Search results for: real volume
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7737

Search results for: real volume

5307 Applications of AI, Machine Learning, and Deep Learning in Cyber Security

Authors: Hailyie Tekleselase

Abstract:

Deep learning is increasingly used as a building block of security systems. However, neural networks are hard to interpret and typically solid to the practitioner. This paper presents a detail survey of computing methods in cyber security, and analyzes the prospects of enhancing the cyber security capabilities by suggests that of accelerating the intelligence of the security systems. There are many AI-based applications used in industrial scenarios such as Internet of Things (IoT), smart grids, and edge computing. Machine learning technologies require a training process which introduces the protection problems in the training data and algorithms. We present machine learning techniques currently applied to the detection of intrusion, malware, and spam. Our conclusions are based on an extensive review of the literature as well as on experiments performed on real enterprise systems and network traffic. We conclude that problems can be solved successfully only when methods of artificial intelligence are being used besides human experts or operators.

Keywords: artificial intelligence, machine learning, deep learning, cyber security, big data

Procedia PDF Downloads 126
5306 Using Business Interactive Games to Improve Management Skills

Authors: Nuno Biga

Abstract:

Continuous processes’ improvement is a permanent challenge for managers of any organization. Lean management means that efficiency gains can be obtained through a systematic framework able to explore synergies between processes, eliminate waste of time, and other resources. Leaderships in organizations determine the efficiency of the teams through their influence on collaborators, their motivation, and consolidation of ownership (group) feeling. The “organization health” depends on the leadership style, which is directly influenced by the intrinsic characteristics of each personality and leadership ability (leadership competencies). Therefore, it’s important that managers can correct in advance any deviation from expected leadership exercises. Top management teams must assume themselves as regulatory agents of leadership within the organization, ensuring monitoring of actions and the alignment of managers in accordance with the humanist standards anchored in a visible Code of Ethics and Conduct. This article is built around an innovative model of “Business Interactive Games” (BI GAMES) that simulates a real-life management environment. It shows that the strategic management of operations depends on a complex set of endogenous and exogenous variables to the intervening agents that require specific skills and a set of critical processes to monitor. BI GAMES are designed for each management reality and have already been applied successfully in several contexts over the last five years comprising the educational and enterprise ones. Results from these experiences are used to demonstrate how serious games in working living labs contributed to improve the organizational environment by focusing on the evaluation of players’ (agents’) skills, empower its capabilities, and the critical factors that create value in each context. The implementation of the BI GAMES simulator highlights that leadership skills are decisive for the performance of teams, regardless of the sector of activity and the specificities of each organization whose operation is intended to simulate. The players in the BI GAMES can be managers or employees of different roles in the organization or students in the learning context. They interact with each other and are asked to decide/make choices in the presence of several options for the follow-up operation, for example, when the costs and benefits are not fully known but depend on the actions of external parties (e.g., subcontracted enterprises and actions of regulatory bodies). Each team must evaluate resources used/needed in each operation, identify bottlenecks in the system of operations, assess the performance of the system through a set of key performance indicators, and set a coherent strategy to improve efficiency. Through the gamification and the serious games approach, organizational managers will be able to confront the scientific approach in strategic decision-making versus their real-life approach based on experiences undertaken. Considering that each BI GAME’s team has a leader (chosen by draw), the performance of this player has a direct impact on the results obtained. Leadership skills are thus put to the test during the simulation of the functioning of each organization, allowing conclusions to be drawn at the end of the simulation, including its discussion amongst participants.

Keywords: business interactive games, gamification, management empowerment skills, simulation living labs

Procedia PDF Downloads 112
5305 Insight-Based Evaluation of a Map-Based Dashboard

Authors: Anna Fredriksson Häägg, Charlotte Weil, Niklas Rönnberg

Abstract:

Map-based dashboards are used for data exploration every day. The present study used an insight-based methodology for evaluating a map-based dashboard that presents research findings of water management and ecosystem services in the Amazon. In addition to analyzing the insights gained from using the dashboard, the evaluation method was compared to standardized questionnaires and task-based evaluations. The result suggests that the dashboard enabled the participants to gain domain-relevant, complex insights regarding the topic presented. Furthermore, the insight-based analysis highlighted unexpected insights and hypotheses regarding causes and potential adaptation strategies for remediation. Although time- and resource-consuming, the insight-based methodology was shown to have the potential of thoroughly analyzing how end users can utilize map-based dashboards for data exploration and decision making. Finally, the insight-based methodology is argued to evaluate tools in scenarios more similar to real-life usage compared to task-based evaluation methods.

Keywords: visual analytics, dashboard, insight-based evaluation, geographic visualization

Procedia PDF Downloads 116
5304 The Potential Impact of Big Data Analytics on Pharmaceutical Supply Chain Management

Authors: Maryam Ziaee, Himanshu Shee, Amrik Sohal

Abstract:

Big Data Analytics (BDA) in supply chain management has recently drawn the attention of academics and practitioners. Big data refers to a massive amount of data from different sources, in different formats, generated at high speed through transactions in business environments and supply chain networks. Traditional statistical tools and techniques find it difficult to analyse this massive data. BDA can assist organisations to capture, store, and analyse data specifically in the field of supply chain. Currently, there is a paucity of research on BDA in the pharmaceutical supply chain context. In this research, the Australian pharmaceutical supply chain was selected as the case study. This industry is highly significant since the right medicine must reach the right patients, at the right time, in right quantity, in good condition, and at the right price to save lives. However, drug shortages remain a substantial problem for hospitals across Australia with implications on patient care, staff resourcing, and expenditure. Furthermore, a massive volume and variety of data is generated at fast speed from multiple sources in pharmaceutical supply chain, which needs to be captured and analysed to benefit operational decisions at every stage of supply chain processes. As the pharmaceutical industry lags behind other industries in using BDA, it raises the question of whether the use of BDA can improve transparency among pharmaceutical supply chain by enabling the partners to make informed-decisions across their operational activities. This presentation explores the impacts of BDA on supply chain management. An exploratory qualitative approach was adopted to analyse data collected through interviews. This study also explores the BDA potential in the whole pharmaceutical supply chain rather than focusing on a single entity. Twenty semi-structured interviews were undertaken with top managers in fifteen organisations (five pharmaceutical manufacturers, five wholesalers/distributors, and five public hospital pharmacies) to investigate their views on the use of BDA. The findings revealed that BDA can enable pharmaceutical entities to have improved visibility over the whole supply chain and also the market; it enables entities, especially manufacturers, to monitor consumption and the demand rate in real-time and make accurate demand forecasts which reduce drug shortages. Timely and precise decision-making can allow the entities to source and manage their stocks more effectively. This can likely address the drug demand at hospitals and respond to unanticipated issues such as drug shortages. Earlier studies explore BDA in the context of clinical healthcare; however, this presentation investigates the benefits of BDA in the Australian pharmaceutical supply chain. Furthermore, this research enhances managers’ insight into the potentials of BDA at every stage of supply chain processes and helps to improve decision-making in their supply chain operations. The findings will turn the rhetoric of data-driven decision into a reality where the managers may opt for analytics for improved decision-making in the supply chain processes.

Keywords: big data analytics, data-driven decision, pharmaceutical industry, supply chain management

Procedia PDF Downloads 106
5303 An Image Based Visual Servoing (IBVS) Approach Using a Linear-Quadratic Regulator (LQR) for Quadcopters

Authors: C. Gebauer, C. Henke, R. Vossen

Abstract:

Within the Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2020, a team of unmanned aerial vehicles (UAV) is used to capture intruder drones by physical interaction. The challenge is motivated by UAV safety. The purpose of this work is to investigate the agility of a quadcopter being controlled visually. The aim is to track and follow a highly dynamic target, e.g., an intruder quadcopter. The following is realized in close range and the opponent has a velocity of up to 10 m/s. Additional limitations are given by the hardware itself, where only monocular vision is present, and no additional knowledge about the targets state is available. An image based visual servoing (IBVS) approach is applied in combination with a Linear Quadratic Regulator (LQR). The IBVS is integrated into the LQR and an optimal trajectory is computed within the projected three-dimensional image-space. The approach has been evaluated on real quadcopter systems in different flight scenarios to demonstrate the system's stability.

Keywords: image based visual servoing, quadcopter, dynamic object tracking, linear-quadratic regulator

Procedia PDF Downloads 150
5302 Maximizing Coverage with Mobile Crime Cameras in a Stochastic Spatiotemporal Bipartite Network

Authors: (Ted) Edward Holmberg, Mahdi Abdelguerfi, Elias Ioup

Abstract:

This research details a coverage measure for evaluating the effectiveness of observer node placements in a spatial bipartite network. This coverage measure can be used to optimize the configuration of stationary or mobile spatially oriented observer nodes, or a hybrid of the two, over time in order to fully utilize their capabilities. To demonstrate the practical application of this approach, we construct a SpatioTemporal Bipartite Network (STBN) using real-time crime center (RTCC) camera nodes and NOPD calls for service (CFS) event nodes from New Orleans, La (NOLA). We use the coverage measure to identify optimal placements for moving mobile RTCC camera vans to improve coverage of vulnerable areas based on temporal patterns.

Keywords: coverage measure, mobile node dynamics, Monte Carlo simulation, observer nodes, observable nodes, spatiotemporal bipartite knowledge graph, temporal spatial analysis

Procedia PDF Downloads 114
5301 A Stepwise Approach to Automate the Search for Optimal Parameters in Seasonal ARIMA Models

Authors: Manisha Mukherjee, Diptarka Saha

Abstract:

Reliable forecasts of univariate time series data are often necessary for several contexts. ARIMA models are quite popular among practitioners in this regard. Hence, choosing correct parameter values for ARIMA is a challenging yet imperative task. Thus, a stepwise algorithm is introduced to provide automatic and robust estimates for parameters (p; d; q)(P; D; Q) used in seasonal ARIMA models. This process is focused on improvising the overall quality of the estimates, and it alleviates the problems induced due to the unidimensional nature of the methods that are currently used such as auto.arima. The fast and automated search of parameter space also ensures reliable estimates of the parameters that possess several desirable qualities, consequently, resulting in higher test accuracy especially in the cases of noisy data. After vigorous testing on real as well as simulated data, the algorithm doesn’t only perform better than current state-of-the-art methods, it also completely obviates the need for human intervention due to its automated nature.

Keywords: time series, ARIMA, auto.arima, ARIMA parameters, forecast, R function

Procedia PDF Downloads 166
5300 Joint Optimization of Carsharing Stations with Vehicle Relocation and Demand Selection

Authors: Jiayuan Wu. Lu Hu

Abstract:

With the development of the sharing economy and mobile technology, carsharing becomes more popular. In this paper, we focus on the joint optimization of one-way station-based carsharing systems. We model the problem as an integer linear program with six elements: station locations, station capacity, fleet size, initial vehicle allocation, vehicle relocation, and demand selection. A greedy-based heuristic is proposed to address the model. Firstly, initialization based on the location variables relaxation using Gurobi solver is conducted. Then, according to the profit margin and demand satisfaction of each station, the number of stations is downsized iteratively. This method is applied to real data from Chengdu, Sichuan taxi data, and it’s efficient when dealing with a large scale of candidate stations. The result shows that with vehicle relocation and demand selection, the profit and demand satisfaction of carsharing systems are increased.

Keywords: one-way carsharing, location, vehicle relocation, demand selection, greedy algorithm

Procedia PDF Downloads 137
5299 FracXpert: Ensemble Machine Learning Approach for Localization and Classification of Bone Fractures in Cricket Athletes

Authors: Madushani Rodrigo, Banuka Athuraliya

Abstract:

In today's world of medical diagnosis and prediction, machine learning stands out as a strong tool, transforming old ways of caring for health. This study analyzes the use of machine learning in the specialized domain of sports medicine, with a focus on the timely and accurate detection of bone fractures in cricket athletes. Failure to identify bone fractures in real time can result in malunion or non-union conditions. To ensure proper treatment and enhance the bone healing process, accurately identifying fracture locations and types is necessary. When interpreting X-ray images, it relies on the expertise and experience of medical professionals in the identification process. Sometimes, radiographic images are of low quality, leading to potential issues. Therefore, it is necessary to have a proper approach to accurately localize and classify fractures in real time. The research has revealed that the optimal approach needs to address the stated problem and employ appropriate radiographic image processing techniques and object detection algorithms. These algorithms should effectively localize and accurately classify all types of fractures with high precision and in a timely manner. In order to overcome the challenges of misidentifying fractures, a distinct model for fracture localization and classification has been implemented. The research also incorporates radiographic image enhancement and preprocessing techniques to overcome the limitations posed by low-quality images. A classification ensemble model has been implemented using ResNet18 and VGG16. In parallel, a fracture segmentation model has been implemented using the enhanced U-Net architecture. Combining the results of these two implemented models, the FracXpert system can accurately localize exact fracture locations along with fracture types from the available 12 different types of fracture patterns, which include avulsion, comminuted, compressed, dislocation, greenstick, hairline, impacted, intraarticular, longitudinal, oblique, pathological, and spiral. This system will generate a confidence score level indicating the degree of confidence in the predicted result. Using ResNet18 and VGG16 architectures, the implemented fracture segmentation model, based on the U-Net architecture, achieved a high accuracy level of 99.94%, demonstrating its precision in identifying fracture locations. Simultaneously, the classification ensemble model achieved an accuracy of 81.0%, showcasing its ability to categorize various fracture patterns, which is instrumental in the fracture treatment process. In conclusion, FracXpert has become a promising ML application in sports medicine, demonstrating its potential to revolutionize fracture detection processes. By leveraging the power of ML algorithms, this study contributes to the advancement of diagnostic capabilities in cricket athlete healthcare, ensuring timely and accurate identification of bone fractures for the best treatment outcomes.

Keywords: multiclass classification, object detection, ResNet18, U-Net, VGG16

Procedia PDF Downloads 121
5298 Integrating RAG with Prompt Engineering for Dynamic Log Parsing and Anomaly Detections

Authors: Liu Lin Xin

Abstract:

With the increasing complexity of systems, log parsing and anomaly detection have become crucial for maintaining system stability. However, traditional methods often struggle with adaptability and accuracy, especially when dealing with rapidly evolving log content and unfamiliar domains. To address these challenges, this paper proposes approach that integrates Retrieval Augmented Generation (RAG) technology with Prompt Engineering for Large Language Models, applied specifically in LogPrompt. This approach enables dynamic log parsing and intelligent anomaly detection by combining real-time information retrieval with prompt optimization. The proposed method significantly enhances the adaptability of log analysis and improves the interpretability of results. Experimental results on several public datasets demonstrate the method's superior performance, particularly in scenarios lacking training data, where it significantly outperforms traditional methods. This paper introduces a novel technical pathway for log parsing and anomaly detection, showcasing the substantial theoretical value and practical potential.

Keywords: log parsing, anomaly detection, RAG, prompt engineering, LLMs

Procedia PDF Downloads 35
5297 Effect of Deep Mixing Columns and Geogrid on Embankment Settlement on the Soft Soil

Authors: Seyed Abolhasan Naeini, Saeideh Mohammadi

Abstract:

Embankment settlement on soft clays has always been problematic due to the high compaction and low shear strength of the soil. Deep soil mixing and geosynthetics are two soil improvement methods in such fields. Here, a numerical study is conducted on the embankment performance on the soft ground improved by deep soil mixing columns and geosynthetics based on the data of a real project. For this purpose, the finite element method is used in the Plaxis 2D software. The Soft Soil Creep model considers the creep phenomenon in the soft clay layer while the Mohr-Columb model simulates other soil layers. Results are verified using the data of an experimental embankment built on deep mixing columns. The effect of depth and diameter of deep mixing columns and the stiffness of geogrid on the vertical and horizontal movements of embankment on clay subsoil will be investigated in the following.

Keywords: PLAXIS 2D, embankment settlement, horizontal movement, deep soil mixing column, geogrid

Procedia PDF Downloads 173
5296 Lego Mindstorms as a Simulation of Robotic Systems

Authors: Miroslav Popelka, Jakub Nožička

Abstract:

In this paper we deal with using Lego Mindstorms in simulation of robotic systems with respect to cost reduction. Lego Mindstorms kit contains broad variety of hardware components which are required to simulate, program and test the robotics systems in practice. Algorithm programming went in development environment supplied together with Lego kit as in programming language C# as well. Algorithm following the line, which we dealt with in this paper, uses theoretical findings from area of controlling circuits. PID controller has been chosen as controlling circuit whose individual components were experimentally adjusted for optimal motion of robot tracking the line. Data which are determined to process by algorithm are collected by sensors which scan the interface between black and white surfaces followed by robot. Based on discovered facts Lego Mindstorms can be considered for low-cost and capable kit to simulate real robotics systems.

Keywords: LEGO Mindstorms, PID controller, low-cost robotics systems, line follower, sensors, programming language C#, EV3 Home Edition Software

Procedia PDF Downloads 375
5295 Warfield Spying Robot Using LoRa

Authors: Madhavi T., Sireesha Sakhamuri, Hema Sri A., Harika K.

Abstract:

Today as technological advancements are taking place, these advancements are being used by the armed forces to reduce the risk of their losses and to defeat their enemies. The development of sophisticated technology relies mostly on the use of high- tech weapons or machinery. Robotics is one of the hot spheres of the modern age in which nations concentrate on the state of war and peace for military purposes. They have been in use for demining and rescue operations for some time now but are being propelled by using them for combat and spy missions. This project focuses on creating a LoRa-based spying robot with a wireless IP camera attached to it that can rising the human target. This robot transmits the signal via an IP camera to the base station. One of this project’s major applications can be analyzed using a PC that can be used to control the robot’s movement. The robot sends the signal through the LoRa transceiver at the base station to the LoRa transceiver mounted on the robot. With this function, the, robot can relay videos in real- time along with anti-collision capabilities and the enemies in the war zone cannot recognize them. More importantly, this project focuses on increasing communication using LoRa.

Keywords: lora, IP cam, metal detector, laser shoot

Procedia PDF Downloads 111
5294 Innate Immune Expression in Heterophils in Response to LPS

Authors: Rohita Gupta, G. S. Brah, R. Verma, C. S. Mukhopadhayay

Abstract:

Although chicken strains show differences in susceptibility to a number of diseases, the underlying immunological basis is yet to be elucidated. In the present study, heterophils were subjected to LPS stimulation and total RNA extraction, further differential gene expression was studied in broiler, layer and indigenous Aseel strain by Real Time RT-PCR at different time periods before and after induction. The expression of the 14 AvBDs and chTLR 1, 2, 3, 4, 5, 7, 15 and 21 was detectable in heterophils. The expression level of most of the AvBDs significantly increased (P<0.05) 3 hours post in vitro lipopolysaccharide challenge. Higher expression level and stronger activation of most AvBDs, NFkB-1 and IRF-3 in heterophils was observed with the stimulation of LPS in layer compared to broiler, and in Aseel compared to both layer and broiler. This investigation will allow more refined interpretation of immuno-genetic basis of the variable disease resistance/susceptibility in divergent stock of chicken including indigenous breed. Moreover, this study will be helpful in formulation of strategy for isolation of antimicrobial peptides from heterophils.

Keywords: differential expression, heterophils, cytokines, defensin, TLR

Procedia PDF Downloads 498
5293 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques

Authors: Chinlun Lai, Lunjyh Jiang

Abstract:

Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.

Keywords: baby care system, Internet of Things, deep learning, machine vision

Procedia PDF Downloads 224
5292 The Use of Appeals in Green Printed Advertisements: A Case of Product Orientation and Organizational Image Orientation Ads

Authors: Chutima Ruanguttamanun

Abstract:

Despite the relatively large number of studies that have examined the use of appeals in advertisements, research on the use of appeals in green advertisements is still underdeveloped and needs to be investigated further, as it is definitely a tool for marketers to create illustrious ads. In this study, content analysis was employed to examine the nature of green advertising appeals and to match the appeals with the green advertisements. Two different types of green print advertisings, product orientation and organizational image orientation were used. Thirty highly educated participants with different backgrounds were asked individually to ascertain three appeals out of thirty-four given appeals found among forty real green advertisements. To analyze participant responses and to group them based on common appeals, two-step K-mean clustering is used. The clustering solution indicates that eye-catching graphics and imaginative appeals are highly notable in both types of green ads. Depressed, meaningful and sad appeals are found to be highly used in organizational image orientation ads, whereas, corporate image, informative and natural appeals are found to be essential for product orientation ads.

Keywords: advertising appeals, green marketing, green advertisement, printed advertisement

Procedia PDF Downloads 278
5291 Hardness and Microstructure of Rapidly Quenched Aluminum Alloys

Authors: Mehdi Ghatus

Abstract:

Two simple apparatus based on the hammer and anvil principle have been constructed and used to study the microstructure and micro-hardness characteristics of some AL-base alloys. Foils with thicknesses arranging from 20 µm up to 600 µm have been obtained. The cooling rate was estimated to be in the range 10^4 - 10^5 K/sec. Microstructure study of rapidly quenched Al-30% Si foils indicated that with decreasing the foil thickness the size of primary Si crystallites decreases in the whole investigated range (0.64-0.15 mm). However, the volume fraction of the primary Si crystals in the structure remained constant down to thickness the primary Si volume fraction started to decrease. Rapid quenching of Al- 14-16% Cu showed single phase cell structure. In foils up to 0.55 mm with decreasing the foil thickness the cell size decreases and micro-hardness increases particularly in foils below 0.3 mm in thickness. Isochronal annealing of theses foils show that the highly supersaturated Al-14-16% Cu solid solution decomposes readily at relatively low temperature and short time intervals. The maximum hardness is obtained after annealing at 100 °C for 30 minutes. However with decreasing the Cu content of the foils the precipitation process is largely delayed. Eight hours of annealing at 100 °C was not enough to achieve the maximum hardness in Al-4% Cu thin foils. The achieved hardness value was more than twice of the maximum hardness obtained in articles of similar composition but conventionally aged.

Keywords: aluminum, hardness, alloys, quenched aluminum

Procedia PDF Downloads 441
5290 A Study of Structural Damage Detection for Spacecraft In-Orbit Based on Acoustic Sensor Array

Authors: Lei Qi, Rongxin Yan, Lichen Sun

Abstract:

With the increasing of human space activities, the number of space debris has increased dramatically, and the possibility that spacecrafts on orbit are impacted by space debris is growing. A method is of the vital significance to real-time detect and assess spacecraft damage, determine of gas leak accurately, guarantee the life safety of the astronaut effectively. In this paper, acoustic sensor array is used to detect the acoustic signal which emits from the damage of the spacecraft on orbit. Then, we apply the time difference of arrival and beam forming algorithm to locate the damage and leakage. Finally, the extent of the spacecraft damage is evaluated according to the nonlinear ultrasonic method. The result shows that this method can detect the debris impact and the structural damage, locate the damage position, and identify the damage degree effectively. This method can meet the needs of structural damage detection for the spacecraft in-orbit.

Keywords: acoustic sensor array, spacecraft, damage assessment, leakage location

Procedia PDF Downloads 295
5289 Modulation of Lipopolysaccharide Induced Interleukin-17F and Cyclooxygenase-2 Gene Expression by Echinacea purpurea in Broiler Chickens

Authors: Ali Asghar Saki, Sayed Ali Hosseini Siyar, Abbass Ashoori

Abstract:

This study was conducted to evaluate the effect of Echinacea purpurea on the expression of cyclooxygenase-2 (COX-2), interleukin-17F (IL-17F) in seven-day-old broiler chickens. Four groups were fed with concentration of 0 g/kg, 5 g/kg, 10 g/kg and 20 g/kg from the root of E. purpurea in the basal diet and two other groups were only fed with the basal diet for 21 days. At the 28th day, lipopolysaccharide (LPS, 2 mg/kg diet) was injected in four groups and the basal diet group was injected by saline as control. The chickens’ spleen RNA expression was measured for the COX-2 and IL-17F genes by Real-Time PCR. The results have shown that chickens which were fed E. purpurea had a lower COX-2 and IL-17F mRNA expression. The chickens who have received LPS only, lymphocyte was lower than other treatments. Vital organ weights were not significantly different, but body weight loss was recovered by dietary herbs inclusion. The results of this study have shown the positive effect of an anti-inflammatory herb to prevent the undesirable effect of inflammation.

Keywords: broiler chickens, Echinacea purporea, gene expression, lipopolysaccharide

Procedia PDF Downloads 233
5288 Predicting Seoul Bus Ridership Using Artificial Neural Network Algorithm with Smartcard Data

Authors: Hosuk Shin, Young-Hyun Seo, Eunhak Lee, Seung-Young Kho

Abstract:

Currently, in Seoul, users have the privilege to avoid riding crowded buses with the installation of Bus Information System (BIS). BIS has three levels of on-board bus ridership level information (spacious, normal, and crowded). However, there are flaws in the system due to it being real time which could provide incomplete information to the user. For example, a bus comes to the station, and on the BIS it shows that the bus is crowded, but on the stop that the user is waiting many people get off, which would mean that this station the information should show as normal or spacious. To fix this problem, this study predicts the bus ridership level using smart card data to provide more accurate information about the passenger ridership level on the bus. An Artificial Neural Network (ANN) is an interconnected group of nodes, that was created based on the human brain. Forecasting has been one of the major applications of ANN due to the data-driven self-adaptive methods of the algorithm itself. According to the results, the ANN algorithm was stable and robust with somewhat small error ratio, so the results were rational and reasonable.

Keywords: smartcard data, ANN, bus, ridership

Procedia PDF Downloads 167
5287 The Effect of Mist Cooling on Sexual Behavior and Semen Quality of Sahiwal Bulls

Authors: Khalid Ahmed Elrabie Abdelrasoul

Abstract:

The present study was carried out on Sahiwal cattle bulls maintained at the Artificial Breeding Complex, NDRI, Karnal, Hayana, India, to assess the effect of cooling using mist cooling and fanning on Sahiwal bulls in the dry hot summer season. Fourteen Sahiwal bulls were divided into two groups of seven each. Sexual behavior and semen quality traits considered were: Reaction time (RT), Dismounting time (DMT), Total time taken in mounts (TTTM), Flehmen response (FR), Erection Score (ES), Protrusion Score (PS), Intensity of thrust (ITS), Temperament Score (TS), Libido Score (LS), Semen volume, Physical appearance, Mass activity, Initial progressive motility, Non-eosinophilic spermatozoa count (NESC) and post thaw motility percent. Data were analyzed by least squares technique. Group-1 was the control, whereas group-2 (treatment group) bulls were exposed to mist cooling and fanning (thrice a day 15 min each) in the dry hot summer season. Group-2 showed significantly (p < 0.01) higher value in DMT (sec), ES, PS, ITS, LS, semen volume (ml), semen color density, mass activity, initial motility, progressive motility and live sperm.

Keywords: mist cooling, Sahiwal bulls, semen quality, sexual behavior

Procedia PDF Downloads 320
5286 Thai Teenage Prostitution Online

Authors: Somdech Rungsrisawat

Abstract:

The purposes of this research are to investigate Thai teens’ attitude toward prostitution on the internet, to discover the causes of teenage prostitution and to study the relationship between teenage promiscuity and the causes of teenage prostitution. This study is a mixed research which utilized both qualitative and quantitative approach. The population of this study included teenagers and early adults between 14-21 years old who were studying in high schools, colleges, or universities. A total of 600 respondents was sampled for interviews using a questionnaire, and 48 samples were chosen for an in-depth interview. The findings revealed that the majority of respondents recognized that teenage prostitution on line was real. The reasons for choosing the internet to contact with customers included easy, convenient, safe, and anonymous. Moreover, the internet allowed teen prostitutes to contact customers anywhere and anytime. The correlation showed that promiscuity was related to the trend of teen prostitution. Other factors that contributed to increasing widespread teen prostitution online included their need for quick money to buy luxurious products and to support their extravagant behavior.

Keywords: internet, prostitutes, online, Thai teens

Procedia PDF Downloads 311
5285 A Study on the Stabilization of the Swell Behavior of Basic Oxygen Furnace Slag by Using Geopolymer Technology

Authors: K. Y. Lin, W. H. Lee, T. W. Cheng, S. W. Huang

Abstract:

Basic Oxygen Furnace (BOF) Slag is a by-product of iron making. It has great engineering properties, such as, high hardness and density, high compressive strength, low abrasion ratio, and can replace natural aggregate for building materials. However, the main problem for BOF slag is expansion, due to it contains free lime or free magnesium. The purpose of this study was to stabilize the BOF slag by using geopolymeric technology, hoping can prevent BOF slag expansion. Geopolymer processes contain a large amount of free silicon. These free silicon can react with free-lime or free magnesium oxide in BOF slag, and thus to form stable compound, therefore inhibit the expansion of the BOF slag. In this study for the successful preparation of geopolymer mortar with BOF slag, and their main properties are analyzed with regard to their use as building materials. Autoclave is used to study the volume stability of these geopolymer mortar. Finally, the compressive strength of geopolymer mortar with BOF slag can be reached 33MPa in 28 days. After autoclave testing, the volume expansion does not exceed 0.2%. Even after the autoclave test, the compressive strength can increase to 35MPa. According to the research results can be proved that using geopolymer technology for stabilizing BOF slag is very effective.

Keywords: BOF slag, autoclave test, geopolymer, swell behavior

Procedia PDF Downloads 136
5284 Robust Pattern Recognition via Correntropy Generalized Orthogonal Matching Pursuit

Authors: Yulong Wang, Yuan Yan Tang, Cuiming Zou, Lina Yang

Abstract:

This paper presents a novel sparse representation method for robust pattern classification. Generalized orthogonal matching pursuit (GOMP) is a recently proposed efficient sparse representation technique. However, GOMP adopts the mean square error (MSE) criterion and assign the same weights to all measurements, including both severely and slightly corrupted ones. To reduce the limitation, we propose an information-theoretic GOMP (ITGOMP) method by exploiting the correntropy induced metric. The results show that ITGOMP can adaptively assign small weights on severely contaminated measurements and large weights on clean ones, respectively. An ITGOMP based classifier is further developed for robust pattern classification. The experiments on public real datasets demonstrate the efficacy of the proposed approach.

Keywords: correntropy induced metric, matching pursuit, pattern classification, sparse representation

Procedia PDF Downloads 355
5283 UWB Channel Estimation Using an Efficient Sub-Nyquist Sampling Scheme

Authors: Yaacoub Tina, Youssef Roua, Radoi Emanuel, Burel Gilles

Abstract:

Recently, low-complexity sub-Nyquist sampling schemes based on the Finite Rate of Innovation (FRI) theory have been introduced to sample parametric signals at minimum rates. The multichannel modulating waveforms (MCMW) is such an efficient scheme, where the received signal is mixed with an appropriate set of arbitrary waveforms, integrated and sampled at rates far below the Nyquist rate. In this paper, the MCMW scheme is adapted to the special case of ultra wideband (UWB) channel estimation, characterized by dense multipaths. First, an appropriate structure, which accounts for the bandpass spectrum feature of UWB signals, is defined. Then, a novel approach to decrease the number of processing channels and reduce the complexity of this sampling scheme is presented. Finally, the proposed concepts are validated by simulation results, obtained with real filters, in the framework of a coherent Rake receiver.

Keywords: coherent rake receiver, finite rate of innovation, sub-nyquist sampling, ultra wideband

Procedia PDF Downloads 256
5282 Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency

Authors: Fanqiang Kong, Chending Bian

Abstract:

In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined l2,p-norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy.

Keywords: hyperspectral unmixing, joint-sparse, low-rank representation, abundance estimation

Procedia PDF Downloads 261
5281 Project Management at University: Towards an Evaluation Process around Cooperative Learning

Authors: J. L. Andrade-Pineda, J.M. León-Blanco, M. Calle, P. L. González-R

Abstract:

The enrollment in current Master's degree programs usually pursues gaining the expertise required in real-life workplaces. The experience we present here concerns the learning process of "Project Management Methodology (PMM)", around a cooperative/collaborative mechanism aimed at affording students measurable learning goals and providing the teacher with the ability of focusing on the weaknesses detected. We have designed a mixed summative/formative evaluation, which assures curriculum engage while enriches the comprehension of PMM key concepts. In this experience we converted the students into active actors in the evaluation process itself and we endowed ourselves as teachers with a flexible process in which along with qualifications (score), other attitudinal feedback arises. Despite the high level of self-affirmation on their discussion within the interactive assessment sessions, they ultimately have exhibited a great ability to review and correct the wrong reasoning when that was the case.

Keywords: cooperative-collaborative learning, educational management, formative-summative assessment, leadership training

Procedia PDF Downloads 170
5280 A Simulative Approach for JIT Parts-Feeding Policies

Authors: Zhou BingHai, Fradet Victor

Abstract:

Lean philosophy follows the simple principle of “creating more value with fewer resources”. In accordance with this policy, material handling can be managed by the mean of Kanban which by triggering every feeding tour only when needed regulates the flow of material in one of the most efficient way. This paper focuses on Kanban Supermarket’s parameters and their optimization on a purely cost-based point of view. Number and size of forklifts, as well as size of the containers they carry, will be variables of the cost function which includes handling costs, inventory costs but also shortage costs. With an innovative computational approach encoded into industrial engineering software Tecnomatix and reproducing real-life conditions, a fictive assembly line is established and produces a random list of orders. Multi-scenarios are then run to study the impact of each change of parameter and the variation of costs it implies. Lastly, best-case scenarios financially speaking are selected.

Keywords: Kanban, supermarket, parts-feeding policies, multi-scenario simulation, assembly line

Procedia PDF Downloads 195
5279 Spatial Correlation of Channel State Information in Real Long Range Measurement

Authors: Ahmed Abdelghany, Bernard Uguen, Christophe Moy, Dominique Lemur

Abstract:

The Internet of Things (IoT) is developed to ensure monitoring and connectivity within different applications. Thus, it is critical to study the channel propagation characteristics in Low Power Wide Area Network (LPWAN), especially Long Range Wide Area Network (LoRaWAN). In this paper, an in-depth investigation of the reciprocity between the uplink and downlink Channel State Information (CSI) is done by performing an outdoor measurement campaign in the area of Campus Beaulieu in Rennes. At each different location, the CSI reciprocity is quantified using the Pearson Correlation Coefficient (PCC) which shows a very high linear correlation between the uplink and downlink CSI. This reciprocity feature could be utilized for the physical layer security between the node and the gateway. On the other hand, most of the CSI shapes from different locations are highly uncorrelated from each other. Hence, it can be anticipated that this could achieve significant localization gain by utilizing the frequency hopping in the LoRa systems by getting access to a wider band.

Keywords: IoT, LPWAN, LoRa, effective signal power, onsite measurement

Procedia PDF Downloads 162
5278 Ultrasonic Spectroscopy of Polymer Based PVDF-TrFE Composites with CNT Fillers

Authors: J. Belovickis, V. Samulionis, J. Banys, M. V. Silibin, A. V. Solnyshkin, A. V. Sysa

Abstract:

Ferroelectric polymers exhibit good flexibility, processability and low cost of production. Doping of ferroelectric polymers with nanofillers may modify its dielectric, elastic or piezoelectric properties. Carbon nanotubes are one of the ingredients that can improve the mechanical properties of polymer based composites. In this work, we report on both the ultrasonic and the dielectric properties of the copolymer polyvinylidene fluoride/tetrafluoroethylene (P(VDF-TrFE)) of the composition 70/30 mol% with various concentrations of carbon nanotubes (CNT). Experimental study of ultrasonic wave attenuation and velocity in these composites has been performed over wide temperature range (100 K – 410 K) using an ultrasonic automatic pulse-echo tecnique. The temperature dependences of ultrasonic velocity and attenuation showed anomalies attributed to the glass transition and paraelectric-ferroelectric phase transition. Our investigations showed mechanical losses to be dependent on the volume fraction of the CNTs within the composites. The existence of broad hysteresis of the ultrasonic wave attenuation and velocity within the nanocomposites is presented between cooling and heating cycles. By the means of dielectric spectroscopy, it is shown that the dielectric properties may be tuned by varying the volume fraction of the CNT fillers.

Keywords: carbon nanotubes, polymer composites, PVDF-TrFE, ultrasonic spectroscopy

Procedia PDF Downloads 341