Search results for: reacting flow
2396 Optimizing Oil Production through 30-Inch Pipeline in Abu-Attifel Field
Authors: Ahmed Belgasem, Walid Ben Hussin, Emad Krekshi, Jamal Hashad
Abstract:
Waxy crude oil, characterized by its high paraffin wax content, poses significant challenges in the oil & gas industry due to its increased viscosity and semi-solid state at reduced temperatures. The wax formation process, which includes precipitation, crystallization, and deposition, becomes problematic when crude oil temperatures fall below the wax appearance temperature (WAT) or cloud point. Addressing these issues, this paper introduces a technical solution designed to mitigate the wax appearance and enhance the oil production process in Abu-Attifil Field via a 30-inch crude oil pipeline. A comprehensive flow assurance study validates the feasibility and performance of this solution across various production rates, temperatures, and operational scenarios. The study's findings indicate that maintaining the crude oil's temperature above a minimum threshold of 63°C is achievable through the strategic placement of two heating stations along the pipeline route. This approach effectively prevents wax deposition, gelling, and subsequent mobility complications, thereby bolstering the overall efficiency, reliability, safety, and economic viability of the production process. Moreover, this solution significantly curtails the environmental repercussions traditionally associated with wax deposition, which can accumulate up to 7,500kg. The research methodology involves a comprehensive flow assurance study to validate the feasibility and performance of the proposed solution. The study considers various production rates, temperatures, and operational scenarios. It includes crude oil analysis to determine the wax appearance temperature (WAT), as well as the evaluation and comparison of operating options for the heating stations. The study's findings indicate that the proposed solution effectively prevents wax deposition, gelling, and subsequent mobility complications. By maintaining the crude oil's temperature above the specified threshold, the solution improves the overall efficiency, reliability, safety, and economic viability of the oil production process. Additionally, the solution contributes to reducing environmental repercussions associated with wax deposition. The research conclusion presents a technical solution that optimizes oil production in the Abu-Attifil Field by addressing wax formation problems through the strategic placement of two heating stations. The solution effectively prevents wax deposition, improves overall operational efficiency, and contributes to environmental sustainability. Further research is suggested for field data validation and cost-benefit analysis exploration.Keywords: oil production, wax depositions, solar cells, heating stations
Procedia PDF Downloads 732395 Optimal Operation of a Photovoltaic Induction Motor Drive Water Pumping System
Authors: Nelson K. Lujara
Abstract:
The performance characteristics of a photovoltaic induction motor drive water pumping system with and without maximum power tracker is analyzed and presented. The analysis is done through determination and assessment of critical loss components in the system using computer aided design (CAD) tools for optimal operation of the system. The results can be used to formulate a well-calibrated computer aided design package of photovoltaic water pumping systems based on the induction motor drive. The results allow the design engineer to pre-determine the flow rate and efficiency of the system to suit particular application.Keywords: photovoltaic, water pumping, losses, induction motor
Procedia PDF Downloads 3022394 Hedonic Motivations for Online Shopping
Authors: Pui-Lai To, E-Ping Sung
Abstract:
The purpose of this study is to investigate hedonic online shopping motivations. A qualitative analysis was conducted to explore the factors influencing online hedonic shopping motivations. The results of the study indicate that traditional hedonic values, consisting of social, role, self-gratification, learning trends, pleasure of bargaining, stimulation, diversion, status, and adventure, and dimensions of flow theory, consisting of control, curiosity, enjoyment, and telepresence, exist in the online shopping environment. Two hedonic motivations unique to Internet shopping, privacy and online shopping achievement, were found. It appears that the most important hedonic value to online shoppers is having the choice to interact or not interact with others while shopping on the Internet. This study serves as a basis for the future growth of Internet marketing.Keywords: internet shopping, shopping motivation, hedonic motivation
Procedia PDF Downloads 4762393 Nonlinear Interaction of Free Surface Sloshing of Gaussian Hump with Its Container
Authors: Mohammad R. Jalali
Abstract:
Movement of liquid with a free surface in a container is known as slosh. For instance, slosh occurs when water in a closed tank is set in motion by a free surface displacement, or when liquid natural gas in a container is vibrated by an external driving force, such as an earthquake or movement induced by transport. Slosh is also derived from resonant switching of a natural basin. During sloshing, different types of motion are produced by energy exchange between the liquid and its container. In present study, a numerical model is developed to simulate the nonlinear even harmonic oscillations of free surface sloshing of an initial disturbance to the free surface of a liquid in a closed square basin. The response of the liquid free surface is affected by amplitude and motion frequencies of its container; therefore, sloshing involves complex fluid-structure interactions. In the present study, nonlinear interaction of free surface sloshing of an initial Gaussian hump with its uneven container is predicted numerically. For this purpose, Green-Naghdi (GN) equations are applied as governing equation of fluid field to produce nonlinear second-order and higher-order wave interactions. These equations reduce the dimensions from three to two, yielding equations that can be solved efficiently. The GN approach assumes a particular flow kinematic structure in the vertical direction for shallow and deep-water problems. The fluid velocity profile is finite sum of coefficients depending on space and time multiplied by a weighting function. It should be noted that in GN theory, the flow is rotational. In this study, GN numerical simulations of initial Gaussian hump are compared with Fourier series semi-analytical solutions of the linearized shallow water equations. The comparison reveals that satisfactory agreement exists between the numerical simulation and the analytical solution of the overall free surface sloshing patterns. The resonant free surface motions driven by an initial Gaussian disturbance are obtained by Fast Fourier Transform (FFT) of the free surface elevation time history components. Numerically predicted velocity vectors and magnitude contours for the free surface patterns indicate that interaction of Gaussian hump with its container has localized effect. The result of this sloshing is applicable to the design of stable liquefied oil containers in tankers and offshore platforms.Keywords: fluid-structure interactions, free surface sloshing, Gaussian hump, Green-Naghdi equations, numerical predictions
Procedia PDF Downloads 3982392 An Overview of PFAS Treatment Technologies with an In-Depth Analysis of Two Case Studies
Authors: Arul Ayyaswami, Vidhya Ramalingam
Abstract:
Per- and polyfluoroalkyl substances (PFAS) have emerged as a significant environmental concern due to their ubiquity and persistence in the environment. Their chemical characteristics and adverse effects on human health demands more effective and sustainable solutions in remediation of the PFAS. The work presented here encompasses an overview of treatment technologies with two case studies that utilize effective approaches in addressing PFAS contaminated media. Currently the options for treatment of PFAS compounds include Activated carbon adsorption, Ion Exchange, Membrane Filtration, Advanced oxidation processes, Electrochemical treatment, and Precipitation and Coagulation. In the first case study, a pilot study application of colloidal activated carbon (CAC) was completed to address PFAS from aqueous film-forming foam (AFFF) used to extinguish a large fire. The pilot study was used to demonstrate the effectiveness of a CAC in situ permeable reactive barrier (PRB) in effectively stopping the migration of PFOS and PFOA, moving from the source area at high concentrations. Before the CAC PRB installation, an injection test using - fluorescein dye was conducted to determine the primary fracture-induced groundwater flow pathways. A straddle packer injection delivery system was used to isolate discrete intervals and gain resolution over the 70 feet saturated zone targeted for treatment. Flow rates were adjusted, and aquifer responses were recorded for each interval. The results from the injection test were used to design the pilot test injection plan using CAC PRB. Following the CAC PRB application, the combined initial concentration 91,400 ng/L of PFOS and PFOA were reduced to approximately 70 ng/L (99.9% reduction), after only one month following the injection event. The results demonstrate the remedy's effectiveness to quickly and safely contain high concentrations of PFAS in fractured bedrock, reducing the risk to downgradient receptors. The second study involves developing a reductive defluorination treatment process using UV and electron acceptor. This experiment indicates a significant potential in treatment of PFAS contaminated waste media such as landfill leachates. The technology also shows a promising way of tacking these contaminants without the need for secondary waste disposal or any additional pre-treatments.Keywords: per- and polyfluoroalkyl substances (PFAS), colloidal activated carbon (CAC), destructive PFAS treatment technology, aqueous film-forming foam (AFFF)
Procedia PDF Downloads 602391 Future Optimization of the Xin’anjiang Hydropower
Authors: Muhammad Zaman, Guohua Fang, Muhammad Saifullah,
Abstract:
The presented study emphasize at an optimal model to compare past and future optimal hydropower generation. In order to get maximum benefits from the Xin’anjiang hydropower station a model is developed. A Particle Swarm Optimization (PSO) has purposed and past and future water flow is used to get the maximum benefits from future water resources in this study. The results revealed that the future hydropower generation is more than the past generation. This paper gives us idea that what could we get in the past using optimal method of electricity generation and what can we get in the future using this technique.Keywords: PSO, future water resources, optimization, Xin’anjiang,
Procedia PDF Downloads 4442390 Low Power Consuming Electromagnetic Actuators for Pulsed Pilot Stages
Authors: M. Honarpardaz, Z. Zhang, J. Derkx, A. Trangärd, J. Larsson
Abstract:
Pilot stages are one of the most common positioners and regulators in industry. In this paper, we present two novel concepts for pilot stages with low power consumption to regulate a pneumatic device. Pilot 1, first concept, is designed based on a conventional frame core electro-magnetic actuator and a leaf spring to control the air flow and pilot 2 has an axisymmetric actuator and spring made of non-oriented electrical steel. Concepts are simulated in a system modeling tool to study their dynamic behavior. Both concepts are prototyped and tested. Experimental results are comprehensively analyzed and compared. The most promising concept that consumes less than 8 mW is highlighted and presented.Keywords: electro-magnetic actuator, multidisciplinary system, low power consumption, pilot stage
Procedia PDF Downloads 2582389 Geospatial and Statistical Evidences of Non-Engineered Landfill Leachate Effects on Groundwater Quality in a Highly Urbanised Area of Nigeria
Authors: David A. Olasehinde, Peter I. Olasehinde, Segun M. A. Adelana, Dapo O. Olasehinde
Abstract:
An investigation was carried out on underground water system dynamics within Ilorin metropolis to monitor the subsurface flow and its corresponding pollution. Africa population growth rate is the highest among the regions of the world, especially in urban areas. A corresponding increase in waste generation and a change in waste composition from predominantly organic to non-organic waste has also been observed. Percolation of leachate from non-engineered landfills, the chief means of waste disposal in many of its cities, constitutes a threat to the underground water bodies. Ilorin city, a transboundary town in southwestern Nigeria, is a ready microcosm of Africa’s unique challenge. In spite of the fact that groundwater is naturally protected from common contaminants such as bacteria as the subsurface provides natural attenuation process, groundwater samples have been noted to however possesses relatively higher dissolved chemical contaminants such as bicarbonate, sodium, and chloride which poses a great threat to environmental receptors and human consumption. The Geographic Information System (GIS) was used as a tool to illustrate, subsurface dynamics and the corresponding pollutant indicators. Forty-four sampling points were selected around known groundwater pollutant, major old dumpsites without landfill liners. The results of the groundwater flow directions and the corresponding contaminant transport were presented using expert geospatial software. The experimental results were subjected to four descriptive statistical analyses, namely: principal component analysis, Pearson correlation analysis, scree plot analysis, and Ward cluster analysis. Regression model was also developed aimed at finding functional relationships that can adequately relate or describe the behaviour of water qualities and the hypothetical factors landfill characteristics that may influence them namely; distance of source of water body from dumpsites, static water level of groundwater, subsurface permeability (inferred from hydraulic gradient), and soil infiltration. The regression equations developed were validated using the graphical approach. Underground water seems to flow from the northern portion of Ilorin metropolis down southwards transporting contaminants. Pollution pattern in the study area generally assumed a bimodal pattern with the major concentration of the chemical pollutants in the underground watershed and the recharge. The correlation between contaminant concentrations and the spread of pollution indicates that areas of lower subsurface permeability display a higher concentration of dissolved chemical content. The principal component analysis showed that conductivity, suspended solids, calcium hardness, total dissolved solids, total coliforms, and coliforms were the chief contaminant indicators in the underground water system in the study area. Pearson correlation revealed a high correlation of electrical conductivity for many parameters analyzed. In the same vein, the regression models suggest that the heavier the molecular weight of a chemical contaminant of a pollutant from a point source, the greater the pollution of the underground water system at a short distance. The study concludes that the associative properties of landfill have a significant effect on groundwater quality in the study area.Keywords: dumpsite, leachate, groundwater pollution, linear regression, principal component
Procedia PDF Downloads 1172388 The Development and Testing of Greenhouse Comprehensive Environment Control System
Authors: Mohammed Alrefaie, Yaser Miaji
Abstract:
Greenhouses provide a convenient means to grow plants in the best environment. They achieve this by trapping heat from the sunlight and using artificial means to enhance the environment of the greenhouse. This includes controlling factors such as air flow, light intensity and amount of water among others that can have a big impact on plant growth. The aim of the greenhouse is to give maximum yield from plants possible. This report details the development and testing of greenhouse environment control system that can regulate light intensity, airflow and power supply inside the greenhouse. The details of the module development to control these three factors along with results of testing are presented.Keywords: greenhouse, control system, light intensity, comprehensive environment
Procedia PDF Downloads 4822387 Effect of Different Parameters of Converging-Diverging Vortex Finders on Cyclone Separator Performance
Abstract:
The present study is done to explore design modifications of the vortex finder, as it has a significant effect on the cyclone separator performance. It is evident that modifications of the vortex finder improve the performance of the cyclone separator significantly. The study conducted strives to improve the overall performance of cyclone separators by utilizing a converging-diverging (CD) vortex finder instead of the traditional uniform diameter vortex finders. The velocity and pressure fields inside a Stairmand cyclone separator with body diameter 0.29m and vortex finder diameter 0.1305m are calculated. The commercial software, Ansys Fluent v14.0 is used to simulate the flow field in a uniform diameter cyclone and six cyclones modified with CD vortex finders. Reynolds stress model is used to simulate the effects of turbulence on the fluid and particulate phases, discrete phase model is used to calculate the particle trajectories. The performance of the modified vortex finders is compared with the traditional vortex finder. The effects of the lengths of the converging and diverging sections, the throat diameter and the end diameters of the convergent divergent section are also studied to achieve enhanced performance. The pressure and velocity fields inside the vortex finder are presented by means of contour plots and velocity vectors and changes in the flow pattern due to variation of the geometrical variables are also analysed. Results indicate that a convergent-divergent vortex finder is capable of decreasing the pressure drop than that achieved through a uniform diameter vortex finder. It is also observed that the end diameters of the CD vortex finder, the throat diameter and the length of the diverging part of the vortex finder have a significant impact on the cyclone separator performance. Increase in the lower diameter of the vortex finder by 66% results in 11.5% decrease in the dimensionless pressure drop (Euler number) with 5.8% decrease in separation efficiency. Whereas 50% decrease in the throat diameter gives 5.9% increase in the Euler number with 10.2% increase in the separation efficiency and increasing the length of the diverging part gives 10.28% increase in the Euler number with 5.74% increase in the separation efficiency. Increasing the upper diameter of the CD vortex finder is seen to produce an adverse effect on the performance as it increases the pressure drop significantly and decreases the separation efficiency. Increase in length of the converging is not seen to affect the performance significantly. From the present study, it is concluded that convergent-divergent vortex finders can be used in place of uniform diameter vortex finders to achieve a better cyclone separator performance.Keywords: convergent-divergent vortex finder, cyclone separator, discrete phase modeling, Reynolds stress model
Procedia PDF Downloads 1722386 Ophthalmic Ultrasound in the Diagnosis of Retinoblastoma
Authors: Abdulrahman Algaeed
Abstract:
The Ophthalmic Ultrasound is the easiest method of early diagnosing Retinoblastoma after clinical examination. It can be done with ease without sedation. King Khaled Eye Specialist Hospital is a tertiary care center where Retinoblastoma patients are often seen and treated there. The first modality to rule out the disease is Ophthalmic Ultrasound. Classic Retinoblastoma is easily diagnosed by using the conventional 10MHz Ophthalmic Ultrasound probe in the regular clinic setup. Retinal lesion with multiple, very highly reflective surfaces within lesion typical of Calcium deposits. The use of Standardized A-scan is very useful where internal reflectivity is classified as very highly reflective. Color Doppler is extremely useful as well to show the blood flow within lesion/s. In conclusion: Ophthalmic Ultrasound should be the first tool to be used to diagnose Retinoblastoma after clinical examination. The accuracy of the Exam is very high.Keywords: doppler, retinoblastoma, reflectivity, ultrasound
Procedia PDF Downloads 1132385 Study the Effect of Friction on Barreling Behavior during Upsetting Process Using Anand Model
Authors: H. Mohammadi Majd, M. Jalali Azizpour, V. Tavaf, A. Jaderi
Abstract:
In upsetting processes contact friction significantly influence metal flow, stress-strain state and process parameters. Furthermore, tribological conditions influence workpiece deformation and its dimensional precision. A viscoplastic constitutive law, the Anand model, was applied to represent the inelastic deformation behavior in upsetting process. This paper presents research results of the influence of contact friction coefficient on a workpiece deformation in upsetting process.finite element parameters. This technique was tested for three different specimens simulations of the upsetting and the corresponding material and can be successfully employed to predict the deformation of the upsetting process.Keywords: friction, upsetting, barreling, Anand model
Procedia PDF Downloads 3362384 Investigation on Choosing the Suitable Geometry of the Solar Air Heater to Certain Conditions
Authors: Abdulrahman M. Homadi
Abstract:
This study focuses on how to control the outlet temperature of a solar air heater in a way simpler than the existing methods. In this work, five cases have been studied by using ANSYS Fluent based on a CFD numerical method. All the cases have been simulated by utilizing the same criteria and conditions like the temperature, materials, areas except the geometry. The case studies are conducted in Little Rock (LR), AR, USA during the winter time supposedly on 15th of December. A fresh air that is flowing with a velocity of 0.5 m/s and a flow rate of 0.009 m3/s. The results prove the possibility of achieving a controlled temperature just by changing the geometric shape of the heater. This geometry guarantees that the absorber plate always has a normal component of the solar radiation at any time during the day. The heater has a sectarian shape with a radius of 150 mm where the outlet temperature remains almost constant for six hours.Keywords: solar energy, air heater, control of temperature, CFD
Procedia PDF Downloads 3372383 Analysis of Caffeic Acid from Myrica nagi Leaves by High Performance Liquid Chromatography
Authors: Preeti Panthari, Harsha Kharkwal
Abstract:
Myrica nagi belongs to Myricaceae family. It is known for its therapeutic use since ancient times. The leaves were extracted with methanol and further fractioned with different solvents with increasing polarity. The n-butanol fraction of methanol extract was passed through celite, on separation through silica gel column chromatography yielded ten fractions. For the first time we report isolation of Caffeic acid from n-butanol fraction of Myrica nagi leaves in Chloroform: methanol (70:30) fraction. The mobile phase used for analysis in HPLC was Methanol: water (60:40) at the flow rate of 1 ml/min at wavelength of 280 nm. The retention time was 2.66 mins.Keywords: Myrica nagi, column chromatography, retention time, caffeic acid
Procedia PDF Downloads 5532382 Aerodynamic Analysis of a Frontal Deflector for Vehicles
Authors: C. Malça, N. Alves, A. Mateus
Abstract:
This work was one of the tasks of the Manufacturing2Client project, whose objective was to develop a frontal deflector to be commercialized in the automotive industry, using new project and manufacturing methods. In this task, in particular, it was proposed to develop the ability to predict computationally the aerodynamic influence of flow in vehicles, in an effort to reduce fuel consumption in vehicles from class 3 to 8. With this aim, two deflector models were developed and their aerodynamic performance analyzed. The aerodynamic study was done using the Computational Fluid Dynamics (CFD) software Ansys CFX and allowed the calculation of the drag coefficient caused by the vehicle motion for the different configurations considered. Moreover, the reduction of diesel consumption and carbon dioxide (CO2) emissions associated with the optimized deflector geometry could be assessed.Keywords: erodynamic analysis, CFD, CO2 emissions, drag coefficient, frontal deflector, fuel consumption
Procedia PDF Downloads 4072381 Capture Zone of a Well Field in an Aquifer Bounded by Two Parallel Streams
Authors: S. Nagheli, N. Samani, D. A. Barry
Abstract:
In this paper, the velocity potential and stream function of capture zone for a well field in an aquifer bounded by two parallel streams with or without a uniform regional flow of any directions are presented. The well field includes any number of extraction or injection wells or a combination of both types with any pumping rates. To delineate the capture envelope, the potential and streamlines equations are derived by conformal mapping method. This method can help us to release constrains of other methods. The equations can be applied as useful tools to design in-situ groundwater remediation systems, to evaluate the surface–subsurface water interaction and to manage the water resources.Keywords: complex potential, conformal mapping, image well theory, Laplace’s equation, superposition principle
Procedia PDF Downloads 4322380 Land Use Influence on the 2014 Catastrophic Flood in the Northeast of Peninsular Malaysia
Authors: Zulkifli Yusop
Abstract:
The severity of December 2014 flood on the east coast of Peninsular Malaysia has raised concern over the adequacy of existing land use practices and policies. This article assesses flood responses to selective logging, plantation establishment (oil palm and rubber) and their subsequent management regimes. The hydrological impacts were evaluated on two levels: on-site (mostly in the upstream) and off-site to reflect the cumulative impact at downstream. Results of experimental catchment studies suggest that on-site impact of flood could be kept to a minimum when selecting logging strictly adhere to the existing guidelines. However, increases in flood potential and sedimentation rate were observed with logging intensity and slope steepness. Forest conversion to plantation show the highest impacts. Except on the heavily compacted surfaces, the ground revegetation is usually rapid within two years upon the cessation of the logging operation. The hydrological impacts of plantation opening and replanting could be significantly reduced once the cover crop has fully established which normally takes between three to six months after sowing. However, as oil palms become taller and the canopy gets closer, the cover crop tends to die off due to light competition, and its protecting function gradually diminishes. The exposed soil is further compacted by harvesting machinery which subsequently leads to greater overland flow and erosion rates. As such, the hydrological properties of matured oil palm plantations are generally poorer than in young plantation. In hilly area, the undergrowth in rubber plantation is usually denser compared to under oil palm. The soil under rubber trees is also less compacted as latex collection is done manually. By considering the cumulative effects of land-use over space and time, selective logging seems to pose the least impact on flood potential, followed by planting rubber for latex, oil palm and Latex Timber Clone (LTC). The cumulative hydrological impact of LTC plantation is the most severe because of its shortest replanting rotation (12 to 15 years) compared to oil palm (25 years) and rubber for latex (35 years). Furthermore, the areas gazetted for LTC are mostly located on steeper slopes which are more susceptible to landslide and erosion. Forest has limited capability to store excess rainfall and is only effective in attenuating regular floods. Once the hydrologic storage is exceeded, the excess rainfall will appear as flood water. Therefore, for big floods, rainfall regime has a much bigger influence than land use.Keywords: selective logging, plantation, extreme rainfall, debris flow
Procedia PDF Downloads 3472379 Catalytic Study of Methanol-to-Propylene Conversion over Nano-Sized HZSM-5
Authors: Jianwen Li, Hongfang Ma, Weixin Qian, Haitao Zhang, Weiyong Ying
Abstract:
Methanol-to-propylene conversion was carried out in a continuous-flow fixed-bed reactor over nano-sized HZSM-5 zeolites. The HZSM-5 catalysts were synthesized with different Si/Al ratio and silicon sources, and treated with NaOH. The structural property, morphology, and acidity of catalysts were measured by XRD, N2 adsorption, FE-SEM, TEM, and NH3-TPD. The results indicate that the increment of Si/Al ratio decreased the acidity of catalysts and then improved propylene selectivity, while silicon sources had slight impact on the acidity but affected the product distribution. The desilication after alkali treatment could increase intracrystalline mesopores and enhance propylene selectivity.Keywords: alkali treatment, HZSM-5, methanol-to-propylene, synthesis condition
Procedia PDF Downloads 2172378 Optimal Capacitor Placement in Distribution Systems
Authors: Sana Ansari, Sirus Mohammadi
Abstract:
In distribution systems, shunt capacitors are used to reduce power losses, to improve voltage profile, and to increase the maximum flow through cables and transformers. This paper presents a new method to determine the optimal locations and economical sizing of fixed and/or switched shunt capacitors with a view to power losses reduction and voltage stability enhancement. General Algebraic Modeling System (GAMS) has been used to solve the maximization modules using the MINOS optimization software with Linear Programming (LP). The proposed method is tested on 33 node distribution system and the results show that the algorithm suitable for practical implementation on real systems with any size.Keywords: power losses, voltage stability, radial distribution systems, capacitor
Procedia PDF Downloads 6472377 Mathematical Modelling of Different Types of Body Support Surface for Pressure Ulcer Prevention
Authors: Mahbub C. Mishu, Venktesh N. Dubey, Tamas Hickish, Jonathan Cole
Abstract:
Pressure ulcer is a common problem for today's healthcare industry. It occurs due to external load applied to the skin. Also when the subject is immobile for a longer period of time and there is continuous load applied to a particular area of human body,blood flow gets reduced and as a result pressure ulcer develops. Body support surface has a significant role in preventing ulceration so it is important to know the characteristics of support surface under loading conditions. In this paper we have presented mathematical models of different types of viscoelastic materials and also we have shown the validation of our simulation results with experiments.Keywords: pressure ulcer, viscoelastic material, mathematical model, experimental validation
Procedia PDF Downloads 3112376 The Convection Heater Numerical Simulation
Authors: Cristian Patrascioiu, Loredana Negoita
Abstract:
This paper is focused on modeling and simulation of the tubular heaters. The paper is structured in four parts: the structure of the tubular convection section, the heat transfer model, the adaptation of the mathematical model and the solving model. The main hypothesis of the heat transfer modeling is that the heat exchanger of the convective tubular heater is a lumped system. In the same time, the model uses the heat balance relations, Newton’s law and criteria relations. The numerical program achieved allows for the estimation of the burn gases outlet temperature and the heated flow outlet temperature.Keywords: heat exchanger, mathematical modelling, nonlinear equation system, Newton-Raphson algorithm
Procedia PDF Downloads 2902375 Numerical Investigation of Plasma-Fuel System (PFS) for Coal Ignition and Combustion
Authors: Vladimir Messerle, Alexandr Ustimenko, Oleg Lavrichshev
Abstract:
To enhance the efficiency of solid fuels’ use, to decrease the fuel oil rate in the thermal power plants fuel balance and to minimize harmful emissions, a plasma technology of coal ignition, gasification and incineration is successfully applied. This technology is plasma thermochemical preparation of fuel for burning (PTCPF). In the framework of this concept, some portion of pulverized solid fuel (PF) is separated from the main PF flow and undergone the activation by arc plasma in a specific chamber with plasma torch – PFS. The air plasma flame is a source of heat and additional oxidation, it provides a high-temperature medium enriched with radicals, where the fuel mixture is heated, volatile components of coal are extracted, and carbon is partially gasified. This active blended fuel can ignite the main PF flow supplied into the furnace. This technology provides the boiler start-up and stabilization of PF flame and eliminates the necessity for addition of highly reactive fuel. In the report, a model of PTCPF, implemented as a program PlasmaKinTherm for the PFS calculation is described. The model combines thermodynamic and kinetic methods for describing the process of PTCPF in PFS. The numerical investigation of operational parameters of PFS depending on the electric power of the plasma generator and steam coal ash content revealed the temperature and velocity of gas and coal particles, and concentrations of PTCPF products dependences on the PFS length. Main mechanisms of PTCPF were disclosed. It was found that in the range of electric power of plasma generator from 40 to 100 kW high ash bituminous coal, having consumption 1667 kg/h is ignited stably. High level of temperature (1740 K) and concentration of combustible components (44%) at the PFS exit is a confirmation of it. Augmentation in power of plasma generator results displacement maxima temperatures and speeds of PTCPF products upstream (in the direction of the plasma source). The maximum temperature and velocity vary in a narrow range of values and practically do not depend on the power of the plasma torch. The numerical study of indicators of the process of PTCPF depending on the ash content in the range of its values 20-70% demonstrated that at the exit of PFS concentration of combustible components decreases with an increase in coal ash, the temperature of the gaseous products is increasing, and coal carbon conversion rate is increased to a maximum value when the ash content of 60%, dramatically decreasing with further increase in the ash content.Keywords: coal, efficiency, ignition, numerical modeling, plasma generator, plasma-fuel system
Procedia PDF Downloads 2982374 Numerical Investigation of Solid Subcooling on a Low Melting Point Metal in Latent Thermal Energy Storage Systems Based on Flat Slab Configuration
Authors: Cleyton S. Stampa
Abstract:
This paper addresses the perspectives of using low melting point metals (LMPMs) as phase change materials (PCMs) in latent thermal energy storage (LTES) units, through a numerical approach. This is a new class of PCMs that has been one of the most prospective alternatives to be considered in LTES, due to these materials present high thermal conductivity and elevated heat of fusion, per unit volume. The chosen type of LTES consists of several horizontal parallel slabs filled with PCM. The heat transfer fluid (HTF) circulates through the channel formed between each two consecutive slabs on a laminar regime through forced convection. The study deals with the LTES charging process (heat-storing) by using pure gallium as PCM, and it considers heat conduction in the solid phase during melting driven by natural convection in the melt. The transient heat transfer problem is analyzed in one arbitrary slab under the influence of the HTF. The mathematical model to simulate the isothermal phase change is based on a volume-averaged enthalpy method, which is successfully verified by comparing its predictions with experimental data from works available in the pertinent literature. Regarding the convective heat transfer problem in the HTF, it is assumed that the flow is thermally developing, whereas the velocity profile is already fully developed. The study aims to learn about the effect of the solid subcooling in the melting rate through comparisons with the melting process of the solid in which it starts to melt from its fusion temperature. In order to best understand this effect in a metallic compound, as it is the case of pure gallium, the study also evaluates under the same conditions established for the gallium, the melting process of commercial paraffin wax (organic compound) and of the calcium chloride hexahydrate (CaCl₂ 6H₂O-inorganic compound). In the present work, it is adopted the best options that have been established by several researchers in their parametric studies with respect to this type of LTES, which lead to high values of thermal efficiency. To do so, concerning with the geometric aspects, one considers a gap of the channel formed by two consecutive slabs, thickness and length of the slab. About the HTF, one considers the type of fluid, the mass flow rate, and inlet temperature.Keywords: flat slab, heat storing, pure metal, solid subcooling
Procedia PDF Downloads 1412373 Reservoir Characterization of the Pre-Cenomanian Sandstone: Central Sinai, Egypt
Authors: Abdel Moktader A. El Sayed, Nahla A. El Sayed
Abstract:
Fifty-one sandstone core samples were obtained from the wadi Saal area. They belong to the Pre-Cenomanian age. These samples were subjected to various laboratory measurements such as density, porosity, permeability, electrical resistivity, grain size analysis and ultrasonic wave velocity. The parameters describing reservoir properties are outlined. The packing index, reservoir quality index, flow zone indicator and pore throat radius (R35 and R36) were calculated. The obtained interrelationships among these parameters allow improving petrophysical knowledge about the Pre-Cenomanian reservoir information. The obtained rock physics models could be employed with some precautions to the subsurface existences of the Pre-Cenomanian sandstone reservoirs, especially in the surrounding areas.Keywords: resevoir sandstone, Egypt, Sinai, permeability
Procedia PDF Downloads 1002372 Water Desalination by Membrane Distillation with MFI Zeolite Membranes
Authors: Angelo Garofalo, Laura Donato, Maria Concetta Carnevale, Enrico Drioli, Omar Alharbi, Saad Aljlil, Alessandra Criscuoli, Catia Algieri
Abstract:
Nowadays, water scarcity may be considered one of the most important and serious questions concerning our community: in fact, there is a remarkable mismatch between water supply and water demand. Exploitation of natural fresh water resources combined with higher water demand has led to an increased requirement for alternative water resources. In this context, desalination provides such an alternative source, offering water otherwise not accessible for irrigational, industrial and municipal use. Considering the various drawbacks of the polymeric membranes, zeolite membranes represent a potential device for water desalination owing to their high thermal and chemical stability. In this area wide attention was focused on the MFI (silicalite, ZSM-5) membranes, having a pore size lower (about 5.5 Å) than the major kinetic diameters of hydrated ions. In the present work, a scale-up for the preparation of supported silicalite membranes was performed. Therefore, tubular membranes 30 cm long were synthesized by using the secondary growth method coupled with the cross flow seeding procedure. The secondary growth presents two steps: seeding and growth of zeolite crystals on the support. This process, decoupling zeolite nucleation from crystals growth, permits to control the conditions of each step separately. The seeding procedure consists of a cross-flow filtration through a porous support coupled with the support rotation and tilting. The combination of these three different aspects allows a homogeneous and uniform coverage of the support with the zeolite seeds. After characterization by scanning electron microscope (SEM), X-ray diffractometry (XRD) and Energy-dispersive X-ray (EDX) analysis, the prepared membranes were tested by means of single gas permeation and then by Vacuum Membrane Distillation (VMD) using both deionized water and NaCl solutions. The experimental results evidenced the possibility to perform the scale up for the preparation of almost defect free silicalite membranes. VMD tests indicated the possibility to prepare membranes that exhibit interesting performance in terms of fluxes and salt rejections for concentrations from 0.2 M to 0.9 M. Furthermore, it was possible to restore the original performance of the membrane after an identified cleaning procedure. Acknowledgements: The authors gratefully acknowledge the support of the King Abdulaziz City for Science and Technology (KACST) for funding the research Project 895/33 entitled ‘Preparation and Characterization of Zeolite Membranes for Water Treatment’.Keywords: desalination, MFI membranes, secondary growth, vacuum membrane distillation
Procedia PDF Downloads 2552371 Investigation of the Aerodynamic Characteristics of a Vertical Take-Off and Landing Mini Unmanned Aerial Vehicle Configuration
Authors: Amir Abdelqodus, Mario Shehata
Abstract:
The purpose of the paper is to model and evaluate the aerodynamic coefficients and stability derivatives of a Vertical, Take-off and Landing Unmanned Aerial Vehicle configuration (VTOL UAV), which is a fixed wing UAV and a quad-copter hybrid capable of both vertical and conventional take-off and/or landing. The aerodynamic analysis of this configuration was carried out using CFD commercial package Ansys Fluent. Also, the aerodynamic coefficients for the case of the UAV without the quad-copter is carried out analytically using MATLAB programmed codes, and the resulting data is verified using Lifting Line Theory and potential method programs. The two results are then compared to understand the effect of adding the quad-copter on the aerodynamic performance of the UAV.Keywords: aerodynamics, CFD, potential flow, UAV, VTOL
Procedia PDF Downloads 4452370 Removal of Nitenpyram from Farmland Runoff by an Integrated Ecological Ditches with Constructed Wetland System
Authors: Dan Qu, Dezhi Sun, Benhang Li
Abstract:
The removal of Nitenpyram from farmland runoff by an integrated eco-ditches and constructed wetland system was investigated in the case of different HRT. Experimental results show that the removal of COD, N and P was not influenced by the Nitenpyram. When the HRT was 2.5 d, 2 d, and 1 d, the Nitenpyram removal efficiency could reach 100%, 100% and 84%, respectively. The removal efficiency in the ecological ditches was about 38%-40% in the case of different HRT, while that in the constructed wetland was influenced by the HRT variation. The optimum HRT for Nitenpyram and pollutants removal was 2 d. The substrate zeolite with soil and hollow brick layer enabled higher Nitenpyram removal rates, probably due to the cooperative phenomenon of plant uptake and microbiological deterioration as well as the adsorption by the substrate.Keywords: ecological ditch, vertical flow constructed wetland, hydraulic retention time, Nitenpyram
Procedia PDF Downloads 4012369 A Proposal of Local Indentation Techniques for Mechanical Property Evaluation
Authors: G. B. Lim, C. H. Jeon, K. H. Jung
Abstract:
General light metal alloys are often developed in the material of transportation equipment such as automobiles and aircraft. Among the light metal alloys, magnesium is the lightest structural material with superior specific strength and many attractive physical and mechanical properties. However, magnesium alloys were difficult to obtain the mechanical properties at warm temperature. The aims of present work were to establish an analytical relation between mechanical properties and plastic flow induced by local indentation. An experimental investigation of the local strain distribution was carried out using a specially designed local indentation equipment in conjunction with ARAMIS based on digital image correlation method.Keywords: indentation, magnesium, mechanical property, lightweight material, ARAMIS
Procedia PDF Downloads 4922368 Influences of High Rise Buildings on Local Air Flow Characteristics on External Surfaces of Neighboring Buildings
Authors: Meral Yucel, Vildan Ok
Abstract:
This study indicates the wind effects of 49-storey height four towers on a high-density urban area-consisting of 10-12 storey height buildings called Goztepe in Istanbul, Turkey. For this purpose, four towers and close environments are modeled in 1/500 scale for wind tunnel test. Three neighboring buildings are chosen to find out the pressure coefficient changes on the surfaces of the buildings according to the construction order of these four towers and wind directions. Results were compared with the 'TS 498 Wind Standard of Tall Buildings in Istanbul' which is prepared by Istanbul Metropolitan Municipality in 2009.Keywords: high rise buildings, pressure coefficients, wind tunnel experiments, wind standard of tall buildings
Procedia PDF Downloads 2812367 Steady Conjugate Heat Transfer of Two Connected Thermal Systems
Authors: Mohamed El-Sayed Mosaad
Abstract:
An analytic approach is obtained for the steady heat transfer problem of two fluid systems, in thermal communication via heat conduction across a solid wall separating them. The two free convection layers created on wall sides are assumed to be in parallel flow. Fluid-solid interface temperature on wall sides is not prescribed in analysis in advance; rather, determined from conjugate solution among other unknown parameters. The analysis highlights the main conjugation parameters controlling thermal interaction process of involved heat transfer modes. Heat transfer results of engineering importance are obtained.Keywords: conjugate heat transfer, boundary layer, convection, thermal systems
Procedia PDF Downloads 379