia PDF Downloads 143
2057 Assessment of Escherichia coli along Nakibiso Stream in Mbale Municipality, Uganda

Authors: Abdul Walusansa

Abstract:

The aim of this study was to assess the level of microbial pollution along Nakibiso stream. The study was carried out in polluted waters of Nakibiso stream, originating from Mbale municipality and running through ADRA Estates to Namatala Wetlands in Eastern Uganda. Four sites along the stream were selected basing on the activities of their vicinity. A total of 120 samples were collected in sterile bottles from the four sampling locations of the stream during the wet and dry seasons of the year 2011. The samples were taken to the National water and Sewerage Cooperation Laboratory for Analysis. Membrane filter technique was used to test for Erischerichia coli. Nitrogen, Phosphorus, pH, dissolved oxygen, electrical conductivity, total suspended solids, turbidity and temperature were also measured. Results for Nitrogen and Phosphorus for sites; 1, 2, 3 and 4 were 1.8, 8.8, 7.7 and 13.8 NH4-N mg/L; and 1.8, 2.1, 1.8 and 2.3 PO4-P mg/L respectively. Basing on these results, it was estimated that farmers use 115 and 24 Kg/acre of Nitrogen and Phosphorus respectively per month. Taking results for Nitrogen, the same amount of Nutrients in artificial fertilizers would cost $ 88. This shows that reuse of wastewater has a potential in terms of nutrients. The results for E. coli for sites 1, 2, 3 and 4 were 1.1 X 107, 9.1 X 105, 7.4 X 105, and 3.4 X 105 respectively. E. coli hence decreased downstream with statistically significant variations between sites 1 and 4. Site 1 had the highest mean E.coli counts. The bacterial contamination was significantly higher during the dry season when more water was needed for irrigation. Although the water had the potential for reuse in farming, bacterial contamination during both seasons was higher than 103 FC/100ml recommended by WHO for unrestricted Agriculture.

Keywords: E. coli, nitrogen, phosphorus, water reuse, waste water

Procedia PDF Downloads 247
2056 Bacterial Cellulose/Silver-Doped Hydroxyapatite Composites for Tissue Engineering Application

Authors: Adrian Ionut Nicoara, Denisa Ionela Ene, Alina Maria Holban, Cristina Busuioc

Abstract:

At present, the development of materials with biomedical applications is a domain of interest that will produce a full series of benefits in engineering and medicine. In this sense, it is required to use a natural material, and this paper is focused on the development of a composite material based on bacterial cellulose – hydroxyapatite and silver nanoparticles with applications in hard tissue. Bacterial cellulose own features like biocompatibility, non-toxicity character and flexibility. Moreover, the bacterial cellulose can be conjugated with different forms of active silver to possess antimicrobial activity. Hydroxyapatite is well known that can mimic at a significant level the activity of the initial bone. The material was synthesized by using an ultrasound probe and finally characterized by several methods. Thereby, the morphological properties were analyzed by using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Because the synthesized material has medical application in restore the tissue and to fight against microbial invasion, the samples were tested from the biological point of view by evaluating the biodegradability in phosphate-buffered saline (PBS) and simulated body fluid (SBF) and moreover the antimicrobial effect was performed on Gram-positive bacterium Staphylococcus aureus, Gram-negative bacterium Escherichia coli, and fungi Candida albicans. The results reveal that the obtained material has specific characteristics for bone regeneration.

Keywords: bacterial cellulose, biomaterials, hydroxyapatite, scaffolds materials

Procedia PDF Downloads 133
2055 Understanding Integrated Removal of Heavy Metals, Organic Matter and Nitrogen in a Constructed Wetland System Receiving Simulated Landfill Leachate

Authors: A. Mohammed, A. Babatunde

Abstract:

This study investigated the integrated removal of heavy metals, organic matter and nitrogen from landfill leachate using a novel laboratory scale constructed wetland system. The main objectives of this study were: (i) to assess the overall effectiveness of the constructed wetland system for treating landfill leachate; (ii) to examine the interactions and impact of key leachate constituents (heavy metals, organic matter and nitrogen) on the overall removal dynamics and efficiency. The constructed wetland system consisted of four stages operated in tidal flow and anoxic conditions. Results obtained from 215 days of operation have demonstrated extraordinary heavy metals removal up to 100%. Analysis of the physico- chemical data reveal that the controlling factors for metals removal were the anoxic condition and the use of the novel media (dewatered ferric sludge which is a by-product of drinking water treatment process) as the main substrate in the constructed wetland system. Results show that the use of the ferric sludge enhanced heavy metals removal and brought more flexibility to simultaneous nitrification and denitrification which occurs within the microbial flocs. Furthermore, COD and NH4-N were effectively removed in the system and this coincided with enhanced aeration in the 2nd and 3rd stages of the constructed wetland system. Overall, the results demonstrated that the ferric dewatered sludge constructed wetland system would be an effective solution for integrated removal of pollutants from landfill leachates.

Keywords: constructed wetland, ferric dewatered sludge, heavy metals, landfill leachate

Procedia PDF Downloads 257
2054 Antenna for Energy Harvesting in Wireless Connected Objects

Authors: Nizar Sakli, Chayma Bahar, Chokri Baccouch, Hedi Sakli

Abstract:

If connected objects multiply, they are becoming a challenge in more than one way. In particular by their consumption and their supply of electricity. A large part of the new generations of connected objects will only be able to develop if it is possible to make them entirely autonomous in terms of energy. Some manufacturers are therefore developing products capable of recovering energy from their environment. Vital solutions in certain contexts, such as the medical industry. Energy recovery from the environment is a reliable solution to solve the problem of powering wireless connected objects. This paper presents and study a optically transparent solar patch antenna in frequency band of 2.4 GHz for connected objects in the future standard 5G for energy harvesting and RF transmission.

Keywords: antenna, IoT, solar cell, wireless communications

Procedia PDF Downloads 168
2053 Optimization of Radiation Therapy with a Nanotechnology Based Enzymatic Therapy

Authors: R. D. Esposito, V. M. Barberá, P. García Morales, P. Dorado Rodríguez, J. Sanz, M. Fuentes, D. Planes Meseguer, M. Saceda, L. Fernández Fornos, M. P. Ventero

Abstract:

Results obtained by our group on glioblastoma multiforme (GBM) primary cultures , show a dramatic potentiation of radiation effects when 2 units/ml of D-amino acid oxidase (DAO) enzyme are added, free or immobilized in magnetic nanoparticles, to irradiated samples just after the irradiation. Cell cultures were exposed to radiation doses of 7Gy and 15Gy of 6 MV photons from a clinical linear accelerator. At both doses, we observed a clear enhancing effect of radiation-induced damages due to the addition of DAO.

Keywords: D-amino Acid Oxidase (DAO) enzyme, magnetic particles, nanotechnology, radiation therapy enhancement

Procedia PDF Downloads 523
2052 Design of Agricultural Machinery Factory Facility Layout

Authors: Nilda Tri Putri, Muhammad Taufik

Abstract:

Tools and agricultural machinery (Alsintan) is a tool used in agribusiness activities. Alsintan used to change the traditional farming systems generally use manual equipment into modern agriculture with mechanization. CV Nugraha Chakti Consultant make an action plan for industrial development Alsintan West Sumatra in 2012 to develop medium industries of Alsintan become a major industry of Alsintan, one of efforts made is increase the production capacity of the industry Alsintan. Production capacity for superior products as hydrotiller and threshers set each for 2.000 units per year. CV Citra Dragon as one of the medium industry alsintan in West Sumatra has a plan to relocate the existing plant to meet growing consumer demand each year. Increased production capacity and plant relocation plan has led to a change in the layout; therefore need to design the layout of the plant facility CV Citra Dragon. First step the to design of plant layout is design the layout of the production floor. The design of the production floor layout is done by applying group technology layout. The initial step is to do a machine grouping and part family using the Average Linkage Clustering (ALC) and Rank Order Clustering (ROC). Furthermore done independent work station design and layout design using the Modified Spanning Tree (MST). Alternative selection layout is done to select the best production floor layout between ALC and ROC cell grouping. Furthermore, to design the layout of warehouses, offices and other production support facilities. Activity Relationship Chart methods used to organize the placement of factory facilities has been designed. After structuring plan facilities, calculated cost manufacturing facility plant establishment. Type of layout is used on the production floor layout technology group. The production floor is composed of four cell machinery, assembly area and painting area. The total distance of the displacement of material in a single production amounted to 1120.16 m which means need 18,7minutes of transportation time for one time production. Alsintan Factory has designed a circular flow pattern with 11 facilities. The facilities were designed consisting of 10 rooms and 1 parking space. The measure of factory building is 84 m x 52 m.

Keywords: Average Linkage Clustering (ALC), Rank Order Clustering (ROC), Modified Spanning Tree (MST), Activity Relationship Chart (ARC)

Procedia PDF Downloads 496
2051 Li-Ion Batteries vs. Synthetic Natural Gas: A Life Cycle Analysis Study on Sustainable Mobility

Authors: Guido Lorenzi, Massimo Santarelli, Carlos Augusto Santos Silva

Abstract:

The growth of non-dispatchable renewable energy sources in the European electricity generation mix is promoting the research of technically feasible and cost-effective solutions to make use of the excess energy, produced when the demand is low. The increasing intermittent renewable capacity is becoming a challenge to face especially in Europe, where some countries have shares of wind and solar on the total electricity produced in 2015 higher than 20%, with Denmark around 40%. However, other consumption sectors (mainly transportation) are still considerably relying on fossil fuels, with a slow transition to other forms of energy. Among the opportunities for different mobility concepts, electric (EV) and biofuel-powered vehicles (BPV) are the options that currently appear more promising. The EVs are targeting mainly the light duty users because of their zero (Full electric) or reduced (Hybrid) local emissions, while the BPVs encourage the use of alternative resources with the same technologies (thermal engines) used so far. The batteries which are applied to EVs are based on ions of Lithium because of their overall good performance in energy density, safety, cost and temperature performance. Biofuels, instead, can be various and the major difference is in their physical state (liquid or gaseous). In this study gaseous biofuels are considered and, more specifically, Synthetic Natural Gas (SNG) produced through a process of Power-to-Gas consisting in an electrochemical upgrade (with Solid Oxide Electrolyzers) of biogas with CO2 recycling. The latter process combines a first stage of electrolysis, where syngas is produced, and a second stage of methanation in which the product gas is turned into methane and then made available for consumption. A techno-economic comparison between the two alternatives is possible, but it does not capture all the different aspects involved in the two routes for the promotion of a more sustainable mobility. For this reason, a more comprehensive methodology, i.e. Life Cycle Assessment, is adopted to describe the environmental implications of using excess electricity (directly or indirectly) for new vehicle fleets. The functional unit of the study is 1 km and the two options are compared in terms of overall CO2 emissions, both considering Cradle to Gate and Cradle to Grave boundaries. Showing how production and disposal of materials affect the environmental performance of the analyzed routes is useful to broaden the perspective on the impacts that different technologies produce, in addition to what is emitted during the operational life. In particular, this applies to batteries for which the decommissioning phase has a larger impact on the environmental balance compared to electrolyzers. The lower (more than one order of magnitude) energy density of Li-ion batteries compared to SNG implies that for the same amount of energy used, more material resources are needed to obtain the same effect. The comparison is performed in an energy system that simulates the Western European one, in order to assess which of the two solutions is more suitable to lead the de-fossilization of the transport sector with the least resource depletion and the mildest consequences for the ecosystem.

Keywords: electrical energy storage, electric vehicles, power-to-gas, life cycle assessment

Procedia PDF Downloads 178
2050 Extracellular Phytase from Lactobacillus fermentum spp KA1: Optimization of Enzyme Production and Its Application for Improving the Nutritional Quality of Rice Bran

Authors: Neha Sharma, Kanthi K. Kondepudi, Naveen Gupta

Abstract:

Phytases are phytate specific phosphatases catalyzing the step-wise dephosphorylation of phytate, which acts as an anti-nutritional factor in food due to its strong binding capacity to minerals. In recent years microbial phytases have been explored for improving nutritional quality of food. But the major limitation is acceptability of phytases from these microorganisms. Therefore, efforts are being made to isolate organisms which are generally regarded as safe for human consumption such as Lactic Acid Bacteria (LAB). Phytases from these organisms will have an edge over other phytase sources due to its probiotic attributes. Only few LAB have been reported to give phytase activity that too is generally seen as intracellular. LAB producing extracellular phytase will be more useful as it can degrade phytate more effectively. Moreover, enzyme from such isolate will have application in food processing also. Only few species of Lactobacillus producing extracellular phytase have been reported so far. This study reports the isolation of a probiotic strain of Lactobacillus fermentum spp KA1 which produces extracellular phytase. Conditions for the optimal production of phytase have been optimized and the enzyme production resulted in an approximately 13-fold increase in yield. The phytate degradation potential of extracellular phytase in rice bran has been explored and conditions for optimal degradation were optimized. Under optimal conditions, there was 43.26% release of inorganic phosphate and 6.45% decrease of phytate content.

Keywords: Lactobacillus, phytase, phytate reduction, rice bran

Procedia PDF Downloads 198
2049 Assessment of Knowledge, Attitudes and Practices of Street Vendors in Mangaung Metro South Africa

Authors: Gaofetoge Lenetha, Malerato Moloi, Ntsoaki Malebo

Abstract:

Microbial contamination of ready-to-eat foods and beverages sold by street vendors has become an important public health issue. In developing countries including South Africa, health risks related to such kinds of foods are thought to be common. Thus, this study assessed knowledge, attitude and practices of street food vendors. Street vendors in the city of Mangaung Metro were investigated in order to assess their knowledge, attitudes and handling practices. A semi-structured questionnaire and checklist were used in interviews to determine the status of the vending sites and associa. ted food-handling practices. Data was collected by means of a face-to-face interview. The majority of respondents were black females. Hundred percent (100%) of the participants did not have any food safety training. However, street vendors showed a positive attitude towards food safety. Despite the positive attitude, vendors showed some non-compliance when it comes to handling food. During the survey, it was also observed that the vending stalls lack basic infrastructures like toilets and potable water that is currently a major problem. This study indicates a need for improvements in the environmental conditions at these sites to prevent foodborne diseases. Moreover, based on the results observed food safety and food hygiene training or workshops for street vendors are highly recommended.

Keywords: food hygiene, foodborne illnesses, food safety, Street foods

Procedia PDF Downloads 114