Search results for: central auditory processing disorder
5335 Listening to Circles, Playing Lights: A Study of Cross-Modal Perception in Music
Authors: Roni Granot, Erica Polini
Abstract:
Music is often described in terms of non-auditory adjectives such as a rising melody, a bright sound, or a zigzagged contour. Such cross modal associations have been studied with simple isolated musical parameters, but only rarely in rich musical contexts. The current study probes cross sensory associations with polarity based dimensions by means of pairings of 10 adjectives: blunt-sharp, relaxed-tense, heavy-light, low (in space)-high, low (pitch)-high, big-small, hard-soft, active-passive, bright-dark, sad-happy. 30 participants (randomly assigned to one of two groups) were asked to rate one of 27 short saxophone improvisations on a 1 to 6 scale where 1 and six correspond to the opposite pole of each dimension. The 27 improvisations included three exemplars for each of three dimensions (size, brightness, sharpness), played by three different players. Here we focus on the question of whether ratings of scales corresponding with the musical dimension were consistently rated as such (e.g. music improvised to represent a white circle rated as bright in contrast with music improvised to represent a dark circle rated as dark). Overall the average scores by dimension showed an upward trend in the equivalent verbal scale, with a low rating for small, bright and sharp musical improvisations and higher scores for large, dark and blunt improvisations. Friedman tests indicate a statistically significant difference for brightness (χ2 (2) = 19.704, p = .000) and sharpness dimensions (χ2 (2) = 15.750, p = .000), but not for size (χ2 (2) = 1.444, p = .486). Post hoc analysis with Wilcoxon signed-rank tests within the brightness dimension, show significant differences among all possible parings resulted in significant differences: the rankings of 'bright' and 'dark' (Z = -3.310, p = .001), of 'bright' and 'medium' (Z = -2.438, p = .015) and of 'dark' and 'medium' music (Z = -2.714, p = .007); but only differences between the extreme contrasts within the sharpness dimension : 'sharp' and 'blunt' music (Z = -3.147, p = .002) and between 'sharp' and 'medium' music rated on the sharpness scale (Z = - 3.054, p = .002), but not between 'medium' and 'blunt' music (Z = -.982, p = .326). In summary our study suggests a privileged link between music and the perceptual and semantic domain of brightness. In contrast, size seems to be very difficult to convey in music, whereas sharpness seems to be mapped onto the two extremes (sharp vs. blunt) rather than continuously. This is nicely reflected in the musical literature in titles and texts which stress the association between music and concepts of light or darkness rather than sharpness or size.Keywords: audiovisual, brightness, cross-modal perception, cross-sensory correspondences, size, visual angularity
Procedia PDF Downloads 2205334 Teaching Practices for Subverting Significant Retentive Learner Errors in Arithmetic
Authors: Michael Lousis
Abstract:
The systematic identification of the most conspicuous and significant errors made by learners during three-years of testing of their progress in learning Arithmetic throughout the development of the Kassel Project in England and Greece was accomplished. How much retentive these errors were over three-years in the officially provided school instruction of Arithmetic in these countries has also been shown. The learners’ errors in Arithmetic stemmed from a sample, which was comprised of two hundred (200) English students and one hundred and fifty (150) Greek students. The sample was purposefully selected according to the students’ participation in each testing session in the development of the three-year project, in both domains simultaneously in Arithmetic and Algebra. Specific teaching practices have been invented and are presented in this study for subverting these learners’ errors, which were found out to be retentive to the level of the nationally provided mathematical education of each country. The invention and the development of these proposed teaching practices were founded on the rationality of the theoretical accounts concerning the explanation, prediction and control of the errors, on the conceptual metaphor and on an analysis, which tried to identify the required cognitive components and skills of the specific tasks, in terms of Psychology and Cognitive Science as applied to information-processing. The aim of the implementation of these instructional practices is not only the subversion of these errors but the achievement of the mathematical competence, as this was defined to be constituted of three elements: appropriate representations - appropriate meaning - appropriately developed schemata. However, praxis is of paramount importance, because there is no independent of science ‘real-truth’ and because praxis serves as quality control when it takes the form of a cognitive method.Keywords: arithmetic, cognitive science, cognitive psychology, information-processing paradigm, Kassel project, level of the nationally provided mathematical education, praxis, remedial mathematical teaching practices, retentiveness of errors
Procedia PDF Downloads 3165333 Management and Genetic Characterization of Local Sheep Breeds for Better Productive and Adaptive Traits
Authors: Sonia Bedhiaf-Romdhani
Abstract:
The sheep (Ovis aries) was domesticated, approximately 11,000 years ago (YBP), in the Fertile Crescent from Asian Mouflon (Ovis Orientalis). The Northern African (NA) sheep is 7,000 years old, represents a remarkable diversity of sheep populations reared under traditional and low input farming systems (LIFS) over millennia. The majority of small ruminants in developing countries are encountered in low input production systems and the resilience of local communities in rural areas is often linked to the wellbeing of small ruminants. Regardless of the rich biodiversity encountered in sheep ecotypes there are four main sheep breeds in the country with 61,6 and 35.4 percents of Barbarine (fat tail breed) and Queue Fine de l’Ouest (thin tail breed), respectively. Phoenicians introduced the Barbarine sheep from the steppes of Central Asia in the Carthaginian period, 3000 years ago. The Queue Fine de l’Ouest is a thin-tailed meat breed heavily concentrated in the Western and the central semi-arid regions. The Noire de Thibar breed, involving mutton-fine wool producing animals, has been on the verge of extinction, it’s a composite black coated sheep breed found in the northern sub-humid region because of its higher nutritional requirements and non-tolerance of the prevailing harsher condition. The D'Man breed, originated from Morocco, is mainly located in the southern oases of the extreme arid ecosystem. A genetic investigation of Tunisian sheep breeds using a genome-wide scan of approximately 50,000 SNPs was performed. Genetic analysis of relationship between breeds highlighted the genetic differentiation of Noire de Thibar breed from the other local breeds, reflecting the effect of past events of introgression of European gene pool. The Queue Fine de l’Ouest breed showed a genetic heterogeneity and was close to Barbarine. The D'Man breed shared a considerable gene flow with the thin-tailed Queue Fine de l'Ouest breed. Native small ruminants breeds, are capable to be efficiently productive if essential ingredients and coherent breeding schemes are implemented and followed. Assessing the status of genetic variability of native sheep breeds could provide important clues for research and policy makers to devise better strategies for the conservation and management of genetic resources.Keywords: sheep, farming systems, diversity, SNPs.
Procedia PDF Downloads 1475332 Sentiment Analysis of Fake Health News Using Naive Bayes Classification Models
Authors: Danielle Shackley, Yetunde Folajimi
Abstract:
As more people turn to the internet seeking health-related information, there is more risk of finding false, inaccurate, or dangerous information. Sentiment analysis is a natural language processing technique that assigns polarity scores to text, ranging from positive, neutral, and negative. In this research, we evaluate the weight of a sentiment analysis feature added to fake health news classification models. The dataset consists of existing reliably labeled health article headlines that were supplemented with health information collected about COVID-19 from social media sources. We started with data preprocessing and tested out various vectorization methods such as Count and TFIDF vectorization. We implemented 3 Naive Bayes classifier models, including Bernoulli, Multinomial, and Complement. To test the weight of the sentiment analysis feature on the dataset, we created benchmark Naive Bayes classification models without sentiment analysis, and those same models were reproduced, and the feature was added. We evaluated using the precision and accuracy scores. The Bernoulli initial model performed with 90% precision and 75.2% accuracy, while the model supplemented with sentiment labels performed with 90.4% precision and stayed constant at 75.2% accuracy. Our results show that the addition of sentiment analysis did not improve model precision by a wide margin; while there was no evidence of improvement in accuracy, we had a 1.9% improvement margin of the precision score with the Complement model. Future expansion of this work could include replicating the experiment process and substituting the Naive Bayes for a deep learning neural network model.Keywords: sentiment analysis, Naive Bayes model, natural language processing, topic analysis, fake health news classification model
Procedia PDF Downloads 975331 Development of the Integrated Quality Management System of Cooked Sausage Products
Authors: Liubov Lutsyshyn, Yaroslava Zhukova
Abstract:
Over the past twenty years, there has been a drastic change in the mode of nutrition in many countries which has been reflected in the development of new products, production techniques, and has also led to the expansion of sales markets for food products. Studies have shown that solution of the food safety problems is almost impossible without the active and systematic activity of organizations directly involved in the production, storage and sale of food products, as well as without management of end-to-end traceability and exchange of information. The aim of this research is development of the integrated system of the quality management and safety assurance based on the principles of HACCP, traceability and system approach with creation of an algorithm for the identification and monitoring of parameters of technological process of manufacture of cooked sausage products. Methodology of implementation of the integrated system based on the principles of HACCP, traceability and system approach during the manufacturing of cooked sausage products for effective provision for the defined properties of the finished product has been developed. As a result of the research evaluation technique and criteria of performance of the implementation and operation of the system of the quality management and safety assurance based on the principles of HACCP have been developed and substantiated. In the paper regularities of influence of the application of HACCP principles, traceability and system approach on parameters of quality and safety of the finished product have been revealed. In the study regularities in identification of critical control points have been determined. The algorithm of functioning of the integrated system of the quality management and safety assurance has also been described and key requirements for the development of software allowing the prediction of properties of finished product, as well as the timely correction of the technological process and traceability of manufacturing flows have been defined. Based on the obtained results typical scheme of the integrated system of the quality management and safety assurance based on HACCP principles with the elements of end-to-end traceability and system approach for manufacture of cooked sausage products has been developed. As a result of the studies quantitative criteria for evaluation of performance of the system of the quality management and safety assurance have been developed. A set of guidance documents for the implementation and evaluation of the integrated system based on the HACCP principles in meat processing plants have also been developed. On the basis of the research the effectiveness of application of continuous monitoring of the manufacturing process during the control on the identified critical control points have been revealed. The optimal number of critical control points in relation to the manufacture of cooked sausage products has been substantiated. The main results of the research have been appraised during 2013-2014 under the conditions of seven enterprises of the meat processing industry and have been implemented at JSC «Kyiv meat processing plant».Keywords: cooked sausage products, HACCP, quality management, safety assurance
Procedia PDF Downloads 2475330 Role of Bariatric Surgery in Polycystic Ovarian Syndrome &Infertility
Authors: Ahuja Ashish, Nain Prabhdeep Singh
Abstract:
Introduction: Polycystic ovarian syndrome(PCOS) is the most common endocrine disorder among women of reproductive age.Pcos encompasses a broad spectrum of signs&symptoms of ovary dysfunction,obesity,blood pressure,insulin resistance & infertility. Bariatric Surgery can be an effective means of weight loss in Pcos & curing infertility. Materials and Methods: 15 female patients were enrolled in the study from 2012-2014.66%(n=10) were in age group of 20-25 years,33%(n=5) were in age group of 25-33 years who underwent. Bariatric surgery in form of Laproscopic sleeve Gastrectomy(LSG)& Roux-en-Y gastric bypass. LSG 73%(n=11), RYGB26% (n=4). Results: There was a significant improvement in obesity (60% excess weight loss)over 1 year after bariatric surgery, in 12 patients there was gross improvement in restoration of menstrual cycle who had irregular menstrual cycle. In 80% patients the serum insulin level showed normal value. Over two years 8 patients become pregnant. Conclusions: 1)Obese women with Pcos maybe able to conceive after Bariatric Surgery. 2) Women with Pcos should only consider bariatric surgery if they were already considering it for other reasons to treat obesity, blood pressure & other co-morbid conditions.Keywords: obesity, bariatric surgery, polycystic ovarian syndrome, infertility
Procedia PDF Downloads 2935329 Deep Learning Approaches for Accurate Detection of Epileptic Seizures from Electroencephalogram Data
Authors: Ramzi Rihane, Yassine Benayed
Abstract:
Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked seizures resulting from abnormal electrical activity in the brain. Timely and accurate detection of these seizures is essential for improving patient care. In this study, we leverage the UK Bonn University open-source EEG dataset and employ advanced deep-learning techniques to automate the detection of epileptic seizures. By extracting key features from both time and frequency domains, as well as Spectrogram features, we enhance the performance of various deep learning models. Our investigation includes architectures such as Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), 1D Convolutional Neural Networks (1D-CNN), and hybrid CNN-LSTM and CNN-BiLSTM models. The models achieved impressive accuracies: LSTM (98.52%), Bi-LSTM (98.61%), CNN-LSTM (98.91%), CNN-BiLSTM (98.83%), and CNN (98.73%). Additionally, we utilized a data augmentation technique called SMOTE, which yielded the following results: CNN (97.36%), LSTM (97.01%), Bi-LSTM (97.23%), CNN-LSTM (97.45%), and CNN-BiLSTM (97.34%). These findings demonstrate the effectiveness of deep learning in capturing complex patterns in EEG signals, providing a reliable and scalable solution for real-time seizure detection in clinical environments.Keywords: electroencephalogram, epileptic seizure, deep learning, LSTM, CNN, BI-LSTM, seizure detection
Procedia PDF Downloads 135328 Meiji Centennial as a Media Event: Ideas for Upcoming Turkish Republic Centennial
Authors: Hasan Topacoglu
Abstract:
The Meiji Restoration was a chain of events that restored Japan in 1868 and considered as the beginning of Japanese Modernization by many scholars. In 1968, to honor its modern incarnation, Japan celebrated Meiji Centennial as one of the biggest Media Events in the country after the World War II. It was celebrated all around the country throughout the year following with a central event in Tokyo. Meanwhile, Japanese scholars started an opposition movement and claimed that Government was using this event to raise nationalism, pointing at Government’s statement on the meaning of Meiji. Most of the scholars, unfortunately, were hooked into the ideological problem of the Government’s way of planning and evaluated it as a failure. However, scholars missed out an important point that apart from the central event in Tokyo, each city planned its own event and celebrated it on a different date, also with a different theme. For example, Kyoto showed a regional characteristic and focused on Kyoto’s own culture, tradition etc., and highlighted a further past than 100 years. This was mainly because some areas/cities had a different ‘memory’ for Meiji Restoration than Tokyo which was reflected through the way they celebrated Meiji Centennial. On the other hand, 2023 will be the year of Turkish Republic Centennial. A year which will be marked by national and maybe even international events. Although an official committee has not been announced yet, The 2023 Vision, a list of goals has been released by the Government to coincide with the centenary of the Republic of Turkey in 2023 and there are some ongoing projects that are planned to be completed by then. By looking at the content of these projects, it is possible to say that Government is aiming to focus on Modernization through the Centennial. However, some of the projects are already showing some interesting characteristics such as the Istanbul New Airport whose design is inspired by Selimiye Mosque’s Islamic-Ottoman figure. It is true that Turkey and Japan have different historical backgrounds and the timeline of the Meiji Restoration and Foundation of Turkish Republic are different. Therefore, a particular comparison between these two events is not justified. However, they may have more in common than we are up to think because, each country marked the start of a new nation conceived on modern principles. For that reason, it is important to understand the similarities or differences between Meiji Centennial and Turkish Republic Centennial as a media event. This study introduces Meiji Centennial as a media event and analyses opposition movement along with the meaning of Meiji Centennial. Additionally, it explains regional characteristic differences and gives Kyoto as an example. Moreover, it introduces some of the ongoing Centennial projects in Turkey and analyses the meaning of the Turkish Republic Centennial through these projects. Without comparing Japan and Turkey, it explains the case of Japan but the discussion centers on deepening our understanding of Centennial as a Media Event and remarks some important aspects for Turkey’s upcoming Centennial events.Keywords: media events, Meiji centennial, the 2023 vision, Turkish republic centennial
Procedia PDF Downloads 3325327 Design and Development of Fleet Management System for Multi-Agent Autonomous Surface Vessel
Authors: Zulkifli Zainal Abidin, Ahmad Shahril Mohd Ghani
Abstract:
Agent-based systems technology has been addressed as a new paradigm for conceptualizing, designing, and implementing software systems. Agents are sophisticated systems that act autonomously across open and distributed environments in solving problems. Nevertheless, it is impractical to rely on a single agent to do all computing processes in solving complex problems. An increasing number of applications lately require multiple agents to work together. A multi-agent system (MAS) is a loosely coupled network of agents that interact to solve problems that are beyond the individual capacities or knowledge of each problem solver. However, the network of MAS still requires a main system to govern or oversees the operation of the agents in order to achieve a unified goal. We had developed a fleet management system (FMS) in order to manage the fleet of agents, plan route for the agents, perform real-time data processing and analysis, and issue sets of general and specific instructions to the agents. This FMS should be able to perform real-time data processing, communicate with the autonomous surface vehicle (ASV) agents and generate bathymetric map according to the data received from each ASV unit. The first algorithm is developed to communicate with the ASV via radio communication using standard National Marine Electronics Association (NMEA) protocol sentences. Next, the second algorithm will take care of the path planning, formation and pattern generation is tested using various sample data. Lastly, the bathymetry map generation algorithm will make use of data collected by the agents to create bathymetry map in real-time. The outcome of this research is expected can be applied on various other multi-agent systems.Keywords: autonomous surface vehicle, fleet management system, multi agent system, bathymetry
Procedia PDF Downloads 2715326 Evaluating the Effects of Weather and Climate Change to Risks in Crop Production
Authors: Marcus Bellett-Travers
Abstract:
Different modelling approaches have been used to determine or predict yield of crops in different geographies. Central to the methodologies are the presumption that it is the absolute yield of the crop in a given location that is of the highest priority to those requiring information on crop productivity. Most individuals, companies and organisations within the agri-food sector need to be able to balance the supply of crops with the demand for them. Different modelling approaches have been used to determine and predict crop yield. The growing need to ensure certainty of supply and stability of prices requires an approach that describes the risk in producing a crop. A review of current methodologies to evaluate the risk to food production from changes in the weather and climate is presented.Keywords: crop production, risk, climate, modelling
Procedia PDF Downloads 3865325 Revolutionizing Healthcare Communication: The Transformative Role of Natural Language Processing and Artificial Intelligence
Authors: Halimat M. Ajose-Adeogun, Zaynab A. Bello
Abstract:
Artificial Intelligence (AI) and Natural Language Processing (NLP) have transformed computer language comprehension, allowing computers to comprehend spoken and written language with human-like cognition. NLP, a multidisciplinary area that combines rule-based linguistics, machine learning, and deep learning, enables computers to analyze and comprehend human language. NLP applications in medicine range from tackling issues in electronic health records (EHR) and psychiatry to improving diagnostic precision in orthopedic surgery and optimizing clinical procedures with novel technologies like chatbots. The technology shows promise in a variety of medical sectors, including quicker access to medical records, faster decision-making for healthcare personnel, diagnosing dysplasia in Barrett's esophagus, boosting radiology report quality, and so on. However, successful adoption requires training for healthcare workers, fostering a deep understanding of NLP components, and highlighting the significance of validation before actual application. Despite prevailing challenges, continuous multidisciplinary research and collaboration are critical for overcoming restrictions and paving the way for the revolutionary integration of NLP into medical practice. This integration has the potential to improve patient care, research outcomes, and administrative efficiency. The research methodology includes using NLP techniques for Sentiment Analysis and Emotion Recognition, such as evaluating text or audio data to determine the sentiment and emotional nuances communicated by users, which is essential for designing a responsive and sympathetic chatbot. Furthermore, the project includes the adoption of a Personalized Intervention strategy, in which chatbots are designed to personalize responses by merging NLP algorithms with specific user profiles, treatment history, and emotional states. The synergy between NLP and personalized medicine principles is critical for tailoring chatbot interactions to each user's demands and conditions, hence increasing the efficacy of mental health care. A detailed survey corroborated this synergy, revealing a remarkable 20% increase in patient satisfaction levels and a 30% reduction in workloads for healthcare practitioners. The poll, which focused on health outcomes and was administered to both patients and healthcare professionals, highlights the improved efficiency and favorable influence on the broader healthcare ecosystem.Keywords: natural language processing, artificial intelligence, healthcare communication, electronic health records, patient care
Procedia PDF Downloads 765324 Diabetes Diagnosis Model Using Rough Set and K- Nearest Neighbor Classifier
Authors: Usiobaifo Agharese Rosemary, Osaseri Roseline Oghogho
Abstract:
Diabetes is a complex group of disease with a variety of causes; it is a disorder of the body metabolism in the digestion of carbohydrates food. The application of machine learning in the field of medical diagnosis has been the focus of many researchers and the use of recognition and classification model as a decision support tools has help the medical expert in diagnosis of diseases. Considering the large volume of medical data which require special techniques, experience, and high diagnostic skill in the diagnosis of diseases, the application of an artificial intelligent system to assist medical personnel in order to enhance their efficiency and accuracy in diagnosis will be an invaluable tool. In this study will propose a diabetes diagnosis model using rough set and K-nearest Neighbor classifier algorithm. The system consists of two modules: the feature extraction module and predictor module, rough data set is used to preprocess the attributes while K-nearest neighbor classifier is used to classify the given data. The dataset used for this model was taken for University of Benin Teaching Hospital (UBTH) database. Half of the data was used in the training while the other half was used in testing the system. The proposed model was able to achieve over 80% accuracy.Keywords: classifier algorithm, diabetes, diagnostic model, machine learning
Procedia PDF Downloads 3365323 Diagnosis of Avian Pathology in the East of Algeria
Authors: Khenenou Tarek, Benzaoui Hassina, Melizi Mohamed
Abstract:
The diagnosis requires a background of current knowledge in the field and also complementary means in which the laboratory occupies the central place for a better investigation. A correct diagnosis allows to establish the most appropriate treatment as soon as possible and avoids both the economic losses associated with mortality and growth retardation often observed in poultry furthermore it may reduce the high cost of treatment. Epedemiologic survey, hematologic and histopathologic study’s are three aspects of diagnosis heavily used in both human and veterinary pathology and the advanced researches in human medicine would be exploited to be applied in veterinary medicine with given modification .Whereas, the diagnostic methods in the east of Algeria are limited to the clinical signs and necropsy finding. Therefore, the diagnosis is based simply on the success or the failure of the therapeutic methods (therapeutic diagnosis).Keywords: chicken, diagnosis, hematology, histopathology
Procedia PDF Downloads 6305322 An Analysis of Learners’ Reports for Measuring Co-Creational Education
Authors: Takatoshi Ishii, Koji Kimita, Keiichi Muramatsu, Yoshiki Shimomura
Abstract:
To increase the quality of learning, teacher and learner need mutual effort for realization of educational value. For this purpose, we need to manage the co-creational education among teacher and learners. In this research, we try to find a feature of co-creational education. To be more precise, we analyzed learners’ reports by natural language processing, and extract some features that describe the state of the co-creational education.Keywords: co-creational education, e-portfolios, ICT integration, latent dirichlet allocation
Procedia PDF Downloads 6225321 An EBSD Investigation of Ti-6Al-4Nb Alloy Processed by Plan Strain Compression Test
Authors: Anna Jastrzebska, K. S. Suresh, T. Kitashima, Y. Yamabe-Mitarai, Z. Pakiela
Abstract:
Near α titanium alloys are important materials for aerospace applications, especially in high temperature applications such as jet engine. Mechanical properties of Ti alloys strongly depends on their processing route, then it is very important to understand micro-structure change by different processing. In our previous study, Nb was found to improve oxidation resistance of Ti alloys. In this study, micro-structure evolution of Ti-6Al-4Nb (wt %) alloy was investigated after plain strain compression test in hot working temperatures in the α and β phase region. High-resolution EBSD was successfully used for precise phase and texture characterization of this alloy. 1.1 kg of Ti-6Al-4Nb ingot was prepared using cold crucible levitation melting. The ingot was subsequently homogenized in 1050 deg.C for 1h followed by cooling in the air. Plate like specimens measuring 10×20×50 mm3 were cut from an ingot by electrical discharge machining (EDM). The plain strain compression test using an anvil with 10 x 35 mm in size was performed with 3 different strain rates: 0.1s-1, 1s-1and 10s-1 in 700 deg.C and 1050 deg.C to obtain 75% of deformation. The micro-structure was investigated by scanning electron microscopy (SEM) equipped with electron backscatter diffraction (EBSD) detector. The α/β phase ratio and phase morphology as well as the crystallographic texture, subgrain size, misorientation angles and misorientation gradients corresponding to each phase were determined over the middle and the edge of sample areas. The deformation mechanism in each working temperature was discussed. The evolution of texture changes with strain rate was investigated. The micro-structure obtained by plain strain compression test was heterogeneous with a wide range of grain sizes. This is because deformation and dynamic recrystallization occurred during deformation at temperature in the α and β phase. It was strongly influenced by strain rate.Keywords: EBSD, plain strain compression test, Ti alloys
Procedia PDF Downloads 3805320 Quality Analysis of Vegetables Through Image Processing
Authors: Abdul Khalique Baloch, Ali Okatan
Abstract:
The quality analysis of food and vegetable from image is hot topic now a day, where researchers make them better then pervious findings through different technique and methods. In this research we have review the literature, and find gape from them, and suggest better proposed approach, design the algorithm, developed a software to measure the quality from images, where accuracy of image show better results, and compare the results with Perouse work done so for. The Application we uses an open-source dataset and python language with tensor flow lite framework. In this research we focus to sort food and vegetable from image, in the images, the application can sorts and make them grading after process the images, it could create less errors them human base sorting errors by manual grading. Digital pictures datasets were created. The collected images arranged by classes. The classification accuracy of the system was about 94%. As fruits and vegetables play main role in day-to-day life, the quality of fruits and vegetables is necessary in evaluating agricultural produce, the customer always buy good quality fruits and vegetables. This document is about quality detection of fruit and vegetables using images. Most of customers suffering due to unhealthy foods and vegetables by suppliers, so there is no proper quality measurement level followed by hotel managements. it have developed software to measure the quality of the fruits and vegetables by using images, it will tell you how is your fruits and vegetables are fresh or rotten. Some algorithms reviewed in this thesis including digital images, ResNet, VGG16, CNN and Transfer Learning grading feature extraction. This application used an open source dataset of images and language used python, and designs a framework of system.Keywords: deep learning, computer vision, image processing, rotten fruit detection, fruits quality criteria, vegetables quality criteria
Procedia PDF Downloads 705319 State of the Science: Digital Therapies in Pediatric Mental Health
Authors: Billy Zou
Abstract:
Statement of the Problem: The burden of mental illness and problem behaviors in adolescence has risen worldwide. While less than 50% of teens have access to traditional mental health care, more than 73% have smartphones. Internet-based interventions offer advantages such as cost-effectiveness, availability, and flexibility. Methodology & Theoretical Orientation: A literature review was done using a PubMed search with the words mental health app yielding 2113 results. 103 articles that met inclusion criteria were reviewed, and findings were then described and synthesized. Findings: 1. Computer-based CBT was found to be effective for OCD, depression, social phobia, and panic disorder. 2. Web-based psychoeducation reduced problem behavior and improved parental well-being. 3. There is limited evidence for mobile-phone-based apps, but preliminary results suggest computer-based interventions are transferrable to mobile apps. 4. Adherence to app-based treatment was correlated with impressions about the user interface Conclusion & Significance: There is evidence for the effectiveness of computer-based programs in filling the significant gaps that currently exist in mental health delivery in the United States and internationally. There is also potential and theoretical validity for mobile-based apps to do the same, though more data is needed.Keywords: children's mental health, mental health app, child and adolecent psychiatry, digital therapy
Procedia PDF Downloads 705318 The Efficacy of Preoperative Thermal Pulsation Treatment in Reducing Post Cataract Surgery Dry Eye Disease: A Systematic Review and Meta-analysis
Authors: Lugean K. Alomari, Rahaf K. Sharif, Basil K. Alomari, Hind M. Aljabri, Faisal F. Aljahdali, Amal A. Alomari, Saeed A. Alghamdi
Abstract:
Background: The thermal pulsation system is a therapy that uses heat and massage to treat dry eye disease; thus, some trials have been published to compare it with the conventional treatment. The aim of this study is to conduct a systematic review and meta-analysis comparing the efficacy of thermal pulsation systems with conventional treatment in patients undergoing cataract surgery. Methods: Medline, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) databases were searched for eligible trials. We included three randomized controlled trials (RCTs) that compared the thermal pulsation system with the conventional treatment in patients undergoing cataract surgery. A table of characteristics was plotted, and the Quality of the studies was assessed using the Cochrane risk-of-bias tool for randomized trials (RoB 2). Forest plots were plotted using the Random-effect Inverse Variance method. χ2 test and the Higgins-I-squared (I2) model were used to assess heterogeneity. A total of 201 cataract surgery patients were included, with 105 undergoing preoperative pulsation therapy and 96 receiving conventional treatment. Demographic analysis revealed comparable distributions across groups. Results: All the studies in our analysis are of good quality with a low risk of bias. A total of 201 patients were included in the analysis, out of which 105 underwent pulsation therapy, and 95 were in the control group. Tear Break-up Time (TBUT) analysis revealed no significant baseline differences, except pulsation therapy being better at 1 month. (SMD 0.42 [95%CI 0.14 - 0.70] p=0.004). This positive trend continued at three months (SMD 0.52 [95% CI (0.20 – 0.84)] p=0.002). Corneal fluorescein staining scores and Meibomian gland-yielding secretion scores showed no significant differences at baseline. However, at one month, pulsation therapy significantly improved Meibomian gland function (SMD -0.86 [95% CI (-1.20 - -0.53)] p<0.00001), indicating a reduced risk of dry eye syndrome. Conclusion: Preoperative pulsation therapy appears to enhance post-cataract surgery outcomes, particularly in terms of tear film stability and Meibomian gland secretory function. The sustained positive effects observed at one and three months post-surgery suggest the potential for long-term benefits.Keywords: lipiflow, cataract, thermal pulsation, dry eye
Procedia PDF Downloads 205317 Educational Debriefing in Prehospital Medicine: A Qualitative Study Exploring Educational Debrief Facilitation and the Effects of Debriefing
Authors: Maria Ahmad, Michael Page, Danë Goodsman
Abstract:
‘Educational’ debriefing – a construct distinct from clinical debriefing – is used following simulated scenarios and is central to learning and development in fields ranging from aviation to emergency medicine. However, little research into educational debriefing in prehospital medicine exists. This qualitative study explored the facilitation and effects of prehospital educational debriefing and identified obstacles to debriefing, using the London’s Air Ambulance Pre-Hospital Care Course (PHCC) as a model. Method: Ethnographic observations of moulages and debriefs were conducted over two consecutive days of the PHCC in October 2019. Detailed contemporaneous field notes were made and analysed thematically. Subsequently, seven one-to-one, semi-structured interviews were conducted with four PHCC debrief facilitators and three course participants to explore their experiences of prehospital educational debriefing. Interview data were manually transcribed and analysed thematically. Results: Four overarching themes were identified: the approach to the facilitation of debriefs, effects of debriefing, facilitator development, and obstacles to debriefing. The unpredictable debriefing environment was seen as both hindering and paradoxically benefitting educational debriefing. Despite using varied debriefing structures, facilitators emphasised similar key debriefing components, including exploring participants’ reasoning and sharing experiences to improve learning and prevent future errors. Debriefing was associated with three principal effects: releasing emotion; learning and improving, particularly participant compound learning as they progressed through scenarios; and the application of learning to clinical practice. Facilitator training and feedback were central to facilitator learning and development. Several obstacles to debriefing were identified, including mismatch of participant and facilitator agendas, performance pressure, and time. Interestingly, when used appropriately in the educational environment, these obstacles may paradoxically enhance learning. Conclusions: Educational debriefing in prehospital medicine is complex. It requires the establishment of a safe learning environment, an understanding of participant agendas, and facilitator experience to maximise participant learning. Aspects unique to prehospital educational debriefing were identified, notably the unpredictable debriefing environment, interdisciplinary working, and the paradoxical benefit of educational obstacles for learning. This research also highlights aspects of educational debriefing not extensively detailed in the literature, such as compound participant learning, display of ‘professional honesty’ by facilitators, and facilitator learning, which require further exploration. Future research should also explore educational debriefing in other prehospital services.Keywords: debriefing, prehospital medicine, prehospital medical education, pre-hospital care course
Procedia PDF Downloads 2175316 Anxiety and Depression in Chronic Headache Patients: Major Concern for Community Mental Health
Authors: Neeti Sharma, Harshika Pareek, Prerna Puri, Manika Mohan
Abstract:
The present study is aimed at studying the significant relationship between anxiety and depression in chronic headache patients. Chronic Headache patients coming to the Neurology Unit-1 Outpatient Department of the Sawai Mansingh Hospital (SMS) Jaipur, Rajasthan, were included in this study. The sample consisted of 100 patients (N=100). Initially patients were examined by a physician and then they were assessed for Anxiety and Depression using the Hamilton Anxiety Rating Scale (HAM-A) and the Hamilton Rating Scale for Depression. The relevant information was recorded on a Performa designed for this purpose comprising of socio-demographic variables like age, gender and triggering factors. The correlation-coefficient indicated a significant positive relationship between the anxiety and depression in chronic headache patients. These findings implicate high prevalence of anxiety and depression in the general population, and also indicate an association between headache and psychological disorders. Many evidences support the anxiety-headache-depression syndrome as a distinct disorder, and the association of co-morbid psychiatric illness with headache intractability. This study highlights the importance of prospective research for studying the developmental course and consequences of headache syndromes. Also, various psychotherapies should be applied to the headache patients so as to treat them, at the onset level of anxiety and depression, with the help of medication.Keywords: anxiety, chronic headaches, depression, HAM-A, HAM
Procedia PDF Downloads 4705315 Deproteinization of Moroccan Sardine (Sardina pilchardus) Scales: A Pilot-Scale Study
Authors: F. Bellali, M. Kharroubi, Y. Rady, N. Bourhim
Abstract:
In Morocco, fish processing industry is an important source income for a large amount of by-products including skins, bones, heads, guts, and scales. Those underutilized resources particularly scales contain a large amount of proteins and calcium. Sardina plichardus scales from resulting from the transformation operation have the potential to be used as raw material for the collagen production. Taking into account this strong expectation of the regional fish industry, scales sardine upgrading is well justified. In addition, political and societal demands for sustainability and environment-friendly industrial production systems, coupled with the depletion of fish resources, drive this trend forward. Therefore, fish scale used as a potential source to isolate collagen has a wide large of applications in food, cosmetic, and biomedical industry. The main aim of this study is to isolate and characterize the acid solubilize collagen from sardine fish scale, Sardina pilchardus. Experimental design methodology was adopted in collagen processing for extracting optimization. The first stage of this work is to investigate the optimization conditions of the sardine scale deproteinization on using response surface methodology (RSM). The second part focus on the demineralization with HCl solution or EDTA. And the last one is to establish the optimum condition for the isolation of collagen from fish scale by solvent extraction. The advancement from lab scale to pilot scale is a critical stage in the technological development. In this study, the optimal condition for the deproteinization which was validated at laboratory scale was employed in the pilot scale procedure. The deproteinization of fish scale was then demonstrated on a pilot scale (2Kg scales, 20l NaOH), resulting in protein content (0,2mg/ml) and hydroxyproline content (2,11mg/l). These results indicated that the pilot-scale showed similar performances to those of lab-scale one.Keywords: deproteinization, pilot scale, scale, sardine pilchardus
Procedia PDF Downloads 4465314 Psychosocial Correlates of Sexual Violence Among Students in Higher Institutions in Cameroon
Authors: Agbor Ekama Prisca Anne
Abstract:
Current data on the prevalence and psychosocial correlates of sexual violence in the Cameroon is lacking, with the most recent sexual abuse and violence survey dating back to 2001. The current study sought to identify what proportion of University students have experienced sexual violence, if there are sex differences in exposure to different forms of sexual violence, and to what extent different forms of sexual violence are associated with adverse psychosocial outcomes. A nationally representative sample of University students (N = 1,020) completed self-report measures of history of sexual violence and mental health. Approximately one-in-three (34.4%) students experienced some form of sexual violence, including 14.8% who were sexually assaulted (raped) and 31.1% who were sexually harassed. Female students were significantly more likely than men to have experienced all forms of sexual violence (ps < .001), with the exception of sexual assault by teachers or guardian. All forms of sexual violence were associated with an increased likelihood of serious mental health problems, with sexual assault by a teacher associated with several other psychosocial outcomes in life, including education achievement, and behavior disorder. Sexual violence is a common experience in the general population and female students are disproportionately affected (1-in-2 girls versus 1-in-5 boys). Additional resources to increase mental health care among survivors of sexual violence is urgently needed.Keywords: psychosocial, effects sexual, violence, females, students
Procedia PDF Downloads 1085313 Document-level Sentiment Analysis: An Exploratory Case Study of Low-resource Language Urdu
Authors: Ammarah Irum, Muhammad Ali Tahir
Abstract:
Document-level sentiment analysis in Urdu is a challenging Natural Language Processing (NLP) task due to the difficulty of working with lengthy texts in a language with constrained resources. Deep learning models, which are complex neural network architectures, are well-suited to text-based applications in addition to data formats like audio, image, and video. To investigate the potential of deep learning for Urdu sentiment analysis, we implemented five different deep learning models, including Bidirectional Long Short Term Memory (BiLSTM), Convolutional Neural Network (CNN), Convolutional Neural Network with Bidirectional Long Short Term Memory (CNN-BiLSTM), and Bidirectional Encoder Representation from Transformer (BERT). In this study, we developed a hybrid deep learning model called BiLSTM-Single Layer Multi Filter Convolutional Neural Network (BiLSTM-SLMFCNN) by fusing BiLSTM and CNN architecture. The proposed and baseline techniques are applied on Urdu Customer Support data set and IMDB Urdu movie review data set by using pre-trained Urdu word embedding that are suitable for sentiment analysis at the document level. Results of these techniques are evaluated and our proposed model outperforms all other deep learning techniques for Urdu sentiment analysis. BiLSTM-SLMFCNN outperformed the baseline deep learning models and achieved 83%, 79%, 83% and 94% accuracy on small, medium and large sized IMDB Urdu movie review data set and Urdu Customer Support data set respectively.Keywords: urdu sentiment analysis, deep learning, natural language processing, opinion mining, low-resource language
Procedia PDF Downloads 725312 Study of Palung Granite in Central Nepal with Special Reference to Field Occurrence, Petrography and Mineralization
Authors: Narayan Bhattarai, Arjun Bhattarai, Kabi Raj Paudyal, Lalu Paudel
Abstract:
Palung granite is leucocratic, alkali feldspar granite, which is one of the six major granite bodies of the Lesser Himalaya of Nepal. The Cambro-Ordovician granite body has intruded on the Palaeozoic metasedimentary rock of the Kathmandu Complex in Central Nepal. The granite crystallized from magma that was mainly generated by anatexis of the Precambrian continental crust. The magma is heterogeneous with respect to the primary ages and/or metamorphic histories of the magma source rocks. This indicates either a derivation from (meta-) sediments or an intense mixing of different crustally derived magmas. The genesis of the Palung granite is possibly related to an orogeny which affected the Indian shield in lower Paleozoic times. The granite body has been mapped into different zones with visual inspection and petrographical study: i. Quartz rich granite: Quartz is smokey to grayish, euhedral to subherdal, 0.2 to 0.7 cm, and constitutes 30 to 40%. Feldspar is white to brownish, subhedral to euhedral, more than 3 cm, and constitutes 20–30%. Tourmaline is black, 0.1 to 0.2 cm in size, and consists of 10 to 20%. Biotite is black flakes up to o.2 cm, representing 5-8%. ii. Feldspar rich granite: white to grayish, medium to coarse-grained, containing feldspar, quartz, biotite, muscovite and tourmaline. Feldspar porphyritic crystals up to 2.5 cm subherdral represent 50–60%, quartz is smokey transparent and represents 30–40%, biotite is dark brown to black, crystals are irregular, 0.5 cm and represent 8–20%, tourmaline is black fractured, small needles represent 5–10%, and muscovite is white to brown and represents 1-4%. iii. Biotite granite: grey to white, medium to coarse-grained, containing quartz, feldspar, biotite and tourmaline. Feldspar crystals up to 2.5 cm represent 40–50%, quartz is smokey, representing 30–40%, biotite is dark brown to black, crystal size 0.5cm, representing 10–20%, tourmaline is black, small needle, 5–10%, and muscovite is white to brown, representing 3-5%. and iv. Muscovite granite: medium-coarse-grained, brown and gray, containing quartz, feldspar, muscovite and tourmaline. Feldspar is white to brown; crystal sizes 0.2–0.4 cm represents 40–50%; quartz is brown and white, transparent, crystals up to 1 cm represent 35–50%; tourmaline is black, opaque, needle shaped; size up to 7–20%; and muscovite is brownish to white, with flakes up to 0.3 cm representing 5–10%. The xenoliths are very common and are not genetically related. Xenoliths are composed mostly of fine-grained, grayish quartz biotite (muscovite) schist and garnetiferous quartz mica schist.Keywords: leucocratic granite, cambro-ordovician granite, lesser himalayan granite, pegmatite
Procedia PDF Downloads 715311 Ophthalmic Hashing Based Supervision of Glaucoma and Corneal Disorders Imposed on Deep Graphical Model
Authors: P. S. Jagadeesh Kumar, Yang Yung, Mingmin Pan, Xianpei Li, Wenli Hu
Abstract:
Glaucoma is impelled by optic nerve mutilation habitually represented as cupping and visual field injury frequently with an arcuate pattern of mid-peripheral loss, subordinate to retinal ganglion cell damage and death. Glaucoma is the second foremost cause of blindness and the chief cause of permanent blindness worldwide. Consequently, all-embracing study into the analysis and empathy of glaucoma is happening to escort deep learning based neural network intrusions to deliberate this substantial optic neuropathy. This paper advances an ophthalmic hashing based supervision of glaucoma and corneal disorders preeminent on deep graphical model. Ophthalmic hashing is a newly proposed method extending the efficacy of visual hash-coding to predict glaucoma corneal disorder matching, which is the faster than the existing methods. Deep graphical model is proficient of learning interior explications of corneal disorders in satisfactory time to solve hard combinatoric incongruities using deep Boltzmann machines.Keywords: corneal disorders, deep Boltzmann machines, deep graphical model, glaucoma, neural networks, ophthalmic hashing
Procedia PDF Downloads 2505310 Data Mining Spatial: Unsupervised Classification of Geographic Data
Authors: Chahrazed Zouaoui
Abstract:
In recent years, the volume of geospatial information is increasing due to the evolution of communication technologies and information, this information is presented often by geographic information systems (GIS) and stored on of spatial databases (BDS). The classical data mining revealed a weakness in knowledge extraction at these enormous amounts of data due to the particularity of these spatial entities, which are characterized by the interdependence between them (1st law of geography). This gave rise to spatial data mining. Spatial data mining is a process of analyzing geographic data, which allows the extraction of knowledge and spatial relationships from geospatial data, including methods of this process we distinguish the monothematic and thematic, geo- Clustering is one of the main tasks of spatial data mining, which is registered in the part of the monothematic method. It includes geo-spatial entities similar in the same class and it affects more dissimilar to the different classes. In other words, maximize intra-class similarity and minimize inter similarity classes. Taking account of the particularity of geo-spatial data. Two approaches to geo-clustering exist, the dynamic processing of data involves applying algorithms designed for the direct treatment of spatial data, and the approach based on the spatial data pre-processing, which consists of applying clustering algorithms classic pre-processed data (by integration of spatial relationships). This approach (based on pre-treatment) is quite complex in different cases, so the search for approximate solutions involves the use of approximation algorithms, including the algorithms we are interested in dedicated approaches (clustering methods for partitioning and methods for density) and approaching bees (biomimetic approach), our study is proposed to design very significant to this problem, using different algorithms for automatically detecting geo-spatial neighborhood in order to implement the method of geo- clustering by pre-treatment, and the application of the bees algorithm to this problem for the first time in the field of geo-spatial.Keywords: mining, GIS, geo-clustering, neighborhood
Procedia PDF Downloads 3755309 Detecting Indigenous Languages: A System for Maya Text Profiling and Machine Learning Classification Techniques
Authors: Alejandro Molina-Villegas, Silvia Fernández-Sabido, Eduardo Mendoza-Vargas, Fátima Miranda-Pestaña
Abstract:
The automatic detection of indigenous languages in digital texts is essential to promote their inclusion in digital media. Underrepresented languages, such as Maya, are often excluded from language detection tools like Google’s language-detection library, LANGDETECT. This study addresses these limitations by developing a hybrid language detection solution that accurately distinguishes Maya (YUA) from Spanish (ES). Two strategies are employed: the first focuses on creating a profile for the Maya language within the LANGDETECT library, while the second involves training a Naive Bayes classification model with two categories, YUA and ES. The process includes comprehensive data preprocessing steps, such as cleaning, normalization, tokenization, and n-gram counting, applied to text samples collected from various sources, including articles from La Jornada Maya, a major newspaper in Mexico and the only media outlet that includes a Maya section. After the training phase, a portion of the data is used to create the YUA profile within LANGDETECT, which achieves an accuracy rate above 95% in identifying the Maya language during testing. Additionally, the Naive Bayes classifier, trained and tested on the same database, achieves an accuracy close to 98% in distinguishing between Maya and Spanish, with further validation through F1 score, recall, and logarithmic scoring, without signs of overfitting. This strategy, which combines the LANGDETECT profile with a Naive Bayes model, highlights an adaptable framework that can be extended to other underrepresented languages in future research. This fills a gap in Natural Language Processing and supports the preservation and revitalization of these languages.Keywords: indigenous languages, language detection, Maya language, Naive Bayes classifier, natural language processing, low-resource languages
Procedia PDF Downloads 165308 On the Move: Factors Impacting the Migratory Decision-Making Capabilities of Gambians Relocating to Europe
Authors: Jeremy Goldsmith
Abstract:
The Gambia, the smallest country in mainland Africa and one of the poorest countries on Earth, is currently experiencing historically unprecedented levels of out-migration to Europe. As a result, Gambians are currently among the top four nationalities emigrating to Europe. The central question that this thesis will address is: what factors impact the migration-related decision-making capabilities of Gambians? Based on interviews with NGOs, as well as those who have migrated and returned, are planning to migrate, and their friends and families, a pattern will emerge. This pattern will be woven into first person narratives which will explore the politico-economic, environmental, and socio-cultural factors that inform individual decision-making with regards to migration.Keywords: migration, The Gambia, Africa, politico-economic, sociocultural, environmental
Procedia PDF Downloads 3245307 Adopting Data Science and Citizen Science to Explore the Development of African Indigenous Agricultural Knowledge Platform
Authors: Steven Sam, Ximena Schmidt, Hugh Dickinson, Jens Jensen
Abstract:
The goal of this study is to explore the potential of data science and citizen science approaches to develop an interactive, digital, open infrastructure that pulls together African indigenous agriculture and food systems data from multiple sources, making it accessible and reusable for policy, research and practice in modern food production efforts. The World Bank has recognised that African Indigenous Knowledge (AIK) is innovative and unique among local and subsistent smallholder farmers, and it is central to sustainable food production and enhancing biodiversity and natural resources in many poor, rural societies. AIK refers to tacit knowledge held in different languages, cultures and skills passed down from generation to generation by word of mouth. AIK is a key driver of food production, preservation, and consumption for more than 80% of citizens in Africa, and can therefore assist modern efforts of reducing food insecurity and hunger. However, the documentation and dissemination of AIK remain a big challenge confronting librarians and other information professionals in Africa, and there is a risk of losing AIK owing to urban migration, modernisation, land grabbing, and the emergence of relatively small-scale commercial farming businesses. There is also a clear disconnect between the AIK and scientific knowledge and modern efforts for sustainable food production. The study combines data science and citizen science approaches through active community participation to generate and share AIK for facilitating learning and promoting knowledge that is relevant for policy intervention and sustainable food production through a curated digital platform based on FAIR principles. The study adopts key informant interviews along with participatory photo and video elicitation approach, where farmers are given digital devices (mobile phones) to record and document their every practice involving agriculture, food production, processing, and consumption by traditional means. Data collected are analysed using the UK Science and Technology Facilities Council’s proven methodology of citizen science (Zooniverse) and data science. Outcomes are presented in participatory stakeholder workshops, where the researchers outline plans for creating the platform and developing the knowledge sharing standard framework and copyrights agreement. Overall, the study shows that learning from AIK, by investigating what local communities know and have, can improve understanding of food production and consumption, in particular in times of stress or shocks affecting the food systems and communities. Thus, the platform can be useful for local populations, research, and policy-makers, and it could lead to transformative innovation in the food system, creating a fundamental shift in the way the North supports sustainable, modern food production efforts in Africa.Keywords: Africa indigenous agriculture knowledge, citizen science, data science, sustainable food production, traditional food system
Procedia PDF Downloads 825306 Additive Manufacturing – Application to Next Generation Structured Packing (SpiroPak)
Authors: Biao Sun, Tejas Bhatelia, Vishnu Pareek, Ranjeet Utikar, Moses Tadé
Abstract:
Additive manufacturing (AM), commonly known as 3D printing, with the continuing advances in parallel processing and computational modeling, has created a paradigm shift (with significant radical thinking) in the design and operation of chemical processing plants, especially LNG plants. With the rising energy demands, environmental pressures, and economic challenges, there is a continuing industrial need for disruptive technologies such as AM, which possess capabilities that can drastically reduce the cost of manufacturing and operations of chemical processing plants in the future. However, the continuing challenge for 3D printing is its lack of adaptability in re-designing the process plant equipment coupled with the non-existent theory or models that could assist in selecting the optimal candidates out of the countless potential fabrications that are possible using AM. One of the most common packings used in the LNG process is structured packing in the packed column (which is a unit operation) in the process. In this work, we present an example of an optimum strategy for the application of AM to this important unit operation. Packed columns use a packing material through which the gas phase passes and comes into contact with the liquid phase flowing over the packing, typically performing the necessary mass transfer to enrich the products, etc. Structured packing consists of stacks of corrugated sheets, typically inclined between 40-70° from the plane. Computational Fluid Dynamics (CFD) was used to test and model various geometries to study the governing hydrodynamic characteristics. The results demonstrate that the costly iterative experimental process can be minimized. Furthermore, they also improve the understanding of the fundamental physics of the system at the multiscale level. SpiroPak, patented by Curtin University, represents an innovative structured packing solution currently at a technology readiness level (TRL) of 5~6. This packing exhibits remarkable characteristics, offering a substantial increase in surface area while significantly enhancing hydrodynamic and mass transfer performance. Recent studies have revealed that SpiroPak can reduce pressure drop by 50~70% compared to commonly used commercial packings, and it can achieve 20~50% greater mass transfer efficiency (particularly in CO2 absorption applications). The implementation of SpiroPak has the potential to reduce the overall size of columns and decrease power consumption, resulting in cost savings for both capital expenditure (CAPEX) and operational expenditure (OPEX) when applied to retrofitting existing systems or incorporated into new processes. Furthermore, pilot to large-scale tests is currently underway to further advance and refine this technology.Keywords: Additive Manufacturing (AM), 3D printing, Computational Fluid Dynamics (CFD, structured packing (SpiroPak)
Procedia PDF Downloads 87