Search results for: structural intensity
3543 Reliability Based Topology Optimization: An Efficient Method for Material Uncertainty
Authors: Mehdi Jalalpour, Mazdak Tootkaboni
Abstract:
We present a computationally efficient method for reliability-based topology optimization under material properties uncertainty, which is assumed to be lognormally distributed and correlated within the domain. Computational efficiency is achieved through estimating the response statistics with stochastic perturbation of second order, using these statistics to fit an appropriate distribution that follows the empirical distribution of the response, and employing an efficient gradient-based optimizer. The proposed algorithm is utilized for design of new structures and the changes in the optimized topology is discussed for various levels of target reliability and correlation strength. Predictions were verified thorough comparison with results obtained using Monte Carlo simulation.Keywords: material uncertainty, stochastic perturbation, structural reliability, topology optimization
Procedia PDF Downloads 6053542 Impact of Solar Radiation Effects on the Physicochemical Properties of Unformulated Polyethylene (PE) Plastic Film
Authors: A. Adelhafidhi, I. M. Babaghayou, S. F. Chabira, M. Sebaa
Abstract:
This study deals with the photodegradation of unformulated polyethylene films for greenhouse covering. The UV range of solar light appears as the most deleterious factor of plastic degradation in outdoor exposure. The reasons of this photosensitivity are structural defects which are light-absorbing. The use of FTIR as an investigation tool has revealed that the material reacts with surrounding oxygen via a photooxidation process. Although the photochemical process is quite complex, it appears through this study than crosslinking and chain scissions are the most important events taking place during aging These two key reactions change irremediably the average molecular weight affecting thus drastically the mechanical properties and reducing, in the same way, the service lifetime of the films.Keywords: polyethylene, films, unformulated, FTIR, ageing
Procedia PDF Downloads 3683541 Fe-Doped Graphene Nanoparticles for Gas Sensing Applications
Authors: Shivani A. Singh, Pravin S. More
Abstract:
In the present inspection, we indicate the falsification of Fe-doped graphene nanoparticles by modified Hummers method. Structural and physiochemical properties of the resulting pallets were explored with the help of ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), Photoluminescence spectroscopy (PL) for graphene sample exhibits absorption peaks ~248nm. Pure graphene shows PL peak at 348 nm. After doping of Fe with graphene the PL peak shifted from 348 nm to 332 nm. The oxidation degree, i.e. the relative amount of oxygen functional groups was estimated from the relative intensities of the oxygen related bands (ORB) in the FTIR measurements. These analyses show that this modified material can be useful for gas sensing applications and to be used in diverse areas.Keywords: chemical doping, graphene, gas sensing, sensing
Procedia PDF Downloads 2183540 Influence of Some Technological Parameters on the Content of Voids in Composite during On-Line Consolidation with Filament Winding Technology
Authors: M. Stefanovska, B. Samakoski, S. Risteska, G. Maneski
Abstract:
In this study was performed in situ consolidation of polypropylene matrix/glass reinforced roving by combining heating systems and roll pressing. The commingled roving during hoop winding was winded on a cylindrical mandrel. The work also presents the advances made in the processing of these materials into composites by conventional technique filament winding. Experimental studies were performed with changing parameters – temperature, pressure and speed. Finally, it describes the investigation of the optimal processing conditions that maximize the mechanical properties of the composites. These properties are good enough for composites to be used as engineering materials in many structural applications.Keywords: commingled fiber, consolidation heat, filament winding, voids
Procedia PDF Downloads 2663539 Graph Cuts Segmentation Approach Using a Patch-Based Similarity Measure Applied for Interactive CT Lung Image Segmentation
Authors: Aicha Majda, Abdelhamid El Hassani
Abstract:
Lung CT image segmentation is a prerequisite in lung CT image analysis. Most of the conventional methods need a post-processing to deal with the abnormal lung CT scans such as lung nodules or other lesions. The simplest similarity measure in the standard Graph Cuts Algorithm consists of directly comparing the pixel values of the two neighboring regions, which is not accurate because this kind of metrics is extremely sensitive to minor transformations such as noise or other artifacts problems. In this work, we propose an improved version of the standard graph cuts algorithm based on the Patch-Based similarity metric. The boundary penalty term in the graph cut algorithm is defined Based on Patch-Based similarity measurement instead of the simple intensity measurement in the standard method. The weights between each pixel and its neighboring pixels are Based on the obtained new term. The graph is then created using theses weights between its nodes. Finally, the segmentation is completed with the minimum cut/Max-Flow algorithm. Experimental results show that the proposed method is very accurate and efficient, and can directly provide explicit lung regions without any post-processing operations compared to the standard method.Keywords: graph cuts, lung CT scan, lung parenchyma segmentation, patch-based similarity metric
Procedia PDF Downloads 1693538 3D Liver Segmentation from CT Images Using a Level Set Method Based on a Shape and Intensity Distribution Prior
Authors: Nuseiba M. Altarawneh, Suhuai Luo, Brian Regan, Guijin Tang
Abstract:
Liver segmentation from medical images poses more challenges than analogous segmentations of other organs. This contribution introduces a liver segmentation method from a series of computer tomography images. Overall, we present a novel method for segmenting liver by coupling density matching with shape priors. Density matching signifies a tracking method which operates via maximizing the Bhattacharyya similarity measure between the photometric distribution from an estimated image region and a model photometric distribution. Density matching controls the direction of the evolution process and slows down the evolving contour in regions with weak edges. The shape prior improves the robustness of density matching and discourages the evolving contour from exceeding liver’s boundaries at regions with weak boundaries. The model is implemented using a modified distance regularized level set (DRLS) model. The experimental results show that the method achieves a satisfactory result. By comparing with the original DRLS model, it is evident that the proposed model herein is more effective in addressing the over segmentation problem. Finally, we gauge our performance of our model against matrices comprising of accuracy, sensitivity and specificity.Keywords: Bhattacharyya distance, distance regularized level set (DRLS) model, liver segmentation, level set method
Procedia PDF Downloads 3133537 Bio-Functional Polymeric Protein Based Materials Utilized for Soft Tissue Engineering Application
Authors: Er-Yuan Chuang
Abstract:
Bio-mimetic matters have biological functionalities. This might be valuable in the development of versatile biomaterials. At biological fields, protein-based materials might be components to form a 3D network of extracellular biomolecules, containing growth factors. Also, the protein-based biomaterial provides biochemical and structural assistance of adjacent cells. In this study, we try to prepare protein based biomaterial, which was harvested from living animal. We analyzed it’s chemical, physical and biological property in vitro. Besides, in vivo bio-interaction of the prepared biomimetic matrix was tested in an animal model. The protein-based biomaterial has degradability and biocompatibility. This development could be used for tissue regenerations and be served as platform technologies.Keywords: protein based, in vitro study, in vivo study, biomaterials
Procedia PDF Downloads 1893536 Mercaptopropionic Acid (MPA) Modifying Chitosan-Gold Nano Composite for γ-Aminobutyric Acid Analysis Using Raman Scattering
Authors: Bingjie Wang, Su-Yeon Kwon, Ik-Joong Kang
Abstract:
The goal of this experiment is to develop a sensor that can quickly check the concentration by using the nanoparticles made by chitosan and gold. Using chitosan nanoparticles crosslinking with sodium tripolyphosphate(TPP) is the first step to form the chitosan nanoparticles, which would be covered with the gold sequentially. The size of the fabricated product was around 100nm. Based on the method that the sulfur end of the MPA linked to gold can form the very strong S–Au bond, and the carboxyl group, the other end of the MPA, can easily absorb the GABA. As for the GABA, what is the primary inhibitory neurotransmitter in the mammalian central nervous system in the human body. It plays such significant role in reducing neuronal excitability pass through the nervous system. A Surface-enhanced Raman Scattering (SERS) as the principle for enhancing Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures is used to detect the concentration change of γ-Aminobutyric Acid (GABA). When the system is formed, it generated SERS, which made a clear difference in the intensity of Raman scattering within the range of GABA concentration. So it is obtained from the experiment that the calibration curve according to the GABA concentration relevant with the SERS scattering. In this study, DLS, SEM, FT-IR, UV, SERS were used to analyze the products to obtain the conclusion.Keywords: mercaptopropionic acid, chitosan-gold nanoshell, γ-aminobutyric acid, surface-enhanced raman scattering
Procedia PDF Downloads 2753535 Cognitive Stereotype Behaviors and Their Imprinting on the Individuals with Autism
Authors: Li-Ju Chen, Hsiang-Lin Chan, Hsin-Yi Kathy Cheng, Hui-Ju Chen
Abstract:
Stereotype behavior is one of the maladaptive syndromes of the individuals with autism. Most of the previous researches focused on the stereotype behavior with stimulating type, while less on the stereotype behavior about cognition (This research names it cognitive stereotype behavior; CSB). This research explored CSB and the rationality to explain CSB with imprinting phenomenon. After excluding the samples without CSB described, the data that came from 271 individuals with autism were recruited and analyzed with quantitative and qualitative analyses. This research discovers that : (1) Most of the individuals with autism originally came out CSB at 3 years old and more than a half of them appeared before 4 years old; The average age which firstly came out CSB was 6.10 years old, the average time insisting or ossifying CSB was 31.71 minutes each time and the average longest time which they last was 358.35 minutes (5.97 hours). (2) CSB demonstrates various aspects, this research classified them into 4 fields with 26 categories. They were categorized into sudden CSB or habitual CSB by imprinting performance. (3) Most of the autism commented that their CSBs were not necessary but they could not control them well. One-third of them appeared CSB suddenly and the first occurrence accompanied a strong emotional or behavioral response. (4) Whether respondent is the person with autism himself/herself or not was the critical element: on the awareness of the severity degree, disturbance degree, and the emotional /behavioral intensity at the first-time CSB happened. This study concludes imprinting could reasonably explain the phenomenon CSB forms. There are implications leading the individuals with autism and their family to develop coping strategies to promote individuals with autism having a better learning accomplishment and life quality in their future.Keywords: autism, cognitive stereotype behavior, constructivism, imprinting, stereotype
Procedia PDF Downloads 1303534 Experimental Device for Fluorescence Measurement by Optical Fiber Combined with Dielectrophoretic Sorting in Microfluidic Chips
Authors: Jan Jezek, Zdenek Pilat, Filip Smatlo, Pavel Zemanek
Abstract:
We present a device that combines fluorescence spectroscopy with fiber optics and dielectrophoretic micromanipulation in PDMS (poly-(dimethylsiloxane)) microfluidic chips. The device allows high speed detection (in the order of kHz) of the fluorescence signal, which is coming from the sample by an inserted optical fiber, e.g. from a micro-droplet flow in a microfluidic chip, or even from the liquid flowing in the transparent capillary, etc. The device uses a laser diode at a wavelength suitable for excitation of fluorescence, excitation and emission filters, optics for focusing the laser radiation into the optical fiber, and a highly sensitive fast photodiode for detection of fluorescence. The device is combined with dielectrophoretic sorting on a chip for sorting of micro-droplets according to their fluorescence intensity. The electrodes are created by lift-off technology on a glass substrate, or by using channels filled with a soft metal alloy or an electrolyte. This device found its use in screening of enzymatic reactions and sorting of individual fluorescently labelled microorganisms. The authors acknowledge the support from the Grant Agency of the Czech Republic (GA16-07965S) and Ministry of Education, Youth and Sports of the Czech Republic (LO1212) together with the European Commission (ALISI No. CZ.1.05/2.1.00/01.0017).Keywords: dielectrophoretic sorting, fiber optics, laser, microfluidic chips, microdroplets, spectroscopy
Procedia PDF Downloads 7193533 Catalytic Study of Methanol-to-Propylene Conversion over Nano-Sized HZSM-5
Authors: Jianwen Li, Hongfang Ma, Weixin Qian, Haitao Zhang, Weiyong Ying
Abstract:
Methanol-to-propylene conversion was carried out in a continuous-flow fixed-bed reactor over nano-sized HZSM-5 zeolites. The HZSM-5 catalysts were synthesized with different Si/Al ratio and silicon sources, and treated with NaOH. The structural property, morphology, and acidity of catalysts were measured by XRD, N2 adsorption, FE-SEM, TEM, and NH3-TPD. The results indicate that the increment of Si/Al ratio decreased the acidity of catalysts and then improved propylene selectivity, while silicon sources had slight impact on the acidity but affected the product distribution. The desilication after alkali treatment could increase intracrystalline mesopores and enhance propylene selectivity.Keywords: alkali treatment, HZSM-5, methanol-to-propylene, synthesis condition
Procedia PDF Downloads 2173532 Structural, Optical and Electrical Thin-Film Characterization Using Graphite-Bioepoxy Composite Materials
Authors: Anika Zafiah M. Rus, Nur Munirah Abdullah, M. F. L. Abdullah
Abstract:
The fabrication and characterization of composite films of graphite- bioepoxy is described. Free-standing thin films of ~0.1 mm thick are prepared using a simple solution mixing with mass proportion of 7/3 (bioepoxy/graphite) and drop casting at room temperature. Fourier transform infra-red spectroscopy (FTIR) and Ultraviolet-visible (UV-vis) spectrophotometer are performed to evaluate the changes in chemical structure and adsorption spectra arising with the increasing of graphite weight loading (wt.%) into the biopolymer matrix. The morphologic study shows a homogeneously dispersed and strong particle bonding between the graphite and the bioepoxy, with conductivity of the film 103 S/m, confirming the efficiency of the processes.Keywords: absorbance peak, biopolymer, graphite- bioepoxy composites, particle bonding
Procedia PDF Downloads 5163531 Brain Tumor Segmentation Based on Minimum Spanning Tree
Authors: Simeon Mayala, Ida Herdlevær, Jonas Bull Haugsøen, Shamundeeswari Anandan, Sonia Gavasso, Morten Brun
Abstract:
In this paper, we propose a minimum spanning tree-based method for segmenting brain tumors. The proposed method performs interactive segmentation based on the minimum spanning tree without tuning parameters. The steps involve preprocessing, making a graph, constructing a minimum spanning tree, and a newly implemented way of interactively segmenting the region of interest. In the preprocessing step, a Gaussian filter is applied to 2D images to remove the noise. Then, the pixel neighbor graph is weighted by intensity differences and the corresponding minimum spanning tree is constructed. The image is loaded in an interactive window for segmenting the tumor. The region of interest and the background are selected by clicking to split the minimum spanning tree into two trees. One of these trees represents the region of interest and the other represents the background. Finally, the segmentation given by the two trees is visualized. The proposed method was tested by segmenting two different 2D brain T1-weighted magnetic resonance image data sets. The comparison between our results and the standard gold segmentation confirmed the validity of the minimum spanning tree approach. The proposed method is simple to implement and the results indicate that it is accurate and efficient.Keywords: brain tumor, brain tumor segmentation, minimum spanning tree, segmentation, image processing
Procedia PDF Downloads 1223530 Synthesis, Structure and Spectroscopic Properties of Oxo-centered Carboxylate-Bridged Triiron Complexes and a Deca Ferric Wheel
Authors: K. V. Ramanaiah, R. Jagan, N. N. Murthy
Abstract:
Trinuclear oxo-centered carboxylate-bridged iron complexes, [Fe3(µ3-O)(µ2-O2CR)L¬3]+/0 (where R = alkyl or aryl; L = H2O, ROH, Py, solvent) have attracted tremendous attention because of their interesting structural and magnetic properties, exhibit mixed-valent trapped and de-trapped states, and have bioinorganic relevance. The presence of a trinuclear iron binding center has been implicated in the formation of both bacterial and human iron storage protein, Ft. They are used as precursors for the synthesis of models for the active-site structures of non-heme proteins, hemerythrin (Hr), methane monooxygenase (MMO) and polyiron storage protein, ferritin (Ft). Used as important building blocks for the design and synthesis of supramolecules this can exhibit single molecular magnetism (SMM). Such studies have often employed simple and compact carboxylate ligands and the use of bulky carboxylates is scarce. In the present study, we employed two different type of sterically hindered carboxylates and synthesized a series of novel oxo-centered, carboxylate-bridged triiron complexes of general formula [Fe3(O)(O2CCPh3)6L3]X (L = H2O, 1; py, 2; 4-NMe2py, 3; X = ClO4; L = CH3CN, 4; X = FeCl4) and [Fe3(O)(O2C-anth)6L3]X (L = H2O, 5; X = ClO4; L = CH3OH, 6; X = Cl). Along with complex [Fe(OMe)2(O2CCPh3)]10, 7 was prepared by the self-assemble of anhydrous FeCl3, sodium triphenylacetate and sodium methoxide at ratio of 1:1:2 in CH3OH. The Electronic absorption spectra of these complexes 1-6, in CH2Cl2 display weak bands at near FTIR region (970-1135 nm, ε > 15M-1cm-1). For complex 7, one broad band centered at ~670nm and also an additional intense charge transfer (L→M or O→M) bands between 300 to 550nm observed for all the complexes. Paramagnetic 1H NMR is introduced as a good probe for the characterization of trinuclear oxo - cantered iron compounds in solution when the L ligand coordinated to iron varies as: H2O, py, 4-NMe2py, and CH3OH. The solution state magnetic moment values calculated by using Evans method for all the complexes and also solid state magnetic moment value of complex, 7 was calculated by VSM method, which is comparable with solution state value. These all magnetic moment values indicate there is a spin exchange process through oxo and carboxylate bridges in between two irons (d5). The ESI-mass data complement the data obtained from single crystal X-ray structure. Further purity of the compounds was confirmed by elemental analysis. Finally, structural determination of complexes 1, 3, 4, 5, 6 and 7 were unambiguously conformed by single crystal x-ray studies.Keywords: decanuclear, paramagnetic NMR, trinuclear, uv-visible
Procedia PDF Downloads 3483529 The Properties of Na2CO3 and Ti Hybrid Modified LM 6 Alloy Using Ladle Metallurgy
Authors: M. N. Ervina Efzan, H. J. Kong, C. K. Kok
Abstract:
The present work deals with a study on the influences of hybrid modifier on LM 6 added through ladle metallurgy. In this study, LM 6 served as the reference alloy while Na2CO3 and Ti powders were used as the hybrid modifier. The effects of hybrid modifier on the micro structural enhancement of LM 6 were investigated using optical microscope (OM) and Scanning Electron Microscope (SEM). The results showed fragmented Si-rich needles and strength enhanced petal/ globular-like structures without obvious formation of soft primary α-Al and β-Fe-rich inter metallic compound (IMC) after the hybrid modification. Hardness test was conducted to examine the mechanical improvement of hybrid modified LM 6. 10% of hardness improvement was recorded in the hybrid modified LM 6 through ladle metallurgy.Keywords: Al-Si, hybrid modifier, ladle metallurgy, hardness
Procedia PDF Downloads 3953528 PbLi Activation Due to Corrosion Products in WCLL BB (EU-DEMO) and Its Impact on Reactor Design and Recycling
Authors: Nicole Virgili, Marco Utili
Abstract:
The design of the Breeding Blanket in Tokamak fusion energy systems has to guarantee sufficient availability in addition to its functions, that are, tritium breeding self-sufficiency, power extraction and shielding (the magnets and the VV). All these function in the presence of extremely harsh operating conditions in terms of heat flux and neutron dose as well as chemical environment of the coolant and breeder that challenge structural materials (structural resistance and corrosion resistance). The movement and activation of fluids from the BB to the Ex-vessel components in a fusion power plant have an important radiological consideration because flowing material can carry radioactivity to safety-critical areas. This includes gamma-ray emission from activated fluid and activated corrosion products, and secondary activation resulting from neutron emission, with implication for the safety of maintenance personnel and damage to electrical and electronic equipment. In addition to the PbLi breeder activation, it is important to evaluate the contribution due to the activated corrosion products (ACPs) dissolved in the lead-lithium eutectic alloy, at different concentration levels. Therefore, the purpose of the study project is to evaluate the PbLi activity utilizing the FISPACT II inventory code. Emphasis is given on how the design of the EU-DEMO WCLL, and potential recycling of the breeder material will be impacted by the activation of PbLi and the associated active corrosion products (ACPs). For this scope the following Computational Tools, Data and Geometry have been considered: • Neutron source: EU-DEMO neutron flux < 1014/cm2/s • Neutron flux distribution in equatorial breeding blanket module (BBM) #13 in the WCLL BB outboard central zone, which is the most activated zone, with the aim to introduce a conservative component utilizing MNCP6. • The recommended geometry model: 2017 EU DEMO CAD model. • Blanket Module Material Specifications (Composition) • Activation calculations for different ACP concentration levels in the PbLi breeder, with a given chemistry in stationary equilibrium conditions, using FISPACT II code. Results suggest that there should be a waiting time of about 10 years from the shut-down (SD) to be able to safely manipulate the PbLi for recycling operations with simple shielding requirements. The dose rate is mainly given by the PbLi and the ACP concentration (x1 or x 100) does not shift the result. In conclusion, the results show that there is no impact on PbLi activation due to ACPs levels.Keywords: activation, corrosion products, recycling, WCLL BB., PbLi
Procedia PDF Downloads 1313527 Modeling of in 738 LC Alloy Mechanical Properties Based on Microstructural Evolution Simulations for Different Heat Treatment Conditions
Authors: M. Tarik Boyraz, M. Bilge Imer
Abstract:
Conventionally cast nickel-based super alloys, such as commercial alloy IN 738 LC, are widely used in manufacturing of industrial gas turbine blades. With carefully designed microstructure and the existence of alloying elements, the blades show improved mechanical properties at high operating temperatures and corrosive environment. The aim of this work is to model and estimate these mechanical properties of IN 738 LC alloy solely based on simulations for projected heat treatment conditions or service conditions. The microstructure (size, fraction and frequency of gamma prime- γ′ and carbide phases in gamma- γ matrix, and grain size) of IN 738 LC needs to be optimized to improve the high temperature mechanical properties by heat treatment process. This process can be performed at different soaking temperature, time and cooling rates. In this work, micro-structural evolution studies were performed experimentally at various heat treatment process conditions, and these findings were used as input for further simulation studies. The operation time, soaking temperature and cooling rate provided by experimental heat treatment procedures were used as micro-structural simulation input. The results of this simulation were compared with the size, fraction and frequency of γ′ and carbide phases, and grain size provided by SEM (EDS module and mapping), EPMA (WDS module) and optical microscope for before and after heat treatment. After iterative comparison of experimental findings and simulations, an offset was determined to fit the real time and theoretical findings. Thereby, it was possible to estimate the final micro-structure without any necessity to carry out the heat treatment experiment. The output of this microstructure simulation based on heat treatment was used as input to estimate yield stress and creep properties. Yield stress was calculated mainly as a function of precipitation, solid solution and grain boundary strengthening contributors in microstructure. Creep rate was calculated as a function of stress, temperature and microstructural factors such as dislocation density, precipitate size, inter-particle spacing of precipitates. The estimated yield stress values were compared with the corresponding experimental hardness and tensile test values. The ability to determine best heat treatment conditions that achieve the desired microstructural and mechanical properties were developed for IN 738 LC based completely on simulations.Keywords: heat treatment, IN738LC, simulations, super-alloys
Procedia PDF Downloads 2483526 Implementing Internet of Things through Building Information Modelling in Order to Assist with the Maintenance Stage of Commercial Buildings
Authors: Ushir Daya, Zenadene Lazarus, Dimelle Moodley, Ehsan Saghatforoush
Abstract:
It was found through literature that there is a lack of implementation of the Internet of Things (IoT) incorporated into Building Information Modelling (BIM) in South Africa. The research aims to find if the implementation of IoT into BIM will make BIM more useful during the maintenance stage of buildings and assist facility managers when doing their job. The research will look at the existing problematic areas with building information modelling, specifically BIM 7D. This paper will look at the capabilities of IoT and what issues IoT will be able to resolve in BIM software, as well as how IoT into BIM will assist facility managers and if such an implementation will make a facility manager's job more efficient.Keywords: internet of things, building information modeling, facilities management, structural health monitoring
Procedia PDF Downloads 2083525 Influence of Slenderness Ratio on the Ductility of Reinforced Concrete Portal Structures
Authors: Kahil Amar, Nekmouche Aghiles, Titouche Billal, Hamizi Mohand, Hannachi Naceur Eddine
Abstract:
The ductility is an important parameter in the nonlinear behavior of portal structures reinforced concrete. It may be explained by the ability of the structure to deform in the plastic range, or the geometric characteristics in the map may influence the overall ductility. Our study is based on the influence of geometric slenderness (Lx / Ly) on the overall ductility of these structures, a study is made on a structure has 05 floors with varying the column section of 900 cm², 1600 cm² and 1225 cm². A slight variation in global ductility is noticed as (Lx/Ly) varies; however, column sections can control satisfactorily the plastic behavior of buildings.Keywords: ductility, nonlinear behavior, pushover analysis, geometric slenderness, structural behavior
Procedia PDF Downloads 3893524 Optimization of Structures Subjected to Earthquake
Authors: Alireza Lavaei, Alireza Lohrasbi, Mohammadali M. Shahlaei
Abstract:
To reduce the overall time of structural optimization for earthquake loads two strategies are adopted. In the first strategy, a neural system consisting self-organizing map and radial basis function neural networks, is utilized to predict the time history responses. In this case, the input space is classified by employing a self-organizing map neural network. Then a distinct RBF neural network is trained in each class. In the second strategy, an improved genetic algorithm is employed to find the optimum design. A 72-bar space truss is designed for optimal weight using exact and approximate analysis for the El Centro (S-E 1940) earthquake loading. The numerical results demonstrate the computational advantages and effectiveness of the proposed method.Keywords: optimization, genetic algorithm, neural networks, self-organizing map
Procedia PDF Downloads 3113523 MAS Capped CdTe/ZnS Core/Shell Quantum Dot Based Sensor for Detection of Hg(II)
Authors: Dilip Saikia, Suparna Bhattacharjee, Nirab Adhikary
Abstract:
In this piece of work, we have presented the synthesis and characterization of CdTe/ZnS core/shell (CS) quantum dots (QD). CS QDs are used as a fluorescence probe to design a simple cost-effective and ultrasensitive sensor for the detection of toxic Hg(II) in an aqueous medium. Mercaptosuccinic acid (MSA) has been used as a capping agent for the synthesis CdTe/ZnS CS QD. Photoluminescence quenching mechanism has been used in the detection experiment of Hg(II). The designed sensing technique shows a remarkably low detection limit of about 1 picomolar (pM). Here, the CS QDs are synthesized by a simple one-pot aqueous method. The synthesized CS QDs are characterized by using advanced diagnostics tools such as UV-vis, Photoluminescence, XRD, FTIR, TEM and Zeta potential analysis. The interaction between CS QDs and the Hg(II) ions results in the quenching of photoluminescence (PL) intensity of QDs, via the mechanism of excited state electron transfer. The proposed mechanism is explained using cyclic voltammetry and zeta potential analysis. The designed sensor is found to be highly selective towards Hg (II) ions. The analysis of the real samples such as drinking water and tap water has been carried out and the CS QDs show remarkably good results. Using this simple sensing method we have designed a prototype low-cost electronic device for the detection of Hg(II) in an aqueous medium. The findings of the experimental results of the designed sensor is crosschecked by using AAS analysis.Keywords: photoluminescence, quantum dots, quenching, sensor
Procedia PDF Downloads 2663522 Electronic, Magnetic and Optic Properties in Halide Perovskites CsPbX3 (X= F, Cl, I)
Authors: B. Bouadjemi, S. Bentata, T. Lantri, Souidi Amel, W.Bensaali, A. Zitouni, Z. Aziz
Abstract:
We performed first-principle calculations, the full-potential linearized augmented plane wave (FP-LAPW) method is used to calculate structural, optoelectronic and magnetic properties of cubic halide perovskites CsPbX3 (X= F,I). We employed for this study the GGA approach and for exchange is modeled using the modified Becke-Johnson (mBJ) potential to predicting the accurate band gap of these materials. The optical properties (namely: the real and imaginary parts of dielectric functions, optical conductivities and absorption coefficient absorption make this halide perovskites promising materials for solar cells applications.Keywords: halide perovskites, mBJ, solar cells, FP-LAPW, optoelectronic properties, absorption coefficient
Procedia PDF Downloads 3223521 Addressing the Oracle Problem: Decentralized Authentication in Blockchain-Based Green Hydrogen Certification
Authors: Volker Wannack
Abstract:
The aim of this paper is to present a concept for addressing the Oracle Problem in the context of hydrogen production using renewable energy sources. The proposed approach relies on the authentication of the electricity used for hydrogen production by multiple surrounding actors with similar electricity generation facilities, which attest to the authenticity of the electricity production. The concept introduces an Authenticity Score assigned to each certificate, as well as a Trust Score assigned to each witness. Each certificate must be attested by different actors with a sufficient Trust Score to achieve an Authenticity Score above a predefined threshold, thereby demonstrating that the produced hydrogen is indeed "green."Keywords: hydrogen, blockchain, sustainability, structural change
Procedia PDF Downloads 643520 Analyzing the Technology Affecting on the Social Integration of Students at University
Authors: Sujit K. Basak, Simon Collin
Abstract:
The aim of this paper is to examine the technology access and use on the affecting social integration of local students at university. This aim is achieved by designing a structural equation modeling (SEM) in terms of integration with peers, integration with faculty, faculty support and on the other hand, examining the socio demographic impact on the technology access and use. The collected data were analyzed using the WarpPLS 5.0 software. This study was survey based and it was conducted at a public university in Canada. The results of the study indicated that technology has a strong impact on integration with faculty, faculty support, but technology does not have an impact on integration with peers. However, the social demographic has also an impact on the technology access and use.Keywords: faculty, integration, peer, technology access and use
Procedia PDF Downloads 5133519 A Proposal of Local Indentation Techniques for Mechanical Property Evaluation
Authors: G. B. Lim, C. H. Jeon, K. H. Jung
Abstract:
General light metal alloys are often developed in the material of transportation equipment such as automobiles and aircraft. Among the light metal alloys, magnesium is the lightest structural material with superior specific strength and many attractive physical and mechanical properties. However, magnesium alloys were difficult to obtain the mechanical properties at warm temperature. The aims of present work were to establish an analytical relation between mechanical properties and plastic flow induced by local indentation. An experimental investigation of the local strain distribution was carried out using a specially designed local indentation equipment in conjunction with ARAMIS based on digital image correlation method.Keywords: indentation, magnesium, mechanical property, lightweight material, ARAMIS
Procedia PDF Downloads 4923518 Magnetic Properties of Layered Rare-Earth Oxy-Carbonates Ln2O2CO3 (Ln = Nd, Sm, and Dy)
Authors: U. Arjun, K. Brinda, M. Padmanabhan, R. Nath
Abstract:
Polycrystalline samples of rare-earth oxy-carbonates Ln2O2CO3 (Ln = Nd, Sm, and Dy) are synthesized, and their structural and magnetic properties are investigated. All of them crystallize in a hexagonal structure with space group P6_3/mmc. They form a double layered structure with frustrated triangular arrangement of rare-earth magnetic ions. An antiferromagnetic transition is observed at TN ≈ 1.25 K, 0.61 K, and 1.21 K for Nd2O2CO3, Sm2O2CO3, and Dy2O2CO3, respectively. From the analysis of magnetic susceptibility, the value of the Curie-Weiss temperature θ_CW is obtained to be ≈ 21.7 K, 18 K, and 10.6 K for Nd2O2CO3, Sm2O2CO3, and Dy2O2CO3, respectively. The magnetic frustration parameter f ( = |θ_CW|/T_N) is calculated to be ≈ 17.4, 31, and 8.8 for Nd2O2CO3, Sm2O2CO3, and Dy2O2CO3, respectively which indicates that Sm2O2CO3 is strongly frustrated compared to its Nd and Dy analogues.Keywords: chemical synthesis, exchange and superexchange, heat capacity, magnetically ordered materials
Procedia PDF Downloads 3553517 A Review on Aluminium Metal Matric Composites
Authors: V. Singh, S. Singh, S. S. Garewal
Abstract:
Metal matrix composites with aluminum as the matrix material have been heralded as the next great development in advanced engineering materials. Aluminum metal matrix composites (AMMC) refer to the class of light weight high performance material systems. Properties of AMMCs can be tailored to the demands of different industrial applications by suitable combinations of matrix, reinforcement and processing route. AMMC finds its application in automotive, aerospace, defense, sports and structural areas. This paper presents an overview of AMMC material systems on aspects relating to processing, types and applications with case studies.Keywords: aluminum metal matrix composites, applications of aluminum metal matrix composites, lighting material processing of aluminum metal matrix composites
Procedia PDF Downloads 4653516 The Effect of Self-Efficacy on Emotional Intelligence and Well-Being among Tour Guides
Authors: Jennifer Chen-Hua Min
Abstract:
The concept of self-efficacy refers to people’s beliefs in their ability to perform certain behaviors and cope with environmental demands. As such, self-efficacy plays a key role in linking ability to performance. Therefore, this study examines the relationships of self-efficacy, emotional intelligence (EI), and well-being among tour guides, who act as intermediaries between tourists and an unfamiliar environment and significantly influence tourists’ impressions of a destination. Structural equation modeling (SEM) is used to identify the relationships between these factors. The results found that self-efficacy is positively associated with EI and well-being, and a positive link was seen between EI and well-being. This study has practical implications, as the results can facilitate the development of interventions for enhancing tour guides’ EI and self-efficacy competencies, which will benefit them in terms of both enhanced achievements and improved psychological happiness and well-being.Keywords: self-efficacy, tour guides, tourism, emotional intelligence (EI)
Procedia PDF Downloads 4643515 Comparison of Whole-Body Vibration and Plyometric Exercises on Explosive Power in Non-Athlete Girl Students
Authors: Fereshteh Zarei, Mahdi Kohandel
Abstract:
The aim of this study was investigate and compare plyometric and vibration exercises on muscle explosive power in non-athlete female students. For this purpose, 45 female students from non-athletes selected target then divided in to the three groups, two experimental and one control groups. From all groups were getting pre-tested. Experimental A did whole-body vibration exercises involved standing on one of machine vibration with frequency 30 Hz, amplitude 10 mm and in 5 different postures. Training for each position was 40 seconds with 60 seconds rest between it, and each season 5 seconds was added to duration of each body condition, until time up to 2 minutes for each postures. Exercises were done three times a week for 2 month. Experimental group B did plyometric exercises that include jumping, such as horizontal, vertical, and skipping .They included 10 times repeat for 5 set in each season. Intensity with increasing repetitions and sets were added. At this time, asked from control group that keep a daily activity and avoided strength training, explosive power and. after do exercises by groups we measured factors again. One-way analysis of variance and paired t statistical methods were used to analyze the data. There was significant difference in the amount of explosive power between the control and vibration groups (p=0/048) there was significant difference between the control and plyometric groups (019/0 = p). But between vibration and plyometric groups didn't observe significant difference in the amount of explosive power.Keywords: vibration, plyometric, exercises, explosive power, non-athlete
Procedia PDF Downloads 4533514 Laser Data Based Automatic Generation of Lane-Level Road Map for Intelligent Vehicles
Authors: Zehai Yu, Hui Zhu, Linglong Lin, Huawei Liang, Biao Yu, Weixin Huang
Abstract:
With the development of intelligent vehicle systems, a high-precision road map is increasingly needed in many aspects. The automatic lane lines extraction and modeling are the most essential steps for the generation of a precise lane-level road map. In this paper, an automatic lane-level road map generation system is proposed. To extract the road markings on the ground, the multi-region Otsu thresholding method is applied, which calculates the intensity value of laser data that maximizes the variance between background and road markings. The extracted road marking points are then projected to the raster image and clustered using a two-stage clustering algorithm. Lane lines are subsequently recognized from these clusters by the shape features of their minimum bounding rectangle. To ensure the storage efficiency of the map, the lane lines are approximated to cubic polynomial curves using a Bayesian estimation approach. The proposed lane-level road map generation system has been tested on urban and expressway conditions in Hefei, China. The experimental results on the datasets show that our method can achieve excellent extraction and clustering effect, and the fitted lines can reach a high position accuracy with an error of less than 10 cm.Keywords: curve fitting, lane-level road map, line recognition, multi-thresholding, two-stage clustering
Procedia PDF Downloads 128