Search results for: dust detection
1341 Non-Signaling Chemokine Receptor CCRL1 and Its Active Counterpart CCR7 in Prostate Cancer
Authors: Yiding Qu, Svetlana V. Komarova
Abstract:
Chemokines acting through their cognate chemokine receptors guide the directional migration of the cell along the chemokine gradient. Several chemokine receptors were recently identified as non-signaling (decoy), based on their ability to bind the chemokine but produce no measurable signal in the cell. The function of these decoy receptors is not well understood. We examined the expression of a decoy receptor CCRL1 and a signaling receptor that binds to the same ligands, CCR7, in prostate cancer using publically available microarray data (www.oncomine.org). The expression of both CCRL1 and CCR7 increased in an approximately half of prostate carcinoma samples and the majority of metastatic cancer samples compared to normal prostate. Moreover, the expression of CCRL1 positively correlated with the expression of CCR7. These data suggest that CCR7 and CCRL1 can be used as clinical markers for the early detection of transformation from carcinoma to metastatic cancer. In addition, these data support our hypothesis that the non-signaling chemokine receptors actively stimulate cell migration.Keywords: bioinformatics, cell migration, decoy receptor, meta-analysis, prostate cancer
Procedia PDF Downloads 4691340 Fluid Structure Interaction of Flow and Heat Transfer around a Microcantilever
Authors: Khalil Khanafer
Abstract:
This study emphasizes on analyzing the effect of flow conditions and the geometric variation of the microcantilever’s bluff body on the microcantilever detection capabilities within a fluidic device using a finite element fluid-structure interaction model. Such parameters include inlet velocity, flow direction, and height of the microcantilever’s supporting system within the fluidic cell. The transport equations are solved using a finite element formulation based on the Galerkin method of weighted residuals. For a flexible microcantilever, a fully coupled fluid-structure interaction (FSI) analysis is utilized and the fluid domain is described by an Arbitrary-Lagrangian–Eulerian (ALE) formulation that is fully coupled to the structure domain. The results of this study showed a profound effect on the magnitude and direction of the inlet velocity and the height of the bluff body on the deflection of the microcantilever. The vibration characteristics were also investigated in this study. This work paves the road for researchers to design efficient microcantilevers that display least errors in the measurements.Keywords: fluidic cell, FSI, microcantilever, flow direction
Procedia PDF Downloads 3741339 A Car Parking Monitoring System Using a Line-Topology Wireless Sensor Network
Authors: Dae Il Kim, Jungho Moon, Tae Yun Chung
Abstract:
This paper presents a car parking monitoring system using a wireless sensor network. The presented sensor network has a line-shaped topology and adopts a TDMA-based protocol for allowing multi-hop communications. Sensor nodes are deployed in the ground of an outdoor parking lot in such a way that a sensor node monitors a parking space. Each sensor node detects the availability of the associated parking space and transmits the detection result to a sink node via intermediate sensor nodes existing between the source sensor node and the sink node. We evaluate the feasibility of the presented sensor network and the TDMA-based communication protocol through experiments using 11 sensor nodes deployed in a real parking lot. The result shows that the presented car parking monitoring system is robust to changes in the communication environments and efficient for monitoring parking spaces of outdoor parking lots.Keywords: multi-hop communication, parking monitoring system, TDMA, wireless sensor network
Procedia PDF Downloads 3031338 Observational Study Reveals Inverse Relationship: Rising PM₂.₅ Concentrations Linked to Decreasing Muon Flux
Authors: Yashas Mattur, Jensen Coonradt
Abstract:
Muon flux, the rate of muons reaching Earth from the atmosphere, is impacted by various factors such as air pressure, temperature, and humidity. However, the influence of concentrations of PM₂.₅ (particulate matter with diameters 2.5 mm or smaller) on muon detection rates remains unexplored. During the summer of 2023, smoke from Canadian wildfires (containing significant amounts of particulate matter) blew over regions in the Northern US, introducing huge fluctuations in PM₂.₅ concentrations, thus inspiring our experiment to investigate the correlation of PM₂.₅ concentrations and muon rates. To investigate this correlation, muon collision rates were measured and analyzed alongside PM₂.₅ concentration data over the periods of both light and heavy smoke. Other confounding variables, including temperature, humidity, and atmospheric pressure, were also considered. The results reveal a statistically significant inverse correlation between muon flux and PM₂.₅ concentrations, indicating that particulate matter has an impact on the rate of muons reaching the earth’s surface.Keywords: Muon Flux, atmospheric effects on muons, PM₂.₅, airborne particulate matter
Procedia PDF Downloads 741337 Registration of Multi-Temporal Unmanned Aerial Vehicle Images for Facility Monitoring
Authors: Dongyeob Han, Jungwon Huh, Quang Huy Tran, Choonghyun Kang
Abstract:
Unmanned Aerial Vehicles (UAVs) have been used for surveillance, monitoring, inspection, and mapping. In this paper, we present a systematic approach for automatic registration of UAV images for monitoring facilities such as building, green house, and civil structures. The two-step process is applied; 1) an image matching technique based on SURF (Speeded up Robust Feature) and RANSAC (Random Sample Consensus), 2) bundle adjustment of multi-temporal images. Image matching to find corresponding points is one of the most important steps for the precise registration of multi-temporal images. We used the SURF algorithm to find a quick and effective matching points. RANSAC algorithm was used in the process of finding matching points between images and in the bundle adjustment process. Experimental results from UAV images showed that our approach has a good accuracy to be applied to the change detection of facility.Keywords: building, image matching, temperature, unmanned aerial vehicle
Procedia PDF Downloads 2921336 Securing Healthcare IoT Devices and Enabling SIEM Integration: Addressing
Authors: Mubarak Saadu Nabunkari, Abdullahi Abdu Ibrahim, Muhammad Ilyas
Abstract:
This study looks at how Internet of Things (IoT) devices are used in healthcare to monitor and treat patients better. However, using these devices in healthcare comes with security problems. The research explores using Security Information and Event Management (SIEM) systems with healthcare IoT devices to solve these security challenges. Reviewing existing literature shows the current state of IoT security and emphasizes the need for better protection. The main worry is that healthcare IoT devices can be easily hacked, putting patient data and device functionality at risk. To address this, the research suggests a detailed security framework designed for these devices. This framework, based on literature and best practices, includes important security measures like authentication, data encryption, access controls, and anomaly detection. Adding SIEM systems to this framework helps detect threats in real time and respond quickly to incidents, making healthcare IoT devices more secure. The study highlights the importance of this integration and offers guidance for implementing healthcare IoT securely, efficiently, and effectively.Keywords: cyber security, threat intelligence, forensics, heath care
Procedia PDF Downloads 661335 Design of Strain Sensor Based on Cascaded Fiber Bragg Grating for Remote Sensing Monitoring Application
Authors: Arafat A. A. Shabaneh
Abstract:
Harsh environments demand a developed detection of an optical communication system to ensure a high level of security and safety. Fiber Bragg gratings (FBG) are emerging sensing instruments that respond to variations in strain and temperature via varying wavelengths. In this paper, cascaded uniform FBG as a strain sensor for 6 km length at 1550 nm wavelength with 30 oC is designed with analyzing of dynamic strain and wavelength shifts. FBG is placed in a small segment of optical fiber, which reflects light of a specific wavelength and passes the remaining wavelengths. This makes a periodic alteration in the refractive index within the fiber core. The alteration in the modal index of fiber produced due to strain consequences in a Bragg wavelength. When the developed sensor exposure to a strain of cascaded uniform FBG by 0.01, the wavelength is shifted to 0.0000144383 μm. The sensing accuracy of the developed sensor is 0.0012. Simulation results show reliable and effective strain monitoring sensors for remote sensing applications.Keywords: Cascaded fiber Bragg gratings, Strain sensor, Remote sensing, Wavelength shift
Procedia PDF Downloads 2011334 Detection of Leishmania Mixed Infection from Phlebotomus papatasi in Central Iran
Authors: Nassibeh Hosseini-Vasoukolaei, Amir Ahmad Akhavan, Mahmood Jeddi-Tehrani, Ali Khamesipour, Mohammad Reza Yaghoobi Ershadi, Kamhawi Shaden, Valenzuela Jesus, Hossein Mirhendi, Mohammad Hossein Arandian
Abstract:
Zoonotic cutaneous leishmaniasis (ZCL) is an endemic disease in many rural areas of Iran. Sand flies were collected from rural areas of Esfahan province and were identified using valid identification keys. DNA was extracted from sand flies and Nested PCRs were done using specific primers. In this study, 44 out of 152 (28.9 %) sand flies were infected with L. majoralone. Eight sand flies showed mixed infection: four sand flies (2.6 %) were infected with L. major, L. turanicaand L. gerbili, one sand fly (0.7 %) was infected with L. major and L. turanica and three sand flies (2 %) were infected with L. turanicaand L. gerbili. Our results demonstrate the natural infection of P. papatasi sand fly with three species of L. major, L. turanica and L. gerbili which are circulating among R. opimusreservoir host and P. papatasi sand fly vector in central Iran.Keywords: Phlebotomus papatasi, Leishmania major, Leishmania turanica, Leishmania gerbili, mixed infection, Iran
Procedia PDF Downloads 4711333 Addressing Security and Privacy Issues in a Smart Environment by Using Block-Chain as a Preemptive Technique
Authors: Shahbaz Pervez, Aljawharah Almuhana, Zahida Parveen, Samina Naz, Hira Tariq, Seyed Hosseini, Muhammad Awais Azam
Abstract:
With the latest development in the field of cutting-edge technologies, there is a rapid increase in the use of technology-oriented gadgets. In a recent scenario of the tech era, there is increasing demand to fulfill our day-to-day routine tasks with the help of technological gadgets. We are living in an era of technology where trends have been changing, and a race to introduce a new technology gadget has already begun. Smart cities are getting more popular with every passing day; city councils and governments are under enormous pressure to provide the latest services for their citizens and equip them with all the latest facilities. Thus, ultimately, they are going more into smart cities infrastructure building, providing services to their inhabitants with a single click from their smart devices. This trend is very exciting, but on the other hand, if some incident of security breach happens due to any weaker link, the results would be catastrophic. This paper addresses potential security and privacy breaches with a possible solution by using Blockchain technology in IoT enabled environment.Keywords: blockchain, cybersecurity, DDOS, intrusion detection, IoT, RFID, smart devices security, smart services
Procedia PDF Downloads 1191332 Evaluation of Biochemical Parameters in the Blood of Dromedary (Camelus Dromedarius)
Authors: M. Titaouine, T. Meziane, K. Deghnouche
Abstract:
The purpose of this study was to determine reference serum biochemistry values from dromedary (Camelus dromedarius) in Algeria and to evaluate potential sources of physiological variability such as the sex, age and season on serum data. Usual serum biochemistry values were determined in blood samples from 26 apparently healthy dromedaries, 11 males and 15 females, divided into 3 lots (ender 4years), (between 5 and 10 years), (up 10 years). Parametric reference ranges and physiological variations are determined for calcium (Ca), organic phosphate (P), magnesium (Mg), natrium (Na), potassium (K), iron (Fe), glucose, triglycerides (TG), cholesterol, urea, creatinine, total proteins and albumin. The results demonstrate: * Values which agreed with literature * Significant statistically differences (Anova test, p < 0.05) depending on: -the sex for Na, glucose, TG, cholesterol, urea, creatinine, albumin, -the age for Ca, P, K, Mg, glucose, TG, b and g globulin, -and season for Fe, urea, total proteins, TG, cholesterol and glucose. These reference ranges for serum biochemical analysis can be used for metabolic and nutritional disorders detection in dromedary.Keywords: age, biochemistry, dromadery, season, sex
Procedia PDF Downloads 3751331 Vision Aided INS for Soft Landing
Authors: R. Sri Karthi Krishna, A. Saravana Kumar, Kesava Brahmaji, V. S. Vinoj
Abstract:
The lunar surface may contain rough and non-uniform terrain with dips and peaks. Soft-landing is a method of landing the lander on the lunar surface without any damage to the vehicle. This project focuses on finding a safe landing site for the vehicle by developing a method for the lateral velocity determination of the lunar lander. This is done by processing the real time images obtained by means of an on-board vision sensor. The hazard avoidance phase of the soft-landing starts when the vehicle is about 200 m above the lunar surface. Here, the lander has a very low velocity of about 10 cm/s:vertical and 5 m/s:horizontal. On the detection of a hazard the lander is navigated by controlling the vertical and lateral velocity. In order to find an appropriate landing site and to accordingly navigate, the lander image processing is performed continuously. The images are taken continuously until the landing site is determined, and the lander safely lands on the lunar surface. By integrating this vision-based navigation with the INS a better accuracy for the soft-landing of the lunar lander can be obtained.Keywords: vision aided INS, image processing, lateral velocity estimation, materials engineering
Procedia PDF Downloads 4661330 Novel NIR System for Detection of Internal Disorder and Quality of Apple Fruit
Authors: Eid Alharbi, Yaser Miaji
Abstract:
The importance of fruit quality and freshness is potential in today’s life. Most recent studies show and automatic online sorting system according to the internal disorder for fresh apple fruit has developed by using near infrared (NIR) spectroscopic technology. The automatic conveyer belts system along with sorting mechanism was constructed. To check the internal quality of the apple fruit, apple was exposed to the NIR radiations in the range 650-1300nm and the data were collected in form of absorption spectra. The collected data were compared to the reference (data of known sample) analyzed and an electronic signal was pass to the sorting system. The sorting system was separate the apple fruit samples according to electronic signal passed to the system. It is found that absorption of NIR radiation in the range 930-950nm was higher in the internally defected samples as compared to healthy samples. On the base of this high absorption of NIR radiation in 930-950nm region the online sorting system was constructed.Keywords: mechatronics design, NIR, fruit quality, spectroscopic technology
Procedia PDF Downloads 3861329 Biodiversity of Pathogenic and Toxigenic Fungi Associated with Maize Grains Sampled across Egypt
Authors: Yasser Shabana, Khaled Ghoneem, Nehal Arafat, Younes Rashad, Dalia Aseel, Bruce Fitt, Aiming Qi, Benjamine Richard
Abstract:
Providing food for more than 100 million people is one of Egypt's main challenges facing development. The overall goal is to formulate strategies to enhance food security in light of population growth. Two hundred samples of maize grains from 25 governates were collected. For the detection of seed-borne fungi, the deep-freezing blotter method (DFB) and washing method (ISTA 1999) were used. A total of 41 fungal species was recovered from maize seed samples. Weather data from 30 stations scattered all over Egypt and covering the major maize growing areas were obtained. Canonical correspondence analysis of data for the obtained fungal genera with temperature, relative humidity, precipitation, wind speed, or solar radiation revealed that relative humidity, temperature and wind speed were the most influential weather variables.Keywords: biodiversity, climate change, maize, seed-borne fungi
Procedia PDF Downloads 1611328 Simple Ecofriendly Cyclodextrine-Surfactant Modified UHPLC Method for Quantification of Multivitamins in Pharmaceutical and Food Samples
Authors: Hassan M. Albishri, Abdullah Almalawi, Deia Abd El-Hady
Abstract:
A simple and ecofriendly cyclodextrine-surfactant modified UHPLC (CDS-UPLC) method for rapid and sensitive simultaneous determination of multi water-soluble vitamins such as ascorbic acid, pyridoxine hydrochloride and thiamine hydrochloride in commercial pharmaceuticals and milk samples have been firstly developed. Several chromatographic effective parameters have been changed in a systematic way. Adequate results have been achieved by a mixture of β-cyclodextrine (β-CD) and cationic surfactant under acidic conditions as an eco-friendly isocratic mobile phase at 0.02 mL/min flow rate. The proposed CDS- UHPLC method has been validated for the quantitative determination of multivitamins within 8 min in food and pharmaceutical samples. The method showed excellent linearity for analytes in a wide range of 10-1000 ng/µL. The repeatability and reproducibility of data were about 2.14 and 4.69 RSD%, respectively. The limits of detection (LODs) of analytes ranged between 0.86 and 5.6 ng/µL with a range of 81.8 -115.8% recoveries in tablets and milk samples. The current first CDS- UHPLC method could have vast applications for the precise analysis of multivitamins in complicated matrices.Keywords: ecofriendly, cyclodextrine-surfactant, multivitamins, UHPLC
Procedia PDF Downloads 2731327 Optimization of Solar Tracking Systems
Authors: A. Zaher, A. Traore, F. Thiéry, T. Talbert, B. Shaer
Abstract:
In this paper, an intelligent approach is proposed to optimize the orientation of continuous solar tracking systems on cloudy days. Considering the weather case, the direct sunlight is more important than the diffuse radiation in case of clear sky. Thus, the panel is always pointed towards the sun. In case of an overcast sky, the solar beam is close to zero, and the panel is placed horizontally to receive the maximum of diffuse radiation. Under partly covered conditions, the panel must be pointed towards the source that emits the maximum of solar energy and it may be anywhere in the sky dome. Thus, the idea of our approach is to analyze the images, captured by ground-based sky camera system, in order to detect the zone in the sky dome which is considered as the optimal source of energy under cloudy conditions. The proposed approach is implemented using experimental setup developed at PROMES-CNRS laboratory in Perpignan city (France). Under overcast conditions, the results were very satisfactory, and the intelligent approach has provided efficiency gains of up to 9% relative to conventional continuous sun tracking systems.Keywords: clouds detection, fuzzy inference systems, images processing, sun trackers
Procedia PDF Downloads 1921326 Tumor Boundary Extraction Using Intensity and Texture-Based on Gradient Vector
Authors: Namita Mittal, Himakshi Shekhawat, Ankit Vidyarthi
Abstract:
In medical research study, doctors and radiologists face lot of complexities in analysing the brain tumors in Magnetic Resonance (MR) images. Brain tumor detection is difficult due to amorphous tumor shape and overlapping of similar tissues in nearby region. So, radiologists require one such clinically viable solution which helps in automatic segmentation of tumor inside brain MR image. Initially, segmentation methods were used to detect tumor, by dividing the image into segments but causes loss of information. In this paper, a hybrid method is proposed which detect Region of Interest (ROI) on the basis of difference in intensity values and texture values of tumor region using nearby tissues with Gradient Vector Flow (GVF) technique in the identification of ROI. Proposed approach uses both intensity and texture values for identification of abnormal section of the brain MR images. Experimental results show that proposed method outperforms GVF method without any loss of information.Keywords: brain tumor, GVF, intensity, MR images, segmentation, texture
Procedia PDF Downloads 4321325 Study of Phenotypic Polymorphism and Detection of Genotypic Polymorphism in Menochilus sexmaculatus (Coleoptera: Insecta) Using RAPD PCR
Authors: Huma Balouch
Abstract:
Menochilus sexmaculatus commonly known as six spotted zig zag ladybird, is an aphidophagus and the most misidentified Coccinellids due to the occurrence of numerous color variants. The correct identification of Menochilus sexmaculatus and its strains is necessary to implement the use of biological control. In the present study phenotypic and genotypic polymorphism was investigated in Menochilus sexmaculatus collected from Punjab, NWFP and Sindh provinces of Pakistan. Six different morphs of the species were distinguished by analyzing its Elytral color and spot pattern and then Polymerase Chain Reaction was used to generate random amplification of polymorphic DNA (RAPD) from six different types of Menochilus sexmaculatus. Forty primers (OPA & OPC Kit) were used to perform RAPD PCR on six different types of Menochilus sexmaculatus of which, seven primers revealed different patterns related to the Menochilus sexmaculatus types. These seven primers (OPA-04, OPA-09, OPA-18, OPC-04, OPC-12, OPC-15 and OPC-18) produced 111 clear polymorphic bands and 6 scorable strain specific markers. The cluster analysis applied to RAPD data showed high polymorphism among six types and it can be concluded that these six types are six polymorphic strains of the same species.Keywords: Menochilus sexmaculatus, aphidophagus, coccinellids, phenotypic and genotypic polymorphism, RAPD-PCR, strain specific markers
Procedia PDF Downloads 4951324 The Predictive Value of Serum Bilirubin in the Post-Transplant De Novo Malignancy: A Data Mining Approach
Authors: Nasim Nosoudi, Amir Zadeh, Hunter White, Joshua Conrad, Joon W. Shim
Abstract:
De novo Malignancy has become one of the major causes of death after transplantation, so early cancer diagnosis and detection can drastically improve survival rates post-transplantation. Most previous work focuses on using artificial intelligence (AI) to predict transplant success or failure outcomes. In this work, we focused on predicting de novo malignancy after liver transplantation using AI. We chose the patients that had malignancy after liver transplantation with no history of malignancy pre-transplant. Their donors were cancer-free as well. We analyzed 254,200 patient profiles with post-transplant malignancy from the US Organ Procurement and Transplantation Network (OPTN). Several popular data mining methods were applied to the resultant dataset to build predictive models to characterize de novo malignancy after liver transplantation. Recipient's bilirubin, creatinine, weight, gender, number of days recipient was on the transplant waiting list, Epstein Barr Virus (EBV), International normalized ratio (INR), and ascites are among the most important factors affecting de novo malignancy after liver transplantationKeywords: De novo malignancy, bilirubin, data mining, transplantation
Procedia PDF Downloads 1051323 A Near-Optimal Domain Independent Approach for Detecting Approximate Duplicates
Authors: Abdelaziz Fellah, Allaoua Maamir
Abstract:
We propose a domain-independent merging-cluster filter approach complemented with a set of algorithms for identifying approximate duplicate entities efficiently and accurately within a single and across multiple data sources. The near-optimal merging-cluster filter (MCF) approach is based on the Monge-Elkan well-tuned algorithm and extended with an affine variant of the Smith-Waterman similarity measure. Then we present constant, variable, and function threshold algorithms that work conceptually in a divide-merge filtering fashion for detecting near duplicates as hierarchical clusters along with their corresponding representatives. The algorithms take recursive refinement approaches in the spirit of filtering, merging, and updating, cluster representatives to detect approximate duplicates at each level of the cluster tree. Experiments show a high effectiveness and accuracy of the MCF approach in detecting approximate duplicates by outperforming the seminal Monge-Elkan’s algorithm on several real-world benchmarks and generated datasets.Keywords: data mining, data cleaning, approximate duplicates, near-duplicates detection, data mining applications and discovery
Procedia PDF Downloads 3871322 Classification of Echo Signals Based on Deep Learning
Authors: Aisulu Tileukulova, Zhexebay Dauren
Abstract:
Radar plays an important role because it is widely used in civil and military fields. Target detection is one of the most important radar applications. The accuracy of detecting inconspicuous aerial objects in radar facilities is lower against the background of noise. Convolutional neural networks can be used to improve the recognition of this type of aerial object. The purpose of this work is to develop an algorithm for recognizing aerial objects using convolutional neural networks, as well as training a neural network. In this paper, the structure of a convolutional neural network (CNN) consists of different types of layers: 8 convolutional layers and 3 layers of a fully connected perceptron. ReLU is used as an activation function in convolutional layers, while the last layer uses softmax. It is necessary to form a data set for training a neural network in order to detect a target. We built a Confusion Matrix of the CNN model to measure the effectiveness of our model. The results showed that the accuracy when testing the model was 95.7%. Classification of echo signals using CNN shows high accuracy and significantly speeds up the process of predicting the target.Keywords: radar, neural network, convolutional neural network, echo signals
Procedia PDF Downloads 3531321 Quality Assessment of Some Selected Locally Produced and Marketed Soft Drinks
Authors: Gerardette Darkwah, Gloria Ankar Brewoo, John Barimah, Gilbert Owiah Sampson, Vincent Abe-Inge
Abstract:
Soft drinks which are widely consumed in Ghana have been reported in other countries to contain toxic heavy metals beyond the acceptable limits in other countries. Therefore, the objective of this study was to assess the quality characteristics of selected locally produced and marketed soft drinks. Three (3) different batches of 23 soft drinks were sampled from the Takoradi markets. The samples were prescreened for the presence of reducing sugars, phosphates, alcohol and carbon dioxide. The heavy metal contents and physicochemical properties were also determined with AOAC methods. The results indicated the presence of reducing sugars, carbon dioxide and the absence of alcohol in all the selected soft drink samples. The pH, total sugars, moisture, total soluble solids (TSS) and titratable acidity ranged from 2.42 – 3.44, 3.30 – 10.44%, 85.63 – 94.85%, 5.00 – 13.33°Brix, and 0.21 – 1.99% respectively. The concentration of heavy metals were also below detection limits in all samples. The quality of the selected were within specifications prescribed by regulatory bodies.Keywords: heavy metal contamination, locally manufactured, quality, soft drinks
Procedia PDF Downloads 1471320 Static Eccentricity Fault Diagnosis in Synchronous Reluctance Motor and Permanent Magnet Assisted Synchronous Reluctance Motor
Authors: M. Naeimi, H. Aghazadeh, E. Afjei, A. Siadatan
Abstract:
In this paper, a novel view of air gap magnetic field analysis of synchronous reluctance motor and permanent magnet assisted synchronous reluctance motor under static eccentricity to provide the precise fault diagnosis based on three-dimensional finite element method is presented. Analytical nature of this method makes it possible to simulate reliable and precise model by considering the end effects and axial fringing effects. The results of the three-dimensional finite element analysis of synchronous reluctance motor and permanent magnet synchronous reluctance motor such as flux linkage, flux density, and compression both of SynRM and PM-SynRM for various eccentric motor conditions are obtained and analyzed. These results present useful information regarding to the detection of static eccentricity.Keywords: synchronous reluctance motor (SynRM), permanent magnet assisted synchronous reluctance motor (PMaSynRM), finite element method, static eccentricity, fault analysis
Procedia PDF Downloads 3111319 Malaria Parasite Detection Using Deep Learning Methods
Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko
Abstract:
Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.Keywords: convolution neural network, deep learning, malaria, thin blood smears
Procedia PDF Downloads 1301318 Natural Radioactivity in Foods Consumed in Turkey
Authors: E. Kam, G. Karahan, H. Aslıyuksek, A. Bozkurt
Abstract:
This study aims to determine the natural radioactivity levels in some foodstuffs produced in Turkey. For this purpose, 48 different foods samples were collected from different land parcels throughout the country. All samples were analyzed to designate both gross alpha and gross beta radioactivities and the radionuclides’ concentrations. The gross alpha radioactivities were measured as below 1 Bq kg-1 in most of the samples, some of them being due to the detection limit of the counting system. The gross beta radioactivity levels ranged from 1.8 Bq kg-1 to 453 Bq kg-1, larger levels being observed in leguminous seeds while the highest level being in haricot bean. The concentrations of natural radionuclides in the foodstuffs were investigated by the method of gamma spectroscopy. High levels of 40K were measured in all the samples, the highest activities being again in leguminous seeds. Low concentrations of 238U and 226Ra were found in some of the samples, which are comparable to the reported results in the literature. Based on the activity concentrations obtained in this study, average annual effective dose equivalents for the radionuclides 226Ra, 238U, and 40K were calculated as 77.416 µSv y-1, 0.978 µSv y-1, and 140.55 µSv y-1, respectively.Keywords: foods, radioactivity, gross alpha, gross beta, annual equivalent dose, Turkey
Procedia PDF Downloads 4541317 Clinical and Molecular Characterization of Mycoplasmosis in Sheep in Egypt
Authors: Walid Mousa, Mohamed Nayel, Ahmed Zaghawa, Akram Salama, Ahmed El-Sify, Hesham Rashad, Dina El-Shafey
Abstract:
Mycoplasmosis in small ruminants constitutes a serious contagious problem in smallholders causing severe economic losses worldwide. This study was conducted to determine the clinical, Minimum Inhibitory Concentration (MIC) and molecular characterization of Mycoplasma species associated in sheep breeding herds in Menoufiya governorate, Egypt. Out of the examination of 400 sheep, 104 (26%) showed respiratory manifestations, nasal discharges, cough and conjunctivitis with systemic body reaction. Meanwhile, out of these examined sheep, only 56 (14%) were positive for mycoplasma isolation onto PPLO(Pleuropneumonia-like organisms) specific medium. The MIC for evaluating the efficacy of sensitivity of Mycoplasma isolates against different antibiotics groups revealed that both the Linospectin and Tylosin with 2ug, 0.25ug/ml concentration were the most effective antibiotics for Mycoplasma isolates. The application of PCR was the rapid, specific and sensitive molecular approach for detection of M. ovipneumoniae, and M. arginine at 390 and 326 bp, respectively, in all tested isolates. In conclusion, the diagnosis of Mycoplsamosis in sheep is important to achieve effective control measures and minimizing the disease dissemination among sheep herds.Keywords: MIC, mycoplasmosis, PCR, sheep
Procedia PDF Downloads 2281316 An Industrial Workplace Alerting and Monitoring Platform to Prevent Workplace Injury and Accidents
Authors: Sanjay Adhikesaven
Abstract:
Workplace accidents are a critical problem that causes many deaths, injuries, and financial losses. Climate change has a severe impact on industrial workers, partially caused by global warming. To reduce such casualties, it is important to proactively find unsafe environments where injuries could occur by detecting the use of personal protective equipment (PPE) and identifying unsafe activities. Thus, we propose an industrial workplace alerting and monitoring platform to detect PPE use and classify unsafe activity in group settings involving multiple humans and objects over a long period of time. Our proposed method is the first to analyze prolonged actions involving multiple people or objects. It benefits from combining pose estimation with PPE detection in one platform. Additionally, we propose the first open-source annotated data set with video data from industrial workplaces annotated with the action classifications and detected PPE. The proposed system can be implemented within the surveillance cameras already present in industrial settings, making it a practical and effective solution.Keywords: computer vision, deep learning, workplace safety, automation
Procedia PDF Downloads 1031315 Optical-Based Lane-Assist System for Rowing Boats
Authors: Stephen Tullis, M. David DiDonato, Hong Sung Park
Abstract:
Rowing boats (shells) are often steered by a small rudder operated by one of the backward-facing rowers; the attention required of that athlete then slightly decreases the power that that athlete can provide. Reducing the steering distraction would then increase the overall boat speed. Races are straight 2000 m courses with each boat in a 13.5 m wide lane marked by small (~15 cm) widely-spaced (~10 m) buoys, and the boat trajectory is affected by both cross-currents and winds. An optical buoy recognition and tracking system has been developed that provides the boat’s location and orientation with respect to the lane edges. This information is provided to the steering athlete as either: a simple overlay on a video display, or fed to a simplified autopilot system giving steering directions to the athlete or directly controlling the rudder. The system is then effectively a “lane-assist” device but with small, widely-spaced lane markers viewed from a very shallow angle due to constraints on camera height. The image is captured with a lightweight 1080p webcam, and most of the image analysis is done in OpenCV. The colour RGB-image is converted to a grayscale using the difference of the red and blue channels, which provides good contrast between the red/yellow buoys and the water, sky, land background and white reflections and noise. Buoy detection is done with thresholding within a tight mask applied to the image. Robust linear regression using Tukey’s biweight estimator of the previously detected buoy locations is used to develop the mask; this avoids the false detection of noise such as waves (reflections) and, in particular, buoys in other lanes. The robust regression also provides the current lane edges in the camera frame that are used to calculate the displacement of the boat from the lane centre (lane location), and its yaw angle. The interception of the detected lane edges provides a lane vanishing point, and yaw angle can be calculated simply based on the displacement of this vanishing point from the camera axis and the image plane distance. Lane location is simply based on the lateral displacement of the vanishing point from any horizontal cut through the lane edges. The boat lane position and yaw are currently fed what is essentially a stripped down marine auto-pilot system. Currently, only the lane location is used in a PID controller of a rudder actuator with integrator anti-windup to deal with saturation of the rudder angle. Low Kp and Kd values decrease unnecessarily fast return to lane centrelines and response to noise, and limiters can be used to avoid lane departure and disqualification. Yaw is not used as a control input, as cross-winds and currents can cause a straight course with considerable yaw or crab angle. Mapping of the controller with rudder angle “overall effectiveness” has not been finalized - very large rudder angles stall and have decreased turning moments, but at less extreme angles the increased rudder drag slows the boat and upsets boat balance. The full system has many features similar to automotive lane-assist systems, but with the added constraints of the lane markers, camera positioning, control response and noise increasing the challenge.Keywords: auto-pilot, lane-assist, marine, optical, rowing
Procedia PDF Downloads 1321314 Remote Sensing of Urban Land Cover Change: Trends, Driving Forces, and Indicators
Authors: Wei Ji
Abstract:
This study was conducted in the Kansas City metropolitan area of the United States, which has experienced significant urban sprawling in recent decades. The remote sensing of land cover changes in this area spanned over four decades from 1972 through 2010. The project was implemented in two stages: the first stage focused on detection of long-term trends of urban land cover change, while the second one examined how to detect the coupled effects of human impact and climate change on urban landscapes. For the first-stage study, six Landsat images were used with a time interval of about five years for the period from 1972 through 2001. Four major land cover types, built-up land, forestland, non-forest vegetation land, and surface water, were mapped using supervised image classification techniques. The study found that over the three decades the built-up lands in the study area were more than doubled, which was mainly at the expense of non-forest vegetation lands. Surprisingly and interestingly, the area also saw a significant gain in surface water coverage. This observation raised questions: How have human activities and precipitation variation jointly impacted surface water cover during recent decades? How can we detect such coupled impacts through remote sensing analysis? These questions led to the second stage of the study, in which we designed and developed approaches to detecting fine-scale surface waters and analyzing coupled effects of human impact and precipitation variation on the waters. To effectively detect urban landscape changes that might be jointly shaped by precipitation variation, our study proposed “urban wetscapes” (loosely-defined urban wetlands) as a new indicator for remote sensing detection. The study examined whether urban wetscape dynamics was a sensitive indicator of the coupled effects of the two driving forces. To better detect this indicator, a rule-based classification algorithm was developed to identify fine-scale, hidden wetlands that could not be appropriately detected based on their spectral differentiability by a traditional image classification. Three SPOT images for years 1992, 2008, and 2010, respectively were classified with this technique to generate the four types of land cover as described above. The spatial analyses of remotely-sensed wetscape changes were implemented at the scales of metropolitan, watershed, and sub-watershed, as well as based on the size of surface water bodies in order to accurately reveal urban wetscape change trends in relation to the driving forces. The study identified that urban wetscape dynamics varied in trend and magnitude from the metropolitan, watersheds, to sub-watersheds in response to human impacts at different scales. The study also found that increased precipitation in the region in the past decades swelled larger wetlands in particular while generally smaller wetlands decreased mainly due to human development activities. These results confirm that wetscape dynamics can effectively reveal the coupled effects of human impact and climate change on urban landscapes. As such, remote sensing of this indicator provides new insights into the relationships between urban land cover changes and driving forces.Keywords: urban land cover, human impact, climate change, rule-based classification, across-scale analysis
Procedia PDF Downloads 3081313 The Modeling and Effectiveness Evaluation for Vessel Evasion to Acoustic Homing Torpedo
Authors: Li Minghui, Min Shaorong, Zhang Jun
Abstract:
This paper aims for studying the operational efficiency of surface warship’s motorized evasion to acoustic homing torpedo. It orderly developed trajectory model, self-guide detection model, vessel evasion model, as well as anti-torpedo error model in three-dimensional space to make up for the deficiency of precious researches analyzing two-dimensionally confrontational models. Then, making use of the Monte Carlo method, it carried out the simulation for the confrontation process of evasion in the environment of MATLAB. At last, it quantitatively analyzed the main factors which determine vessel’s survival probability. The results show that evasion relative bearing and speed will affect vessel’s survival probability significantly. Thus, choosing appropriate evasion relative bearing and speed according to alarming range and alarming relative bearing for torpedo, improving alarming range and positioning accuracy and reducing the response time against torpedo will improve the vessel’s survival probability significantly.Keywords: acoustic homing torpedo, vessel evasion, monte carlo method, torpedo defense, vessel's survival probability
Procedia PDF Downloads 4551312 Hybrid Approximate Structural-Semantic Frequent Subgraph Mining
Authors: Montaceur Zaghdoud, Mohamed Moussaoui, Jalel Akaichi
Abstract:
Frequent subgraph mining refers usually to graph matching and it is widely used in when analyzing big data with large graphs. A lot of research works dealt with structural exact or inexact graph matching but a little attention is paid to semantic matching when graph vertices and/or edges are attributed and typed. Therefore, it seems very interesting to integrate background knowledge into the analysis and that extracted frequent subgraphs should become more pruned by applying a new semantic filter instead of using only structural similarity in graph matching process. Consequently, this paper focuses on developing a new hybrid approximate structuralsemantic graph matching to discover a set of frequent subgraphs. It uses simultaneously an approximate structural similarity function based on graph edit distance function and a possibilistic vertices similarity function based on affinity function. Both structural and semantic filters contribute together to prune extracted frequent set. Indeed, new hybrid structural-semantic frequent subgraph mining approach searches will be suitable to be applied to several application such as community detection in social networks.Keywords: approximate graph matching, hybrid frequent subgraph mining, graph mining, possibility theory
Procedia PDF Downloads 403