Search results for: computer assisted classification
2618 Hyperspectral Mapping Methods for Differentiating Mangrove Species along Karachi Coast
Authors: Sher Muhammad, Mirza Muhammad Waqar
Abstract:
It is necessary to monitor and identify mangroves types and spatial extent near coastal areas because it plays an important role in coastal ecosystem and environmental protection. This research aims at identifying and mapping mangroves types along Karachi coast ranging from 24.79 to 24.85 degree in latitude and 66.91 to 66.97 degree in longitude using hyperspectral remote sensing data and techniques. Image acquired during February, 2012 through Hyperion sensor have been used for this research. Image preprocessing includes geometric and radiometric correction followed by Minimum Noise Fraction (MNF) and Pixel Purity Index (PPI). The output of MNF and PPI has been analyzed by visualizing it in n-dimensions for end-member extraction. Well-distributed clusters on the n-dimensional scatter plot have been selected with the region of interest (ROI) tool as end members. These end members have been used as an input for classification techniques applied to identify and map mangroves species including Spectral Angle Mapper (SAM), Spectral Feature Fitting (SFF), and Spectral Information Diversion (SID). Only two types of mangroves namely Avicennia Marina (white mangroves) and Avicennia Germinans (black mangroves) have been observed throughout the study area.Keywords: mangrove, hyperspectral, hyperion, SAM, SFF, SID
Procedia PDF Downloads 3622617 Land Suitability Analysis for Maize Production in Egbeda Local Government Area of Oyo State Using GIS Techniques
Authors: Abegunde Linda, Adedeji Oluwatayo, Tope-Ajayi Opeyemi
Abstract:
Maize constitutes a major agrarian production for use by the vast population but despite its economic importance, it has not been produced to meet the economic needs of the country. Achieving optimum yield in maize can meaningfully be supported by land suitability analysis in order to guarantee self-sufficiency for future production optimization. This study examines land suitability for maize production through the analysis of the physic-chemical variations in soil properties over space using a Geographic Information System (GIS) framework. Physic-chemical parameters of importance selected include slope, landuse, and physical and chemical properties of the soil. Landsat imagery was used to categorize the landuse, Shuttle Radar Topographic Mapping (SRTM) generated the slope and soil samples were analyzed for its physical and chemical components. Suitability was categorized into highly, moderately and marginally suitable based on Food and Agricultural Organisation (FAO) classification using the Analytical Hierarchy Process (AHP) technique of GIS. This result can be used by small scale farmers for efficient decision making in the allocation of land for maize production.Keywords: AHP, GIS, MCE, suitability, Zea mays
Procedia PDF Downloads 3962616 An Ethnographic Study of Commercial Surrogacy Industry in India
Authors: Dalia Bhattacharjee
Abstract:
Motherhood as an institution is considered as sacred. Reproduction and motherhood have always been a concern of the private space of home. However, with the emergence of technologies like the Assisted Reproductive Technologies (ARTs), this intimate area has moved into the public. A woman can now become a mother with artificial insemination done by expert medical professionals in a hospital. With this development, the meanings of motherhood and childrearing have altered. Mothers have been divided into ‘ovarian mothers’ (those who provide the eggs), ‘uterine mothers’ (those who carry out the pregnancy and give birth), and ‘social mothers’ (those who raise the child). Thus, the ART business deconstructs motherhood by defining who the biological mother is and who the social mother is and who – despite contributing parts or processes of her body to the life of the child is not a mother, but merely the donor of a product, be it the egg or the womb, which is owned by those who are favoured by the contract. The industry of commercial surrogacy in India has been estimated to be of $2.3 billion as of 2012. There are many women who work as surrogate mothers in this industry for the exchange of money. It runs like a full-fledged business guided by a highly profit oriented capitalist market. The reproductive labourers are identified as mere womb renters or victims and not as active agents in such arrangements. Such a discourse undercuts the agency exercised by the women. The present study is an ethnography into the commercial surrogacy industry in India. This journey furthers the understanding of the dilemmas faced by the reproductive labourers. The paper emphasizes on the experiences of reproduction and motherhood outside the private space of the home in the commercial surrogacy industry in India, and, argues that this multiplicity of experiences need much focus and attention, where, the consumer becomes ‘the’ citizen and the women workers continue to be victims. The study draws on the narratives of the reproductive labourers, who remain at the center, and yet, at the periphery of such arrangements. This feminist ethnography is informed by the feminist standpoint theory to account for and analyse these varied experiences which further the understanding of the dilemmas faced by the reproductive labourers.Keywords: commercial surrogacy, ethnography, motherhood, standpoint theory
Procedia PDF Downloads 2402615 Grammatical and Lexical Cohesion in the Japan’s Prime Minister Shinzo Abe’s Speech Text ‘Nihon wa Modottekimashita’
Authors: Nadya Inda Syartanti
Abstract:
This research aims to identify, classify, and analyze descriptively the aspects of grammatical and lexical cohesion in the speech text of Japan’s Prime Minister Shinzo Abe entitled Nihon wa Modotte kimashita delivered in Washington DC, the United States on February 23, 2013, as a research data source. The method used is qualitative research, which uses descriptions through words that are applied by analyzing aspects of grammatical and lexical cohesion proposed by Halliday and Hasan (1976). The aspects of grammatical cohesion consist of references (personal, demonstrative, interrogative pronouns), substitution, ellipsis, and conjunction. In contrast, lexical cohesion consists of reiteration (repetition, synonym, antonym, hyponym, meronym) and collocation. Data classification is based on the 6 aspects of the cohesion. Through some aspects of cohesion, this research tries to find out the frequency of using grammatical and lexical cohesion in Shinzo Abe's speech text entitled Nihon wa Modotte kimashita. The results of this research are expected to help overcome the difficulty of understanding speech texts in Japanese. Therefore, this research can be a reference for learners, researchers, and anyone who is interested in the field of discourse analysis.Keywords: cohesion, grammatical cohesion, lexical cohesion, speech text, Shinzo Abe
Procedia PDF Downloads 1622614 Deep-Learning Coupled with Pragmatic Categorization Method to Classify the Urban Environment of the Developing World
Authors: Qianwei Cheng, A. K. M. Mahbubur Rahman, Anis Sarker, Abu Bakar Siddik Nayem, Ovi Paul, Amin Ahsan Ali, M. Ashraful Amin, Ryosuke Shibasaki, Moinul Zaber
Abstract:
Thomas Friedman, in his famous book, argued that the world in this 21st century is flat and will continue to be flatter. This is attributed to rapid globalization and the interdependence of humanity that engendered tremendous in-flow of human migration towards the urban spaces. In order to keep the urban environment sustainable, policy makers need to plan based on extensive analysis of the urban environment. With the advent of high definition satellite images, high resolution data, computational methods such as deep neural network analysis, and hardware capable of high-speed analysis; urban planning is seeing a paradigm shift. Legacy data on urban environments are now being complemented with high-volume, high-frequency data. However, the first step of understanding urban space lies in useful categorization of the space that is usable for data collection, analysis, and visualization. In this paper, we propose a pragmatic categorization method that is readily usable for machine analysis and show applicability of the methodology on a developing world setting. Categorization to plan sustainable urban spaces should encompass the buildings and their surroundings. However, the state-of-the-art is mostly dominated by classification of building structures, building types, etc. and largely represents the developed world. Hence, these methods and models are not sufficient for developing countries such as Bangladesh, where the surrounding environment is crucial for the categorization. Moreover, these categorizations propose small-scale classifications, which give limited information, have poor scalability and are slow to compute in real time. Our proposed method is divided into two steps-categorization and automation. We categorize the urban area in terms of informal and formal spaces and take the surrounding environment into account. 50 km × 50 km Google Earth image of Dhaka, Bangladesh was visually annotated and categorized by an expert and consequently a map was drawn. The categorization is based broadly on two dimensions-the state of urbanization and the architectural form of urban environment. Consequently, the urban space is divided into four categories: 1) highly informal area; 2) moderately informal area; 3) moderately formal area; and 4) highly formal area. In total, sixteen sub-categories were identified. For semantic segmentation and automatic categorization, Google’s DeeplabV3+ model was used. The model uses Atrous convolution operation to analyze different layers of texture and shape. This allows us to enlarge the field of view of the filters to incorporate larger context. Image encompassing 70% of the urban space was used to train the model, and the remaining 30% was used for testing and validation. The model is able to segment with 75% accuracy and 60% Mean Intersection over Union (mIoU). In this paper, we propose a pragmatic categorization method that is readily applicable for automatic use in both developing and developed world context. The method can be augmented for real-time socio-economic comparative analysis among cities. It can be an essential tool for the policy makers to plan future sustainable urban spaces.Keywords: semantic segmentation, urban environment, deep learning, urban building, classification
Procedia PDF Downloads 1912613 Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices
Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi
Abstract:
In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users.Keywords: Iot, activity recognition, automatic classification, unconstrained environment
Procedia PDF Downloads 2242612 Cryptocurrency Forensics: Analysis on Bitcoin E-Wallet from Computer Source Evidence
Authors: Muhammad Nooraiman bin Noorashid, Mohd Sharizuan bin Mohd Omar, Mohd Zabri Adil bin Talib, Aswami Fadillah bin Mohd Ariffin
Abstract:
Nowadays cryptocurrency has become a global phenomenon known to most people. People using this alternative digital money to do a transaction in many ways (e.g. Used for online shopping, wealth management, and fundraising). However, this digital asset also widely used in criminal activities since its use decentralized control as opposed to centralized electronic money and central banking systems and this makes a user, who used this currency invisible. The high-value exchange of these digital currencies also has been a target to criminal activities. The cryptocurrency crimes have become a challenge for the law enforcement to analyze and to proof the evidence as criminal devices. In this paper, our focus is more on bitcoin cryptocurrency and the possible artifacts that can be obtained from the different type of digital wallet, which is software and browser-based application. The process memory and physical hard disk are examined with the aims of identifying and recovering potential digital evidence. The stage of data acquisition divided by three states which are the initial creation of the wallet, transaction that consists transfer and receiving a coin and the last state is after the wallet is being deleted. Findings from this study suggest that both data from software and browser type of wallet process memory is a valuable source of evidence, and many of the artifacts found in process memory are also available from the application and wallet files on the client computer storage.Keywords: cryptocurrency, bitcoin, digital wallet, digital forensics
Procedia PDF Downloads 3412611 Forensic Speaker Verification in Noisy Environmental by Enhancing the Speech Signal Using ICA Approach
Authors: Ahmed Kamil Hasan Al-Ali, Bouchra Senadji, Ganesh Naik
Abstract:
We propose a system to real environmental noise and channel mismatch for forensic speaker verification systems. This method is based on suppressing various types of real environmental noise by using independent component analysis (ICA) algorithm. The enhanced speech signal is applied to mel frequency cepstral coefficients (MFCC) or MFCC feature warping to extract the essential characteristics of the speech signal. Channel effects are reduced using an intermediate vector (i-vector) and probabilistic linear discriminant analysis (PLDA) approach for classification. The proposed algorithm is evaluated by using an Australian forensic voice comparison database, combined with car, street and home noises from QUT-NOISE at a signal to noise ratio (SNR) ranging from -10 dB to 10 dB. Experimental results indicate that the MFCC feature warping-ICA achieves a reduction in equal error rate about (48.22%, 44.66%, and 50.07%) over using MFCC feature warping when the test speech signals are corrupted with random sessions of street, car, and home noises at -10 dB SNR.Keywords: noisy forensic speaker verification, ICA algorithm, MFCC, MFCC feature warping
Procedia PDF Downloads 4082610 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems
Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan
Abstract:
Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.Keywords: hybrid storage system, data mining, recurrent neural network, support vector machine
Procedia PDF Downloads 3082609 Characterization of Antibiotic Resistance in Cultivable Enterobacteriaceae Isolates from Different Ecological Niches in the Eastern Cape, South Africa
Authors: Martins A. Adefisoye, Mpaka Lindelwa, Fadare Folake, Anthony I. Okoh
Abstract:
Evolution and rapid dissemination of antibiotic resistance from one ecosystem to another has been responsible for wide-scale epidemic and endemic spreads of multi-drug resistance pathogens. This study assessed the prevalence of Enterobacteriaceae in different environmental samples, including river water, hospital effluents, abattoir wastewater, animal rectal swabs and faecal droppings, soil, and vegetables, using standard microbiological procedure. The identity of the isolates were confirmed using matrix-assisted laser desorption ionization-time of flight mass spectrophotometry (MALDI-TOF) while the isolates were profiled for resistance against a panel of 16 antibiotics using disc diffusion (DD) test, and the occurrence of resistance genes (ARG) was determined by polymerase chain reactions (PCR). Enterobacteriaceae counts in the samples range as follows: river water 4.0 × 101 – 2.0 × 104 cfu/100 ml, hospital effluents 1.5 × 103 – 3.0 × 107 cfu/100 ml, municipal wastewater 2.3 × 103 – 9.2 × 104 cfu/100 ml, faecal droppings 3.0 × 105 – 9.5 × 106 cfu/g, animal rectal swabs 3.0 × 102 – 2.9 × 107 cfu/ml, soil 0 – 1.2 × 105 cfu/g and vegetables 0 – 2.2 × 107 cfu/g. Of the 700 randomly selected presumptive isolates subjected to MALDI-TOF analysis, 129 (18.4%), 68 (9.7%), 67 (9.5%), 41 (5.9%) were E. coli, Klebsiella spp., Enterobacter spp., and Citrobacter spp. respectively while the remaining isolates belong to other genera not targeted in the study. The DD test shows resistance ranging between 91.6% (175/191) for cefuroxime and (15.2%, 29/191) for imipenem The predominant multiple antibiotic resistance phenotypes (MARP), (GM-AUG-AP-CTX-CXM-CIP-NOR-NI-C-NA-TS-T-DXT) occurred in 9 Klebsiella isolates. The multiple antibiotic resistance indices (MARI) the isolates (range 0.17–1.0) generally showed >95% had MARI above the 0.2 thresholds, suggesting that most of the isolates originate from high-risk environments with high antibiotic use and high selective pressure for the emergence of resistance. The associated ARG in the isolates include: bla TEM 61.9 (65), bla SHV 1.9 (2), bla OXA 8.6 (9), CTX-M-2 8.6 (9), CTX-M-9 6.7 (7), sul 2 26.7 (28), tet A 16.2 (17), tet M 17.1 (18), aadA 59.1 (62), strA 34.3 (36), aac(3)A 19.1 (20), (aa2)A 7.6 (8), and aph(3)-1A 10.5 (11). The results underscore the need for preventative measures to curb the proliferation of antibiotic-resistant bacteria including Enterobacteriaceae to protect public health.Keywords: enterobacteriaceae, antibiotic-resistance, MALDI-TOF, resistance genes, MARP, MARI, public health
Procedia PDF Downloads 1492608 A Machine Learning Based Method to Detect System Failure in Resource Constrained Environment
Authors: Payel Datta, Abhishek Das, Abhishek Roychoudhury, Dhiman Chattopadhyay, Tanushyam Chattopadhyay
Abstract:
Machine learning (ML) and deep learning (DL) is most predominantly used in image/video processing, natural language processing (NLP), audio and speech recognition but not that much used in system performance evaluation. In this paper, authors are going to describe the architecture of an abstraction layer constructed using ML/DL to detect the system failure. This proposed system is used to detect the system failure by evaluating the performance metrics of an IoT service deployment under constrained infrastructure environment. This system has been tested on the manually annotated data set containing different metrics of the system, like number of threads, throughput, average response time, CPU usage, memory usage, network input/output captured in different hardware environments like edge (atom based gateway) and cloud (AWS EC2). The main challenge of developing such system is that the accuracy of classification should be 100% as the error in the system has an impact on the degradation of the service performance and thus consequently affect the reliability and high availability which is mandatory for an IoT system. Proposed ML/DL classifiers work with 100% accuracy for the data set of nearly 4,000 samples captured within the organization.Keywords: machine learning, system performance, performance metrics, IoT, edge
Procedia PDF Downloads 1952607 Water Detection in Aerial Images Using Fuzzy Sets
Authors: Caio Marcelo Nunes, Anderson da Silva Soares, Gustavo Teodoro Laureano, Clarimar Jose Coelho
Abstract:
This paper presents a methodology to pixel recognition in aerial images using fuzzy $c$-means algorithm. This algorithm is a alternative to recognize areas considering uncertainties and inaccuracies. Traditional clustering technics are used in recognizing of multispectral images of earth's surface. This technics recognize well-defined borders that can be easily discretized. However, in the real world there are many areas with uncertainties and inaccuracies which can be mapped by clustering algorithms that use fuzzy sets. The methodology presents in this work is applied to multispectral images obtained from Landsat-5/TM satellite. The pixels are joined using the $c$-means algorithm. After, a classification process identify the types of surface according the patterns obtained from spectral response of image surface. The classes considered are, exposed soil, moist soil, vegetation, turbid water and clean water. The results obtained shows that the fuzzy clustering identify the real type of the earth's surface.Keywords: aerial images, fuzzy clustering, image processing, pattern recognition
Procedia PDF Downloads 4822606 Memorabilia of Suan Sunandha through Interactive User Interface
Authors: Nalinee Sophatsathit
Abstract:
The objectives of memorabilia of Suan Sunandha are to develop a general knowledge presentation about the historical royal garden through interactive graphic simulation technique and to employ high-functionality context in enhancing interactive user navigation. The approach infers non-intrusive display of relevant history in response to situational context. User’s navigation runs through the virtual reality campus, consisting of new and restored buildings. A flash back presentation of information pertaining to the history in the form of photos, paintings, and textual descriptions are displayed along each passing-by building. To keep the presentation lively, graphical simulation is created in a serendipity game play so that the user can both learn and enjoy the educational tour. The benefits of this human-computer interaction development are two folds. First, lively presentation technique and situational context modeling are developed that entail a usable paradigm of knowledge and information presentation combinations. Second, cost effective training and promotion for both internal personnel and public visitors to learn and keep informed of this historical royal garden can be furnished without the need for a dedicated public relations service. Future improvement on graphic simulation and ability based display can extend this work to be more realistic, user-friendly, and informative for all.Keywords: interactive user navigation, high-functionality context, situational context, human-computer interaction
Procedia PDF Downloads 3572605 An Empirical Study to Predict Myocardial Infarction Using K-Means and Hierarchical Clustering
Authors: Md. Minhazul Islam, Shah Ashisul Abed Nipun, Majharul Islam, Md. Abdur Rakib Rahat, Jonayet Miah, Salsavil Kayyum, Anwar Shadaab, Faiz Al Faisal
Abstract:
The target of this research is to predict Myocardial Infarction using unsupervised Machine Learning algorithms. Myocardial Infarction Prediction related to heart disease is a challenging factor faced by doctors & hospitals. In this prediction, accuracy of the heart disease plays a vital role. From this concern, the authors have analyzed on a myocardial dataset to predict myocardial infarction using some popular Machine Learning algorithms K-Means and Hierarchical Clustering. This research includes a collection of data and the classification of data using Machine Learning Algorithms. The authors collected 345 instances along with 26 attributes from different hospitals in Bangladesh. This data have been collected from patients suffering from myocardial infarction along with other symptoms. This model would be able to find and mine hidden facts from historical Myocardial Infarction cases. The aim of this study is to analyze the accuracy level to predict Myocardial Infarction by using Machine Learning techniques.Keywords: Machine Learning, K-means, Hierarchical Clustering, Myocardial Infarction, Heart Disease
Procedia PDF Downloads 2032604 Flood Monitoring in the Vietnamese Mekong Delta Using Sentinel-1 SAR with Global Flood Mapper
Authors: Ahmed S. Afifi, Ahmed Magdy
Abstract:
Satellite monitoring is an essential tool to study, understand, and map large-scale environmental changes that affect humans, climate, and biodiversity. The Sentinel-1 Synthetic Aperture Radar (SAR) instrument provides a high collection of data in all-weather, short revisit time, and high spatial resolution that can be used effectively in flood management. Floods occur when an overflow of water submerges dry land that requires to be distinguished from flooded areas. In this study, we use global flood mapper (GFM), a new google earth engine application that allows users to quickly map floods using Sentinel-1 SAR. The GFM enables the users to adjust manually the flood map parameters, e.g., the threshold for Z-value for VV and VH bands and the elevation and slope mask threshold. The composite R:G:B image results by coupling the bands of Sentinel-1 (VH:VV:VH) reduces false classification to a large extent compared to using one separate band (e.g., VH polarization band). The flood mapping algorithm in the GFM and the Otsu thresholding are compared with Sentinel-2 optical data. And the results show that the GFM algorithm can overcome the misclassification of a flooded area in An Giang, Vietnam.Keywords: SAR backscattering, Sentinel-1, flood mapping, disaster
Procedia PDF Downloads 1062603 Classifying Facial Expressions Based on a Motion Local Appearance Approach
Authors: Fabiola M. Villalobos-Castaldi, Nicolás C. Kemper, Esther Rojas-Krugger, Laura G. Ramírez-Sánchez
Abstract:
This paper presents the classification results about exploring the combination of a motion based approach with a local appearance method to describe the facial motion caused by the muscle contractions and expansions that are presented in facial expressions. The proposed feature extraction method take advantage of the knowledge related to which parts of the face reflects the highest deformations, so we selected 4 specific facial regions at which the appearance descriptor were applied. The most common used approaches for feature extraction are the holistic and the local strategies. In this work we present the results of using a local appearance approach estimating the correlation coefficient to the 4 corresponding landmark-localized facial templates of the expression face related to the neutral face. The results let us to probe how the proposed motion estimation scheme based on the local appearance correlation computation can simply and intuitively measure the motion parameters for some of the most relevant facial regions and how these parameters can be used to recognize facial expressions automatically.Keywords: facial expression recognition system, feature extraction, local-appearance method, motion-based approach
Procedia PDF Downloads 4132602 Series Connected GaN Resonant Tunneling Diodes for Multiple-Valued Logic
Authors: Fang Liu, JunShuai Xue, JiaJia Yao, XueYan Yang, ZuMao Li, GuanLin Wu, HePeng Zhang, ZhiPeng Sun
Abstract:
III-Nitride resonant tunneling diode (RTD) is one of the most promising candidates for multiple-valued logic (MVL) elements. Here, we report a monolithic integration of GaN resonant tunneling diodes to realize multiple negative differential resistance (NDR) regions for MVL application. GaN RTDs, composed of a 2 nm quantum well embedded in two 1 nm quantum barriers, are grown by plasma-assisted molecular beam epitaxy on free-standing c-plane GaN substrates. Negative differential resistance characteristic with a peak current density of 178 kA/cm² in conjunction with a peak-to-valley current ratio (PVCR) of 2.07 is observed. Statistical properties exhibit high consistency showing a peak current density standard deviation of almost 1%, laying the foundation for the monolithic integration. After complete electrical isolation, two diodes of the designed same area are connected in series. By solving the Poisson equation and Schrodinger equation in one dimension, the energy band structure is calculated to explain the transport mechanism of the differential negative resistance phenomenon. Resonant tunneling events in a sequence of the series-connected RTD pair (SCRTD) form multiple NDR regions with nearly equal peak current, obtaining three stable operating states corresponding to ternary logic. A frequency multiplier circuit achieved using this integration is demonstrated, attesting to the robustness of this multiple peaks feature. This article presents a monolithic integration of SCRTD with multiple NDR regions driven by the resonant tunneling mechanism, which can be applied to a multiple-valued logic field, promising a fast operation speed and a great reduction of circuit complexity and demonstrating a new solution for nitride devices to break through the limitations of binary logic.Keywords: GaN resonant tunneling diode, multiple-valued logic system, frequency multiplier, negative differential resistance, peak-to-valley current ratio
Procedia PDF Downloads 812601 Near Infrared Spectrometry to Determine the Quality of Milk, Experimental Design Setup and Chemometrics: Review
Authors: Meghana Shankara, Priyadarshini Natarajan
Abstract:
Infrared (IR) spectroscopy has revolutionized the way we look at materials around us. Unraveling the pattern in the molecular spectra of materials to analyze the composition and properties of it has been one of the most interesting challenges in modern science. Applications of the IR spectrometry are numerous in the field’s pharmaceuticals, health, food and nutrition, oils, agriculture, construction, polymers, beverage, fabrics and much more limited only by the curiosity of the people. Near Infrared (NIR) spectrometry is applied robustly in analyzing the solids and liquid substances because of its non-destructive analysis method. In this paper, we have reviewed the application of NIR spectrometry in milk quality analysis and have presented the modes of measurement applied in NIRS measurement setup, Design of Experiment (DoE), classification/quantification algorithms used in the case of milk composition prediction like Fat%, Protein%, Lactose%, Solids Not Fat (SNF%) along with different approaches for adulterant identification. We have also discussed the important NIR ranges for the chosen milk parameters. The performance metrics used in the comparison of the various Chemometric approaches include Root Mean Square Error (RMSE), R^2, slope, offset, sensitivity, specificity and accuracyKeywords: chemometrics, design of experiment, milk quality analysis, NIRS measurement modes
Procedia PDF Downloads 2712600 Identification of Landslide Features Using Back-Propagation Neural Network on LiDAR Digital Elevation Model
Authors: Chia-Hao Chang, Geng-Gui Wang, Jee-Cheng Wu
Abstract:
The prediction of a landslide is a difficult task because it requires a detailed study of past activities using a complete range of investigative methods to determine the changing condition. In this research, first step, LiDAR 1-meter by 1-meter resolution of digital elevation model (DEM) was used to generate six environmental factors of landslide. Then, back-propagation neural networks (BPNN) was adopted to identify scarp, landslide areas and non-landslide areas. The BPNN uses 6 environmental factors in input layer and 1 output layer. Moreover, 6 landslide areas are used as training areas and 4 landslide areas as test areas in the BPNN. The hidden layer is set to be 1 and 2; the hidden layer neurons are set to be 4, 5, 6, 7 and 8; the learning rates are set to be 0.01, 0.1 and 0.5. When using 1 hidden layer with 7 neurons and the learning rate sets to be 0.5, the result of Network training root mean square error is 0.001388. Finally, evaluation of BPNN classification accuracy by the confusion matrix shows that the overall accuracy can reach 94.4%, and the Kappa value is 0.7464.Keywords: digital elevation model, DEM, environmental factors, back-propagation neural network, BPNN, LiDAR
Procedia PDF Downloads 1442599 Assessing the Impacts of Riparian Land Use on Gully Development and Sediment Load: A Case Study of Nzhelele River Valley, Limpopo Province, South Africa
Authors: B. Mavhuru, N. S. Nethengwe
Abstract:
Human activities on land degradation have triggered several environmental problems especially in rural areas that are underdeveloped. The main aim of this study is to analyze the contribution of different land uses to gully development and sediment load on the Nzhelele River Valley in the Limpopo Province. Data was collected using different methods such as observation, field data techniques and experiments. Satellite digital images, topographic maps, aerial photographs and the sediment load static model also assisted in determining how land use affects gully development and sediment load. For data analysis, the researcher used the following methods: Analysis of Variance (ANOVA), descriptive statistics, Pearson correlation coefficient and statistical correlation methods. The results of the research illustrate that high land use activities create negative changes especially in areas that are highly fragile and vulnerable. Distinct impact on land use change was observed within settlement area (9.6 %) within a period of 5 years. High correlation between soil organic matter and soil moisture (R=0.96) was observed. Furthermore, a significant variation (p ≤ 0.6) between the soil organic matter and soil moisture was also observed. A very significant variation (p ≤ 0.003) was observed in bulk density and extreme significant variations (p ≤ 0.0001) were observed in organic matter and soil particle size. The sand mining and agricultural activities has contributed significantly to the amount of sediment load in the Nzhelele River. A high significant amount of total suspended sediment (55.3 %) and bed load (53.8 %) was observed within the agricultural area. The connection which associates the development of gullies to various land use activities determines the amount of sediment load. These results are consistent with other previous research and suggest that land use activities are likely to exacerbate the development of gullies and sediment load in the Nzhelele River Valley.Keywords: drainage basin, geomorphological processes, gully development, land degradation, riparian land use and sediment load
Procedia PDF Downloads 3072598 Subfamilial Relationships within Solanaceae as Inferred from atpB-rbcL Intergenic Spacer
Authors: Syeda Qamarunnisa, Ishrat Jamil, Abid Azhar, Zabta K. Shinwari, Syed Irtifaq Ali
Abstract:
A phylogenetic analysis of family Solanaceae was conducted using sequence data from the chloroplast intergenic atpB-rbcL spacer. Sequence data was generated from 17 species representing 09 out of 14 genera of Solanaceae from Pakistan. Cladogram was constructed using maximum parsimony method and results indicate that Solanaceae is mainly divided into two subfamilies; Solanoideae and Cestroideae. Four major clades within Solanoideae represent tribes; Physaleae, Capsiceae, Datureae and Solaneae are supported by high bootstrap value and the relationships among them are not corroborating with the previous studies. The findings established that subfamily Cestroideae comprised of three genera; Cestrum, Lycium, and Nicotiana with high bootstrap support. Position of Nicotiana inferred with atpB-rbcL sequence is congruent with traditional classification, which placed the taxa in Cestroideae. In the current study Lycium unexpectedly nested with Nicotiana with 100% bootstrap support and identified as a member of tribe Nicotianeae. Expanded sampling of other genera from Pakistan could be valuable towards improving our understanding of intrafamilial relationships within Solanaceae.Keywords: systematics, solanaceae, phylogenetics, intergenic spacer, tribes
Procedia PDF Downloads 4682597 Enhancing Learning for Research Higher Degree Students
Authors: Jenny Hall, Alison Jaquet
Abstract:
Universities’ push toward the production of high quality research is not limited to academic staff and experienced researchers. In this environment of research rich agendas, Higher Degree Research (HDR) students are increasingly expected to engage in the publishing of good quality papers in high impact journals. IFN001: Advanced Information Research Skills (AIRS) is a credit bearing mandatory coursework requirement for Queensland University of Technology (QUT) doctorates. Since its inception in 1989, this unique blended learning program has provided the foundations for new researchers to produce original and innovative research. AIRS was redeveloped in 2012, and has now been evaluated with reference to the university’s strategic research priorities. Our research is the first comprehensive evaluation of the program from the learner perspective. We measured whether the program develops essential transferrable skills and graduate capabilities to ensure best practice in the areas of publishing and data management. In particular, we explored whether AIRS prepares students to be agile researchers with the skills to adapt to different research contexts both within and outside academia. The target group for our study consisted of HDR students and supervisors at QUT. Both quantitative and qualitative research methods were used for data collection. Gathering data was by survey and focus groups with qualitative responses analyzed using NVivo. The results of the survey show that 82% of students surveyed believe that AIRS assisted their research process and helped them learn skills they need as a researcher. The 18% of respondents who expressed reservation about the benefits of AIRS were also examined to determine the key areas of concern. These included trends related to the timing of the program early in the candidature and a belief among some students that their previous research experience was sufficient for postgraduate study. New insights have been gained into how to better support HDR learners in partnership with supervisors and how to enhance learning experiences of specific cohorts, including international students and mature learners.Keywords: data management, enhancing learning experience, publishing, research higher degree students, doctoral students
Procedia PDF Downloads 2742596 Optimization of Alkali Assisted Microwave Pretreatments of Sorghum Straw for Efficient Bioethanol Production
Authors: Bahiru Tsegaye, Chandrajit Balomajumder, Partha Roy
Abstract:
The limited supply and related negative environmental consequence of fossil fuels are driving researcher for finding sustainable sources of energy. Lignocellulose biomass like sorghum straw is considered as among cheap, renewable and abundantly available sources of energy. However, lignocellulose biomass conversion to bioenergy like bioethanol is hindered due to the reluctant nature of lignin in the biomass. Therefore, removal of lignin is a vital step for lignocellulose conversion to renewable energy. The aim of this study is to optimize microwave pretreatment conditions using design expert software to remove lignin and to release maximum possible polysaccharides from sorghum straw for efficient hydrolysis and fermentation process. Sodium hydroxide concentration between 0.5-1.5%, v/v, pretreatment time from 5-25 minutes and pretreatment temperature from 120-2000C were considered to depolymerize sorghum straw. The effect of pretreatment was studied by analyzing the compositional changes before and after pretreatments following renewable energy laboratory procedure. Analysis of variance (ANOVA) was used to test the significance of the model used for optimization. About 32.8%-48.27% of hemicellulose solubilization, 53% -82.62% of cellulose release, and 49.25% to 78.29% lignin solubilization were observed during microwave pretreatment. Pretreatment for 10 minutes with alkali concentration of 1.5% and temperature of 1400C released maximum cellulose and lignin. At this optimal condition, maximum of 82.62% of cellulose release and 78.29% of lignin removal was achieved. Sorghum straw at optimal pretreatment condition was subjected to enzymatic hydrolysis and fermentation. The efficiency of hydrolysis was measured by analyzing reducing sugars by 3, 5 dinitrisylicylic acid method. Reducing sugars of about 619 mg/g of sorghum straw were obtained after enzymatic hydrolysis. This study showed a significant amount of lignin removal and cellulose release at optimal condition. This enhances the yield of reducing sugars as well as ethanol yield. The study demonstrates the potential of microwave pretreatments for enhancing bioethanol yield from sorghum straw.Keywords: cellulose, hydrolysis, lignocellulose, optimization
Procedia PDF Downloads 2712595 Unlocking the Potential of Short Texts with Semantic Enrichment, Disambiguation Techniques, and Context Fusion
Authors: Mouheb Mehdoui, Amel Fraisse, Mounir Zrigui
Abstract:
This paper explores the potential of short texts through semantic enrichment and disambiguation techniques. By employing context fusion, we aim to enhance the comprehension and utility of concise textual information. The methodologies utilized are grounded in recent advancements in natural language processing, which allow for a deeper understanding of semantics within limited text formats. Specifically, topic classification is employed to understand the context of the sentence and assess the relevance of added expressions. Additionally, word sense disambiguation is used to clarify unclear words, replacing them with more precise terms. The implications of this research extend to various applications, including information retrieval and knowledge representation. Ultimately, this work highlights the importance of refining short text processing techniques to unlock their full potential in real-world applications.Keywords: information traffic, text summarization, word-sense disambiguation, semantic enrichment, ambiguity resolution, short text enhancement, information retrieval, contextual understanding, natural language processing, ambiguity
Procedia PDF Downloads 82594 Classification of State Transition by Using a Microwave Doppler Sensor for Wandering Detection
Authors: K. Shiba, T. Kaburagi, Y. Kurihara
Abstract:
With global aging, people who require care, such as people with dementia (PwD), are increasing within many developed countries. And PwDs may wander and unconsciously set foot outdoors, it may lead serious accidents, such as, traffic accidents. Here, round-the-clock monitoring by caregivers is necessary, which can be a burden for the caregivers. Therefore, an automatic wandering detection system is required when an elderly person wanders outdoors, in which case the detection system transmits a ‘moving’ followed by an ‘absence’ state. In this paper, we focus on the transition from the ‘resting’ to the ‘absence’ state, via the ‘moving’ state as one of the wandering transitions. To capture the transition of the three states, our method based on the hidden Markov model (HMM) is built. Using our method, the restraint where the ‘resting’ state and ‘absence’ state cannot be transmitted to each other is applied. To validate our method, we conducted the experiment with 10 subjects. Our results show that the method can classify three states with 0.92 accuracy.Keywords: wander, microwave Doppler sensor, respiratory frequency band, the state transition, hidden Markov model (HMM).
Procedia PDF Downloads 1832593 Influence of Information Technology on Financial Management Practices in Secondary School: For National Transormation in Zone C Senatorional District of Benue State
Authors: Eru Ihie Joel
Abstract:
This study was carried out to investigate the influence of information technology on financial management practice in secondary schools for transformation. In Zone C Senatorial District of Benue state. The study answered four research questions and tested four hypotheses. Related literature was reviewed to show the gap to be filled in the study. The population was 196 respondents made up of principals and finance clerks of secondary schools. The descriptive survey was adopted for the study. A structured 20 item questionnaire (IITFMPSQ) was constructed and used to collect date for the study. Data obtained were analyzed using descriptive and inferential statistic. Mean and standard deviation were used to analyze the research question while the chi- square (x2) test of goodness of fit was used to test the hypothesis. The major findings revealed that the use of computer system significantly influences budgeting in secondary schools in zone senatorial district of Benue State for transformation. It was also established that the use of internet facilities influences the funding of secondary schools for transformation in the zone. Based on the findings of the study, it was recommended among other things that administrators and teachers in schools should be trained to make effective use of the computer in budgeting so as to facilitate delegations, control, evaluation, accountability for transformation. It was further suggested that the study be replicated on the effective use of information communication teaching (ITC) in teaching and learning in secondary school for transformation.Keywords: influence, finance, management, technology
Procedia PDF Downloads 3632592 Phenotypic Characterization of Desi Naked Neck Chicken and Its Association with Insulin-Like Growth Factor-I (IGF-I) Gene Polymorphism in Pakistan
Authors: Akbar Nawaz Khan, Abdul Ghaffar, Muhammad Naeem Riaz
Abstract:
The study was conducted to investigate the phenotypic features, morphometry and production potentialities of indigenous naked neck chicken (NN) of Pakistan under intensive management condition. A total of 35 NN chicks were randomly selected, and the experiment was performed at Poultry and wildlife research section NARC Islamabad for a period of 22 weeks. The predominant plumage color was black and golden while skin color was observed white. The average shank length, leg length, thigh length, keel length, chest breadth, head width, wing space, wing length, body length, body girth, body height and pubic bone width in adult males and females were 69.19 ± 3.34mm, 117.93 ± 4.42mm, 117.93 ± 4.42mm, 90.87 ± 6.53mm, 95.03 ± 4.56mm, 49.77 ± 2.53mm, 30.63 ± 1.50cm, 27.24 ± 2.71cm, 18.88 ± 0.65cm, 17.77 ± 1.01cm, 25.96 ± 0.56cm, 47.81 ± 1.41cm and 35.69 ± 4.09mm respectively. The average age and live body weight of NN chicken at sexual maturity were recorded as 165.85 days and 1269.38 g. While hen-day egg production of NN was recorded as 45%. The present study was aimed to investigate the existence of polymorphism at IGF-I gene in indigenous naked neck chicken through PCR based Restriction Fragment Length Polymorphism. Based on restriction analysis using Hinf I restriction enzyme, three genotypes were detected designated as AA, AC, and CC. Restriction analysis of PCR amplified product showed the presence of DNA fragments of 622, 378, 244 and 191, (genotypes). The PCR-RFLP analysis is easy, cost effective method which permits the easy characterization of IGF-I gene. This showed the investigated IGF-I genes can serve as good molecular markers for marker assisted selection (MAS) concerning growth related traits in chicken.Keywords: Desi chicken, naked neck, morphology, morphometry, production potential, egg traits, egg geometry, IGF-I, growth, PCR- RFLP, chicken
Procedia PDF Downloads 3892591 The Perception on 21st Century Skills of Nursing Instructors and Nursing Students at Boromarajonani College of Nursing, Chonburi
Authors: Kamolrat Turner, Somporn Rakkwamsuk, Ladda Leungratanamart
Abstract:
The aim of this descriptive study was to determine the perception of 21st century skills among nursing professors and nursing students at Boromarajonani College of Nursing, Chonburi. A total of 38 nursing professors and 75 second year nursing students took part in the study. Data were collected by 21st century skills questionnaires comprised of 63 items. Descriptive statistics were used to describe the findings. The results have shown that the overall mean scores of the perception of nursing professors on 21st century skills were at a high level. The highest mean scores were recorded for computing and ICT literacy, and career and leaning skills. The lowest mean scores were recorded for reading and writing and mathematics. The overall mean scores on perception of nursing students on 21st century skills were at a high level. The highest mean scores were recorded for computer and ICT literacy, for which the highest item mean scores were recorded for competency on computer programs. The lowest mean scores were recorded for the reading, writing, and mathematics components, in which the highest item mean score was reading Thai correctly, and the lowest item mean score was English reading and translate to other correctly. The findings from this study have shown that the perceptions of nursing professors were consistent with those of nursing students. Moreover, any activities aiming to raise capacity on English reading and translate information to others should be taken into the consideration.Keywords: 21st century skills, perception, nursing instructor, nursing student
Procedia PDF Downloads 3162590 Examining Audiology Students: Clinical Reasoning Skills When Using Virtual Audiology Cases Aided With no Collaboration, Live Collaboration, and Virtual Collaboration
Authors: Ramy Shaaban
Abstract:
The purpose of this study was to examine the difference in clinical reasoning skills of students when using virtual audiology cases with and without collaborative assistance from major learning approaches important to clinical reasoning skills and computer-based learning models: Situated Learning Theory, Social Development Theory, Scaffolding, and Collaborative Learning. A quasi-experimental design was conducted at two United States universities to examine whether there is a significant difference in clinical reasoning skills between three treatment groups using IUP Audiosim software. Two computer-based audiology case simulations were developed, and participants were randomly placed into the three groups: no collaboration, virtual collaboration, and live collaboration. The clinical reasoning data were analyzed using One-Way ANOVA and Tukey posthoc analyses. The results show that there was a significant difference in clinical reasoning skills between the three treatment groups. The score obtained by the no collaboration group was significantly less than the scores obtained by the virtual and live collaboration groups. Collaboration, whether virtual or in person, has a positive effect on students’ clinical reasoning. These results with audiology students indicate that combining collaboration models with scaffolding and embedding situated learning and social development theories into the design of future virtual patients has the potential to improve students’ clinical reasoning skills.Keywords: clinical reasoning, virtual patients, collaborative learning, scaffolding
Procedia PDF Downloads 2142589 Myers-Briggs Type Index Personality Type Classification Based on an Individual’s Spotify Playlists
Authors: Sefik Can Karakaya, Ibrahim Demir
Abstract:
In this study, the relationship between musical preferences and personality traits has been investigated in terms of Spotify audio analysis features. The aim of this paper is to build such a classifier capable of segmenting people into their Myers-Briggs Type Index (MBTI) personality type based on their Spotify playlists. Music takes an important place in the lives of people all over the world and online music streaming platforms make it easier to reach musical contents. In this context, the motivation to build such a classifier is allowing people to gain access to their MBTI personality type and perhaps for more reliably and more quickly. For this purpose, logistic regression and deep neural networks have been selected for classifier and their performances are compared. In conclusion, it has been found that musical preferences differ statistically between personality traits, and evaluated models are able to distinguish personality types based on given musical data structure with over %60 accuracy rate.Keywords: myers-briggs type indicator, music psychology, Spotify, behavioural user profiling, deep neural networks, logistic regression
Procedia PDF Downloads 144