Search results for: EB thermal processing
4642 Voice Liveness Detection Using Kolmogorov Arnold Networks
Authors: Arth J. Shah, Madhu R. Kamble
Abstract:
Voice biometric liveness detection is customized to certify an authentication process of the voice data presented is genuine and not a recording or synthetic voice. With the rise of deepfakes and other equivalently sophisticated spoofing generation techniques, it’s becoming challenging to ensure that the person on the other end is a live speaker or not. Voice Liveness Detection (VLD) system is a group of security measures which detect and prevent voice spoofing attacks. Motivated by the recent development of the Kolmogorov-Arnold Network (KAN) based on the Kolmogorov-Arnold theorem, we proposed KAN for the VLD task. To date, multilayer perceptron (MLP) based classifiers have been used for the classification tasks. We aim to capture not only the compositional structure of the model but also to optimize the values of univariate functions. This study explains the mathematical as well as experimental analysis of KAN for VLD tasks, thereby opening a new perspective for scientists to work on speech and signal processing-based tasks. This study emerges as a combination of traditional signal processing tasks and new deep learning models, which further proved to be a better combination for VLD tasks. The experiments are performed on the POCO and ASVSpoof 2017 V2 database. We used Constant Q-transform, Mel, and short-time Fourier transform (STFT) based front-end features and used CNN, BiLSTM, and KAN as back-end classifiers. The best accuracy is 91.26 % on the POCO database using STFT features with the KAN classifier. In the ASVSpoof 2017 V2 database, the lowest EER we obtained was 26.42 %, using CQT features and KAN as a classifier.Keywords: Kolmogorov Arnold networks, multilayer perceptron, pop noise, voice liveness detection
Procedia PDF Downloads 484641 Study of Biofouling Wastewater Treatment Technology
Authors: Sangho Park, Mansoo Kim, Kyujung Chae, Junhyuk Yang
Abstract:
The International Maritime Organization (IMO) recognized the problem of invasive species invasion and adopted the "International Convention for the Control and Management of Ships' Ballast Water and Sediments" in 2004, which came into force on September 8, 2017. In 2011, the IMO approved the "Guidelines for the Control and Management of Ships' Biofouling to Minimize the Transfer of Invasive Aquatic Species" to minimize the movement of invasive species by hull-attached organisms and required ships to manage the organisms attached to their hulls. Invasive species enter new environments through ships' ballast water and hull attachment. However, several obstacles to implementing these guidelines have been identified, including a lack of underwater cleaning equipment, regulations on underwater cleaning activities in ports, and difficulty accessing crevices in underwater areas. The shipping industry, which is the party responsible for understanding these guidelines, wants to implement them for fuel cost savings resulting from the removal of organisms attached to the hull, but they anticipate significant difficulties in implementing the guidelines due to the obstacles mentioned above. Robots or people remove the organisms attached to the hull underwater, and the resulting wastewater includes various species of organisms and particles of paint and other pollutants. Currently, there is no technology available to sterilize the organisms in the wastewater or stabilize the heavy metals in the paint particles. In this study, we aim to analyze the characteristics of the wastewater generated from the removal of hull-attached organisms and select the optimal treatment technology. The organisms in the wastewater generated from the removal of the attached organisms meet the biological treatment standard (D-2) using the sterilization technology applied in the ships' ballast water treatment system. The heavy metals and other pollutants in the paint particles generated during removal are treated using stabilization technologies such as thermal decomposition. The wastewater generated is treated using a two-step process: 1) development of sterilization technology through pretreatment filtration equipment and electrolytic sterilization treatment and 2) development of technology for removing particle pollutants such as heavy metals and dissolved inorganic substances. Through this study, we will develop a biological removal technology and an environmentally friendly processing system for the waste generated after removal that meets the requirements of the government and the shipping industry and lays the groundwork for future treatment standards.Keywords: biofouling, ballast water treatment system, filtration, sterilization, wastewater
Procedia PDF Downloads 1144640 FEM Simulation of Tool Wear and Edge Radius Effects on Residual Stress in High Speed Machining of Inconel718
Authors: Yang Liu, Mathias Agmell, Aylin Ahadi, Jan-Eric Stahl, Jinming Zhou
Abstract:
Tool wear and tool geometry have significant effects on the residual stresses in the component produced by high-speed machining. In this paper, Coupled Eulerian and Lagrangian (CEL) model is adopted to investigate the residual stress in high-speed machining of Inconel718 with a CBN170 cutting tool. The result shows that the mesh with the smallest size of 5 um yields cutting forces and chip morphology in close agreement with the experimental data. The analysis of thermal loading and mechanical loading are performed to study the effect of segmented chip morphology on the machined surface topography and residual stress distribution. The effects of cutting edge radius and flank wear on residual stresses formation and distribution on the workpiece were also investigated. It is found that the temperature within 100um depth of the machined surface increases drastically due to the more friction heat generation with the contact area of tool and workpiece increasing when a larger edge radius and flank wear are used. With the depth further increasing, the temperature drops rapidly for all cases due to the low conductivity of Inconel718. Consequently, higher and deeper tensile residual stress is generated on the superficial. Furthermore, an increased depth of plastic deformation and compressive residual stress is noticed in the subsurface, which is attributed to the reduction of the yield strength under the thermal effect. Besides, the ploughing effect produced by a larger tool edge radius contributes more than flank wear. The magnitude variation of the compressive residual stress caused by various edge radius and flank wear have a totally opposite trend, which depends on the magnitude of the ploughing and friction pressure acting on the machined surface.Keywords: Coupled Eulerian Lagrangian, segmented chip, residual stress, tool wear, edge radius, Inconel718
Procedia PDF Downloads 1524639 Field Emission Scanning Microscope Image Analysis for Porosity Characterization of Autoclaved Aerated Concrete
Authors: Venuka Kuruwita Arachchige Don, Mohamed Shaheen, Chris Goodier
Abstract:
Aerated autoclaved concrete (AAC) is known for its lightweight, easy handling, high thermal insulation, and extremely porous structure. Investigation of pore behavior in AAC is crucial for characterizing the material, standardizing design and production techniques, enhancing the mechanical, durability, and thermal performance, studying the effectiveness of protective measures, and analyzing the effects of weather conditions. The significant details of pores are complicated to observe with acknowledged accuracy. The High-resolution Field Emission Scanning Electron Microscope (FESEM) image analysis is a promising technique for investigating the pore behavior and density of AAC, which is adopted in this study. Mercury intrusion porosimeter and gas pycnometer were employed to characterize porosity distribution and density parameters. The analysis considered three different densities of AAC blocks and three layers in the altitude direction within each block. A set of understandings was presented to extract and analyze the details of pore shape, pore size, pore connectivity, and pore percentages from FESEM images of AAC. Average pore behavior outcomes per unit area were presented. Comparison of porosity distribution and density parameters revealed significant variations. FESEM imaging offered unparalleled insights into porosity behavior, surpassing the capabilities of other techniques. The analysis conducted from a multi-staged approach provides porosity percentage occupied by various pore categories, total porosity, variation of pore distribution compared to AAC densities and layers, number of two-dimensional and three-dimensional pores, variation of apparent and matrix densities concerning pore behaviors, variation of pore behavior with respect to aluminum content, and relationship among shape, diameter, connectivity, and percentage in each pore classification.Keywords: autoclaved aerated concrete, density, imaging technique, microstructure, porosity behavior
Procedia PDF Downloads 734638 Spectral Response Measurements and Materials Analysis of Ageing Solar Photovoltaic Modules
Authors: T. H. Huang, C. Y. Gao, C. H. Lin, J. L. Kwo, Y. K. Tseng
Abstract:
The design and reliability of solar photovoltaic modules are crucial to the development of solar energy, and efforts are still being made to extend the life of photovoltaic modules to improve their efficiency because natural aging is time-consuming and does not provide manufacturers and investors with timely information, accelerated aging is currently the best way to estimate the life of photovoltaic modules. In this study, the accelerated aging of different light sources was combined with spectral response measurements to understand the effect of light sources on aging tests. In this study, there are two types of experimental samples: packaged and unpackaged and then irradiated with full-spectrum and UVC light sources for accelerated aging, as well as a control group without aging. The full-spectrum aging was performed by irradiating the solar cell with a xenon lamp like the solar spectrum for two weeks, while the accelerated aging was performed by irradiating the solar cell with a UVC lamp for two weeks. The samples were first visually observed, and infrared thermal images were taken, and then the electrical (IV) and Spectral Responsivity (SR) data were obtained by measuring the spectral response of the samples, followed by Scanning Electron Microscopy (SEM), Raman spectroscopy (Raman), and X-ray Diffraction (XRD) analysis. The results of electrical (IV) and Spectral Responsivity (SR) and material analyses were used to compare the differences between packaged and unpackaged solar cells with full spectral aging, accelerated UVC aging, and unaged solar cells. The main objective of this study is to compare the difference in the aging of packaged and unpackaged solar cells by irradiating different light sources. We determined by infrared thermal imaging that both full-spectrum aging and UVC accelerated aging increase the defects of solar cells, and IV measurements demonstrated that the conversion efficiency of solar cells decreases after full-spectrum aging and UVC accelerated aging. SEM observed some scorch marks on both unpackaged UVC accelerated aging solar cells and unpackaged full-spectrum aging solar cells. Raman spectroscopy examines the Si intensity of solar cells, and XRD confirms the crystallinity of solar cells by the intensity of Si and Ag winding peaks.Keywords: solar cell, aging, spectral response measurement
Procedia PDF Downloads 1074637 Clinical Validation of an Automated Natural Language Processing Algorithm for Finding COVID-19 Symptoms and Complications in Patient Notes
Authors: Karolina Wieczorek, Sophie Wiliams
Abstract:
Introduction: Patient data is often collected in Electronic Health Record Systems (EHR) for purposes such as providing care as well as reporting data. This information can be re-used to validate data models in clinical trials or in epidemiological studies. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. Mentioning a disease in a discharge letter does not necessarily mean that a patient suffers from this disease. Many of them discuss a diagnostic process, different tests, or discuss whether a patient has a certain disease. The COVID-19 dataset in this study used natural language processing (NLP), an automated algorithm which extracts information related to COVID-19 symptoms, complications, and medications prescribed within the hospital. Free-text patient clinical patient notes are rich sources of information which contain patient data not captured in a structured form, hence the use of named entity recognition (NER) to capture additional information. Methods: Patient data (discharge summary letters) were exported and screened by an algorithm to pick up relevant terms related to COVID-19. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. A list of 124 Systematized Nomenclature of Medicine (SNOMED) Clinical Terms has been provided in Excel with corresponding IDs. Two independent medical student researchers were provided with a dictionary of SNOMED list of terms to refer to when screening the notes. They worked on two separate datasets called "A” and "B”, respectively. Notes were screened to check if the correct term had been picked-up by the algorithm to ensure that negated terms were not picked up. Results: Its implementation in the hospital began on March 31, 2020, and the first EHR-derived extract was generated for use in an audit study on June 04, 2020. The dataset has contributed to large, priority clinical trials (including International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) by bulk upload to REDcap research databases) and local research and audit studies. Successful sharing of EHR-extracted datasets requires communicating the provenance and quality, including completeness and accuracy of this data. The results of the validation of the algorithm were the following: precision (0.907), recall (0.416), and F-score test (0.570). Percentage enhancement with NLP extracted terms compared to regular data extraction alone was low (0.3%) for relatively well-documented data such as previous medical history but higher (16.6%, 29.53%, 30.3%, 45.1%) for complications, presenting illness, chronic procedures, acute procedures respectively. Conclusions: This automated NLP algorithm is shown to be useful in facilitating patient data analysis and has the potential to be used in more large-scale clinical trials to assess potential study exclusion criteria for participants in the development of vaccines.Keywords: automated, algorithm, NLP, COVID-19
Procedia PDF Downloads 1044636 Combined Synchrotron Radiography and Diffraction for in Situ Study of Reactive Infiltration of Aluminum into Iron Porous Preform
Authors: S. Djaziri, F. Sket, A. Hynowska, S. Milenkovic
Abstract:
The use of Fe-Al based intermetallics as an alternative to Cr/Ni based stainless steels is very promising for industrial applications that use critical raw materials parts under extreme conditions. However, the development of advanced Fe-Al based intermetallics with appropriate mechanical properties presents several challenges that involve appropriate processing and microstructure control. A processing strategy is being developed which aims at producing a net-shape porous Fe-based preform that is infiltrated with molten Al or Al-alloy. In the present work, porous Fe-based preforms produced by two different methods (selective laser melting (SLM) and Kochanek-process (KE)) are studied during infiltration with molten aluminum. In the objective to elucidate the mechanisms underlying the formation of Fe-Al intermetallic phases during infiltration, an in-house furnace has been designed for in situ observation of infiltration at synchrotron facilities combining x-ray radiography (XR) and x-ray diffraction (XRD) techniques. The feasibility of this approach has been demonstrated, and information about the melt flow front propagation has been obtained. In addition, reactive infiltration has been achieved where a bi-phased intermetallic layer has been identified to be formed between the solid Fe and liquid Al. In particular, a tongue-like Fe₂Al₅ phase adhering to the Fe and a needle-like Fe₄Al₁₃ phase adhering to the Al were observed. The growth of the intermetallic compound was found to be dependent on the temperature gradient present along the preform as well as on the reaction time which will be discussed in view of the different obtained results.Keywords: combined synchrotron radiography and diffraction, Fe-Al intermetallic compounds, in-situ molten Al infiltration, porous solid Fe preforms
Procedia PDF Downloads 2284635 Reverse Logistics Network Optimization for E-Commerce
Authors: Albert W. K. Tan
Abstract:
This research consolidates a comprehensive array of publications from peer-reviewed journals, case studies, and seminar reports focused on reverse logistics and network design. By synthesizing this secondary knowledge, our objective is to identify and articulate key decision factors crucial to reverse logistics network design for e-commerce. Through this exploration, we aim to present a refined mathematical model that offers valuable insights for companies seeking to optimize their reverse logistics operations. The primary goal of this research endeavor is to develop a comprehensive framework tailored to advising organizations and companies on crafting effective networks for their reverse logistics operations, thereby facilitating the achievement of their organizational goals. This involves a thorough examination of various network configurations, weighing their advantages and disadvantages to ensure alignment with specific business objectives. The key objectives of this research include: (i) Identifying pivotal factors pertinent to network design decisions within the realm of reverse logistics across diverse supply chains. (ii) Formulating a structured framework designed to offer informed recommendations for sound network design decisions applicable to relevant industries and scenarios. (iii) Propose a mathematical model to optimize its reverse logistics network. A conceptual framework for designing a reverse logistics network has been developed through a combination of insights from the literature review and information gathered from company websites. This framework encompasses four key stages in the selection of reverse logistics operations modes: (1) Collection, (2) Sorting and testing, (3) Processing, and (4) Storage. Key factors to consider in reverse logistics network design: I) Centralized vs. decentralized processing: Centralized processing, a long-standing practice in reverse logistics, has recently gained greater attention from manufacturing companies. In this system, all products within the reverse logistics pipeline are brought to a central facility for sorting, processing, and subsequent shipment to their next destinations. Centralization offers the advantage of efficiently managing the reverse logistics flow, potentially leading to increased revenues from returned items. Moreover, it aids in determining the most appropriate reverse channel for handling returns. On the contrary, a decentralized system is more suitable when products are returned directly from consumers to retailers. In this scenario, individual sales outlets serve as gatekeepers for processing returns. Considerations encompass the product lifecycle, product value and cost, return volume, and the geographic distribution of returns. II) In-house vs. third-party logistics providers: The decision between insourcing and outsourcing in reverse logistics network design is pivotal. In insourcing, a company handles the entire reverse logistics process, including material reuse. In contrast, outsourcing involves third-party providers taking on various aspects of reverse logistics. Companies may choose outsourcing due to resource constraints or lack of expertise, with the extent of outsourcing varying based on factors such as personnel skills and cost considerations. Based on the conceptual framework, the authors have constructed a mathematical model that optimizes reverse logistics network design decisions. The model will consider key factors identified in the framework, such as transportation costs, facility capacities, and lead times. The authors have employed mixed LP to find the optimal solutions that minimize costs while meeting organizational objectives.Keywords: reverse logistics, supply chain management, optimization, e-commerce
Procedia PDF Downloads 444634 Context Detection in Spreadsheets Based on Automatically Inferred Table Schema
Authors: Alexander Wachtel, Michael T. Franzen, Walter F. Tichy
Abstract:
Programming requires years of training. With natural language and end user development methods, programming could become available to everyone. It enables end users to program their own devices and extend the functionality of the existing system without any knowledge of programming languages. In this paper, we describe an Interactive Spreadsheet Processing Module (ISPM), a natural language interface to spreadsheets that allows users to address ranges within the spreadsheet based on inferred table schema. Using the ISPM, end users are able to search for values in the schema of the table and to address the data in spreadsheets implicitly. Furthermore, it enables them to select and sort the spreadsheet data by using natural language. ISPM uses a machine learning technique to automatically infer areas within a spreadsheet, including different kinds of headers and data ranges. Since ranges can be identified from natural language queries, the end users can query the data using natural language. During the evaluation 12 undergraduate students were asked to perform operations (sum, sort, group and select) using the system and also Excel without ISPM interface, and the time taken for task completion was compared across the two systems. Only for the selection task did users take less time in Excel (since they directly selected the cells using the mouse) than in ISPM, by using natural language for end user software engineering, to overcome the present bottleneck of professional developers.Keywords: natural language processing, natural language interfaces, human computer interaction, end user development, dialog systems, data recognition, spreadsheet
Procedia PDF Downloads 3154633 Time's Arrow and Entropy: Violations to the Second Law of Thermodynamics Disrupt Time Perception
Authors: Jason Clarke, Michaela Porubanova, Angela Mazzoli, Gulsah Kut
Abstract:
What accounts for our perception that time inexorably passes in one direction, from the past to the future, the so-called arrow of time, given that the laws of physics permit motion in one temporal direction to also happen in the reverse temporal direction? Modern physics says that the reason for time’s unidirectional physical arrow is the relationship between time and entropy, the degree of disorder in the universe, which is evolving from low entropy (high order; thermal disequilibrium) toward high entropy (high disorder; thermal equilibrium), the second law of thermodynamics. Accordingly, our perception of the direction of time, from past to future, is believed to emanate as a result of the natural evolution of entropy from low to high, with low entropy defining our notion of ‘before’ and high entropy defining our notion of ‘after’. Here we explored this proposed relationship between entropy and the perception of time’s arrow. We predicted that if the brain has some mechanism for detecting entropy, whose output feeds into processes involved in constructing our perception of the direction of time, presentation of violations to the expectation that low entropy defines ‘before’ and high entropy defines ‘after’ would alert this mechanism, leading to measurable behavioral effects, namely a disruption in duration perception. To test this hypothesis, participants were shown briefly-presented (1000 ms or 500 ms) computer-generated visual dynamic events: novel 3D shapes that were seen either to evolve from whole figures into parts (low to high entropy condition) or were seen in the reverse direction: parts that coalesced into whole figures (high to low entropy condition). On each trial, participants were instructed to reproduce the duration of their visual experience of the stimulus by pressing and releasing the space bar. To ensure that attention was being deployed to the stimuli, a secondary task was to report the direction of the visual event (forward or reverse motion). Participants completed 60 trials. As predicted, we found that duration reproduction was significantly longer for the high to low entropy condition compared to the low to high entropy condition (p=.03). This preliminary data suggests the presence of a neural mechanism that detects entropy, which is used by other processes to construct our perception of the direction of time or time’s arrow.Keywords: time perception, entropy, temporal illusions, duration perception
Procedia PDF Downloads 1764632 Investigation of Polypropylene Composite Films With Carbon Nanotubes and the Role of β Nucleating Agents for the Improvement of Their Water Vapor Permeability
Authors: Glykeria A. Visvini, George N. Mathioudakis, Amaia Soto Beobide, Aris E. Giannakas, George A. Voyiatzis
Abstract:
Polymeric nanocomposites have generated considerable interest in both academic research and industry because their properties can be tailored by adjusting the type & concentration of nano-inclusions, resulting in complementary and adaptable characteristics. The exceptional and/or unique properties of the nanocomposites, including the high mechanical strength and stiffness, the ease of processing, and their lightweight nature, are attributed to the high surface area, the electrical and/or thermal conductivity of the nano-fillers, which make them appealing materials for a wide range of engineering applications. Polymeric «breathable» membranes enabling water vapor permeability (WVP) can be designed either by using micro/nano-fillers with the ability to interrupt the continuity of the polymer phase generating micro/nano-porous structures or/and by creating micro/nano-pores into the composite material by uniaxial/biaxial stretching. Among the nanofillers, carbon nanotubes (CNTs) exhibit particular high WVP and for this reason, they have already been proposed for gas separation membranes. In a similar context, they could prove to be promising alternative/complementary filler nano-materials, for the development of "breathable" products. Polypropylene (PP) is a commonly utilized thermoplastic polymer matrix in the development of composite films, due to its easy processability and low price, combined with its good chemical & physical properties. PP is known to present several crystalline phases (α, β and γ), depending on the applied treatment process, which have a significant impact on its final properties, particularly in terms of WVP. Specifically, the development of the β-phase in PP in combination with stretching is anticipated to modify the crystalline behavior and extend the microporosity of the polymer matrix exhibiting enhanced WVP. The primary objective of this study is to develop breathable nano-carbon based (functionalized MWCNTs) PP composite membranes, potentially also avoiding the stretching process. This proposed alternative is expected to have a better performance/cost ratio over current stretched PP/CaCO3 composite benchmark membranes. The focus is to investigate the impact of both β-nucleator(s) and nano-carbon fillers on water vapor transmission rate properties of relevant PP nanocomposites.Keywords: carbon nanotubes, nanocomposites, nucleating agents, polypropylene, water vapor permeability
Procedia PDF Downloads 784631 A New Co(II) Metal Complex Template with 4-dimethylaminopyridine Organic Cation: Structural, Hirshfeld Surface, Phase Transition, Electrical Study and Dielectric Behavior
Authors: Mohamed dammak
Abstract:
Great attention has been paid to the design and synthesis of novel organic-inorganic compounds in recent decades because of their structural variety and the large diversity of atomic arrangements. In this work, the structure for the novel dimethyl aminopyridine tetrachlorocobaltate (C₇H₁₁N₂)₂CoCl₄ prepared by the slow evaporation method at room temperature has been successfully discussed. The X-ray diffraction results indicate that the hybrid material has a triclinic structure with a P space group and features a 0D structure containing isolated distorted [CoCl₄]2- tetrahedra interposed between [C7H11N²⁻]+ cations forming planes perpendicular to the c axis at z = 0 and z = ½. The effect of the synthesis conditions and the reactants used, the interactions between the cationic planes, and the isolated [CoCl4]2- tetrahedra are employing N-H...Cl and C-H…Cl hydrogen bonding contacts. The inspection of the Hirshfeld surface analysis helps to discuss the strength of hydrogen bonds and to quantify the inter-contacts. A phase transition was discovered by thermal analysis at 390 K, and comprehensive dielectric research was reported, showing a good agreement with thermal data. Impedance spectroscopy measurements were used to study the electrical and dielectric characteristics over a wide range of frequencies and temperatures, 40 Hz–10 MHz and 313–483 K, respectively. The Nyquist plot (Z" versus Z') from the complex impedance spectrum revealed semicircular arcs described by a Cole-Cole model. An electrical circuit consisting of a link of grain and grain boundary elements is employed. The real and imaginary parts of dielectric permittivity, as well as tg(δ) of (C₇H₁₁N₂)₂CoCl₄ at different frequencies, reveal a distribution of relaxation times. The presence of grain and grain boundaries is confirmed by the modulus investigations. Electric and dielectric analyses highlight the good protonic conduction of this material.Keywords: organic-inorganic, phase transitions, complex impedance, protonic conduction, dielectric analysis
Procedia PDF Downloads 874630 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark
Authors: B. Elshafei, X. Mao
Abstract:
The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.Keywords: data fusion, Gaussian process regression, signal denoise, temporal extrapolation
Procedia PDF Downloads 1384629 Study on the Use of Manganese-Containing Materials as a Micro Fertilizer Based on the Local Mineral Resources and Industrial Wastes in Hydroponic Systems
Authors: Marine Shavlakadze
Abstract:
Hydroponic greenhouses systems (production of the artificial substrate without soil) are becoming popular in the world. Mostly the system is used to grow vegetables and berries. Different countries are taking action to participate in the development of hydroponic technology and solutions such as EU members, Turkey, Australia, New Zealand, Israel, Scandinavian countries, etc. Many vegetables and berries are grown by hydroponics in Europe. As a result of our research, we have obtained material containing manganese and nitrogen. It became possible to produce this fertilizer by means of one-stage thermal processing, using industrial waste containing manganese (ores and sludges) and mineral substance (ammonium nitrate) that exist in Georgia. The received material is usable as a micro-fertilizer with economic efficiency. It became possible to turn practically water-insoluble manganese dioxide substance into the soluble condition from industrial waste in an indirect way. The ability to use the material as a fertilizer is predetermined by its chemical and phase composition, as the amount of the active component of the material in relation to manganese is 30%. At the same time, the active component elements presented non-ballast sustained action compounds. The studies implemented in Poland and in Georgia by us have shown that the manganese-containing micro-fertilizer- Mn(NO3)2 can provide the plant with nitrate nitrogen, which is a form that can be used for plants, providing the economy and simplicity of the application of fertilizers. Given the fact that the application of the manganese-containing micro-fertilizers significantly increases the productivity and improves the quality of the big number of agricultural products, it is necessary to mention that it is recommended to introduce the manganese containing fertilizers into the following cultures: sugar beet, corn, potato, vegetables, vine grape, fruit, berries, and other cultures. Also, as a result of the study, it was established that the material obtained is the predominant fertilizer for vegetable cultures in the soil. Based on the positive results of the research, we consider it expedient to conduct research in hydroponic systems, which will enable us to provide plants the required amount of manganese; we also introduce nitrogen in solution and regulate the solution of pH, which is one of the main problems in hydroponic production. The findings of our research will be used in hydroponic greenhouse farms to increase the fertility of vegetable crops and, consequently, to get bountiful and high-quality harvests, which will promote the development of hydroponic greenhouses in Georgia as well as abroad.Keywords: hydroponics, micro-fertilizers, manganese-containing materials, industrial wastes
Procedia PDF Downloads 1344628 A Review of Critical Framework Assessment Matrices for Data Analysis on Overheating in Buildings Impact
Authors: Martin Adlington, Boris Ceranic, Sally Shazhad
Abstract:
In an effort to reduce carbon emissions, changes in UK regulations, such as Part L Conservation of heat and power, dictates improved thermal insulation and enhanced air tightness. These changes were a direct response to the UK Government being fully committed to achieving its carbon targets under the Climate Change Act 2008. The goal is to reduce emissions by at least 80% by 2050. Factors such as climate change are likely to exacerbate the problem of overheating, as this phenomenon expects to increase the frequency of extreme heat events exemplified by stagnant air masses and successive high minimum overnight temperatures. However, climate change is not the only concern relevant to overheating, as research signifies, location, design, and occupation; construction type and layout can also play a part. Because of this growing problem, research shows the possibility of health effects on occupants of buildings could be an issue. Increases in temperature can perhaps have a direct impact on the human body’s ability to retain thermoregulation and therefore the effects of heat-related illnesses such as heat stroke, heat exhaustion, heat syncope and even death can be imminent. This review paper presents a comprehensive evaluation of the current literature on the causes and health effects of overheating in buildings and has examined the differing applied assessment approaches used to measure the concept. Firstly, an overview of the topic was presented followed by an examination of overheating research work from the last decade. These papers form the body of the article and are grouped into a framework matrix summarizing the source material identifying the differing methods of analysis of overheating. Cross case evaluation has identified systematic relationships between different variables within the matrix. Key areas focused on include, building types and country, occupants behavior, health effects, simulation tools, computational methods.Keywords: overheating, climate change, thermal comfort, health
Procedia PDF Downloads 3544627 The Relation between Cognitive Fluency and Utterance Fluency in Second Language Spoken Fluency: Studying Fluency through a Psycholinguistic Lens
Authors: Tannistha Dasgupta
Abstract:
This study explores the aspects of second language (L2) spoken fluency that are related to L2 linguistic knowledge and processing skill. It draws on Levelt’s ‘blueprint’ of the L2 speaker which discusses the cognitive issues underlying the act of speaking. However, L2 speaking assessments have largely neglected the underlying mechanism involved in language production; emphasis is given on the relationship between subjective ratings of L2 speech sample and objectively measured aspects of fluency. Hence, in this study, the relation between L2 linguistic knowledge and processing skill i.e. Cognitive Fluency (CF), and objectively measurable aspects of L2 spoken fluency i.e. Utterance Fluency (UF) is examined. The participants of the study are L2 learners of English, studying at high school level in Hyderabad, India. 50 participants with intermediate level of proficiency in English performed several lexical retrieval tasks and attention-shifting tasks to measure CF, and 8 oral tasks to measure UF. Each aspect of UF (speed, pause, and repair) were measured against the scores of CF to find out those aspects of UF which are reliable indicators of CF. Quantitative analysis of the data shows that among the three aspects of UF; speed is the best predictor of CF, and pause is weakly related to CF. The study suggests that including the speed aspect of UF could make L2 fluency assessment more reliable, valid, and objective. Thus, incorporating the assessment of psycholinguistic mechanisms into L2 spoken fluency testing, could result in fairer evaluation.Keywords: attention-shifting, cognitive fluency, lexical retrieval, utterance fluency
Procedia PDF Downloads 7124626 Digitalisation of the Railway Industry: Recent Advances in the Field of Dialogue Systems: Systematic Review
Authors: Andrei Nosov
Abstract:
This paper discusses the development directions of dialogue systems within the digitalisation of the railway industry, where technologies based on conversational AI are already potentially applied or will be applied. Conversational AI is one of the popular natural language processing (NLP) tasks, as it has great prospects for real-world applications today. At the same time, it is a challenging task as it involves many areas of NLP based on complex computations and deep insights from linguistics and psychology. In this review, we focus on dialogue systems and their implementation in the railway domain. We comprehensively review the state-of-the-art research results on dialogue systems and analyse them from three perspectives: type of problem to be solved, type of model, and type of system. In particular, from the perspective of the type of tasks to be solved, we discuss characteristics and applications. This will help to understand how to prioritise tasks. In terms of the type of models, we give an overview that will allow researchers to become familiar with how to apply them in dialogue systems. By analysing the types of dialogue systems, we propose an unconventional approach in contrast to colleagues who traditionally contrast goal-oriented dialogue systems with open-domain systems. Our view focuses on considering retrieval and generative approaches. Furthermore, the work comprehensively presents evaluation methods and datasets for dialogue systems in the railway domain to pave the way for future research. Finally, some possible directions for future research are identified based on recent research results.Keywords: digitalisation, railway, dialogue systems, conversational AI, natural language processing, natural language understanding, natural language generation
Procedia PDF Downloads 704625 Real Energy Performance Study of Large-Scale Solar Water Heater by Using Remote Monitoring
Authors: F. Sahnoune, M. Belhamel, M. Zelmat
Abstract:
Solar thermal systems available today provide reliability, efficiency and significant environmental benefits. In housing, they can satisfy the hot water demand and reduce energy bills by 60 % or more. Additionally, collective systems or large scale solar thermal systems are increasingly used in different conditions for hot water applications and space heating in hotels and multi-family homes, hospitals, nursing homes and sport halls as well as in commercial and industrial building. However, in situ real performance data for collective solar water heating systems has not been extensively outlined. This paper focuses on the study of real energy performances of a collective solar water heating system using the remote monitoring technique in Algerian climatic conditions. This is to ensure proper operation of the system at any time, determine the system performance and to check to what extent solar performance guarantee can be achieved. The measurements are performed on an active indirect heating system of 12 m2 flat plate collector’s surface installed in Algiers and equipped with a various sensors. The sensors transmit measurements to a local station which controls the pumps, valves, electrical auxiliaries, etc. The simulation of the installation was developed using the software SOLO 2000. The system provides a yearly solar yield of 6277.5 KWh for an estimated annual need of 7896 kWh; the yearly average solar cover rate amounted to 79.5%. The productivity is in the order of 523.13 kWh / m²/year. Simulation results are compared to measured results and to guaranteed solar performances. The remote monitoring shows that 90% of the expected solar results can be easy guaranteed on a long period. Furthermore, the installed remote monitoring unit was able to detect some dysfunctions. It follows that remote monitoring is an important tool in energy management of some building equipment.Keywords: large-scale solar water heater, real energy performance, remote monitoring, solar performance guarantee, tool to promote solar water heater
Procedia PDF Downloads 2454624 Pd(II) Complex with 4-Bromo-2,6-Bis-Hydroxymethyl-Phenol and Nikotinamid: Synthesis and Spectral Analysis
Authors: Özlen Altun, Zeliha Yoruç
Abstract:
In the present study, the reactions involving 4-Bromo-2,6-bis-hydroxymethyl-phenol (BBHMP) and nikotinamide (NA) in the presence Pd (II) ion were investigated. Optimum conditions for the reactions were established as pH 7 and λ = 450 nm. According to absorbance measurements, the mole ratio of BBHMP : NA : Pd2+ was found as 1 : 2 : 2. As a result of physico-chemical, spectrophotometric and thermal analysis results, the reactions of BBHMP and NA with Pd (II) is complexation reactions and one molecule BBHMP and two molecules of NA react with two molecules of metal (II) ion.Keywords: 4-Bromo-2, 6-bis-hydroxymethyl-phenol, nicotinamide, Pd(II), spectral analysis, synthesis
Procedia PDF Downloads 1684623 Electro-Discharge Drilling in Residual Stress Measurement of Annealed St.37 Steel
Authors: H. Gholami, M. Jalali Azizpour
Abstract:
For materials such as hard coating whose stresses state are difficult to obtain by a widely used method called high-speed hole-drilling method (ASTM Standard E837). It is important to develop a non contact method. This process itself imposes an additional stresses. The through thickness residual stress of st37 steel using elector-discharge was investigated. The strain gage and dynamic strain indicator used in all cases was FRS-2-11 rosette type and TML 221, respectively. The average residual stress in depth of 320 µm was -6.47 MPa.Keywords: HVOF, residual stress, thermal spray, WC-Co
Procedia PDF Downloads 3174622 Special Single Mode Fiber Tests of Polarization Mode Dispersion Changes in a Harsh Environment
Authors: Jan Bohata, Stanislav Zvanovec, Matej Komanec, Jakub Jaros, David Hruby
Abstract:
Even though there is a rapid development in new optical networks, still optical communication infrastructures remain composed of thousands of kilometers of aging optical cables. Many of them are located in a harsh environment which contributes to an increased attenuation or induced birefringence of the fibers leading to the increase of polarization mode dispersion (PMD). In this paper, we report experimental results from environmental optical cable tests and characterization in the climate chamber. We focused on the evaluation of optical network reliability in a harsh environment. For this purpose, a special thermal chamber was adopted, targeting to the large temperature changes between -60 °C and 160 C° with defined humidity. Single mode optical cable 230 meters long, having six tubes and a total number of 72 single mode optical fibers was spliced together forming one fiber link, which was afterward tested in the climate chamber. The main emphasis was put to the polarization mode dispersion (PMD) changes, which were evaluated by three different PMD measuring methods (general interferometry technique, scrambled state-of-polarization analysis and polarization optical time domain reflectometer) in order to fully validate obtained results. Moreover, attenuation and chromatic dispersion (CD), as well as the PMD, were monitored using 17 km long single mode optical cable. Results imply a strong PMD dependence on thermal changes, imposing the exceeding 200 % of its value during the exposure to extreme temperatures and experienced more than 20 dB insertion losses in the optical system. The derived statistic is provided in the paper together with an evaluation of such as optical system reliability, which could be a crucial tool for the optical network designers. The environmental tests are further taken in context to our previously published results from long-term monitoring of fundamental parameters within an optical cable placed in a harsh environment in a special outdoor testbed. Finally, we provide a correlation between short-term and long-term monitoring campaigns and statistics, which are necessary for optical network safety and reliability.Keywords: optical fiber, polarization mode dispersion, harsh environment, aging
Procedia PDF Downloads 3924621 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier
Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh
Abstract:
This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems
Procedia PDF Downloads 524620 Sentiment Analysis of Chinese Microblog Comments: Comparison between Support Vector Machine and Long Short-Term Memory
Authors: Xu Jiaqiao
Abstract:
Text sentiment analysis is an important branch of natural language processing. This technology is widely used in public opinion analysis and web surfing recommendations. At present, the mainstream sentiment analysis methods include three parts: sentiment analysis based on a sentiment dictionary, based on traditional machine learning, and based on deep learning. This paper mainly analyzes and compares the advantages and disadvantages of the SVM method of traditional machine learning and the Long Short-term Memory (LSTM) method of deep learning in the field of Chinese sentiment analysis, using Chinese comments on Sina Microblog as the data set. Firstly, this paper classifies and adds labels to the original comment dataset obtained by the web crawler, and then uses Jieba word segmentation to classify the original dataset and remove stop words. After that, this paper extracts text feature vectors and builds document word vectors to facilitate the training of the model. Finally, SVM and LSTM models are trained respectively. After accuracy calculation, it can be obtained that the accuracy of the LSTM model is 85.80%, while the accuracy of SVM is 91.07%. But at the same time, LSTM operation only needs 2.57 seconds, SVM model needs 6.06 seconds. Therefore, this paper concludes that: compared with the SVM model, the LSTM model is worse in accuracy but faster in processing speed.Keywords: sentiment analysis, support vector machine, long short-term memory, Chinese microblog comments
Procedia PDF Downloads 1004619 Insight into the Physical Ageing of Poly(Butylene Succinate)
Authors: I. Georgousopoulou, S. Vouyiouka, C. Papaspyrides
Abstract:
The hydrolytic degradation of poly(butylene succinate) (PBS) was investigated when exposed to different humidity-temperature environments. To this direction different PBS grades were submitted to hydrolysis runs. Results indicated that the increment of hydrolysis temperature and relative humidity induced significant decrease in the molecular weight and thermal properties of the bioplastic. Τhe derived data can be considered to construct degradation kinetics based on carboxyl content variation versus time.Keywords: hydrolytic degradation, physical ageing, poly(butylene succinate), polyester
Procedia PDF Downloads 2864618 Realization and Characterizations of Conducting Ceramics Based on ZnO Doped by TiO₂, Al₂O₃ and MgO
Authors: Qianying Sun, Abdelhadi Kassiba, Guorong Li
Abstract:
ZnO with wurtzite structure is a well-known semiconducting oxide (SCO), being applied in thermoelectric devices, varistors, gas sensors, transparent electrodes, solar cells, liquid crystal displays, piezoelectric and electro-optical devices. Intrinsically, ZnO is weakly n-type SCO due to native defects (Znⱼ, Vₒ). However, the substitutional doping by metallic elements as (Al, Ti) gives rise to a high n-type conductivity ensured by donor centers. Under CO+N₂ sintering atmosphere, Schottky barriers of ZnO ceramics will be suppressed by lowering the concentration of acceptors at grain boundaries and then inducing a large increase in the Hall mobility, thereby increasing the conductivity. The presented work concerns ZnO based ceramics, which are fabricated with doping by TiO₂ (0.50mol%), Al₂O₃ (0.25mol%) and MgO (1.00mol%) and sintering in different atmospheres (Air (A), N₂ (N), CO+N₂(C)). We obtained uniform, dense ceramics with ZnO as the main phase and Zn₂TiO₄ spinel as a secondary and minor phase. An important increase of the conductivity was shown for the samples A, N, and C which were sintered under different atmospheres. The highest conductivity (σ = 1.52×10⁵ S·m⁻¹) was obtained under the reducing atmosphere (CO). The role of doping was investigated with the aim to identify the local environment and valence states of the doping elements. Thus, Electron paramagnetic spectroscopy (EPR) determines the concentration of defects and the effects of charge carriers in ZnO ceramics as a function of the sintering atmospheres. The relation between conductivity and defects concentration shows the opposite behavior between these parameters suggesting that defects act as traps for charge carriers. For Al ions, nuclear magnetic resonance (NMR) technique was used to identify the involved local coordination of these ions. Beyond the six and forth coordinated Al, an additional NMR signature of ZnO based TCO requires analysis taking into account the grain boundaries and the conductivity through the Knight shift effects. From the thermal evolution of the conductivity as a function of the sintering atmosphere, we succeed in defining the conditions to realize ZnO based TCO ceramics with an important thermal coefficient of resistance (TCR) which is promising for electrical safety of devices.Keywords: ceramics, conductivity, defects, TCO, ZnO
Procedia PDF Downloads 2014617 Profiling Risky Code Using Machine Learning
Authors: Zunaira Zaman, David Bohannon
Abstract:
This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties
Procedia PDF Downloads 1124616 Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases
Authors: Mohammad A. Bani-Khaled
Abstract:
In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.Keywords: coupled dynamics, geometric complexity, proper orthogonal decomposition (POD), thin walled beams
Procedia PDF Downloads 4214615 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification
Procedia PDF Downloads 1634614 Social Perception of the Benefits of Using a Solar Dryer to Conserve Fruits and Vegetables in Rural Communities in Manica - Mozambique
Authors: Constâncio Augusto Machanguana, Luís Miguel Estevão Cristóvão
Abstract:
In Mozambique, over 80% of the rural population relies on agriculture, livestock, and silviculture for their livelihoods. Unfortunately, these communities face persistent food shortages, which are exacerbated by natural disasters and post-harvest losses due to inadequate storage facilities. Addressing post-harvest loss is critical not only for ensuring food security but also for preventing financial hardships faced by farmers. The study delves into the perceptions of beneficiary communities regarding the construction of three food dryer models made from metal, wood, and clay brick. These solar dryers are part of the project titled ‘Solar Dryer Integrated with Natural Rocks as Energy Storage for Drying Fruits and Vegetables in Mozambique.’ The overarching goal is to enhance food availability beyond the typical growing season, particularly for fruits and vegetables, while simultaneously combating hunger. Given the context of climate change impacts on agriculture, this project becomes even more relevant. Structured interviews conducted with 45 members of beneficiary associations in Manica Province—primarily female heads of households—revealed that rural communities are aware of various food drying alternatives. However, reliance on traditional methods often comes at a cost: compromised product quality and reduced shelf life. To address these challenges, the project implemented energy storage solutions like rock-based thermal energy storage for food drying. This result underscores the urgent need to foster innovation and extend these sustainable practices —such as solar dryers integrated with thermal energy-storage systems made of locally abundant and affordable materials— to more local communities, especially those with significant agricultural potential within the country. By taking these actions, we can improve food security and alleviate hunger.Keywords: solar dryer, food security, rural community, small technology
Procedia PDF Downloads 394613 A Study on Thermal and Flow Characteristics by Solar Radiation for Single-Span Greenhouse by Computational Fluid Dynamics Simulation
Authors: Jonghyuk Yoon, Hyoungwoon Song
Abstract:
Recently, there are lots of increasing interest in a smart farming that represents application of modern Information and Communication Technologies (ICT) into agriculture since it provides a methodology to optimize production efficiencies by managing growing conditions of crops automatically. In order to obtain high performance and stability for smart greenhouse, it is important to identify the effect of various working parameters such as capacity of ventilation fan, vent opening area and etc. In the present study, a 3-dimensional CFD (Computational Fluid Dynamics) simulation for single-span greenhouse was conducted using the commercial program, Ansys CFX 18.0. The numerical simulation for single-span greenhouse was implemented to figure out the internal thermal and flow characteristics. In order to numerically model solar radiation that spread over a wide range of wavelengths, the multiband model that discretizes the spectrum into finite bands of wavelength based on Wien’s law is applied to the simulation. In addition, absorption coefficient of vinyl varied with the wavelength bands is also applied based on Beer-Lambert Law. To validate the numerical method applied herein, the numerical results of the temperature at specific monitoring points were compared with the experimental data. The average error rates (12.2~14.2%) between them was shown and numerical results of temperature distribution are in good agreement with the experimental data. The results of the present study can be useful information for the design of various greenhouses. This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Advanced Production Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA)(315093-03).Keywords: single-span greenhouse, CFD (computational fluid dynamics), solar radiation, multiband model, absorption coefficient
Procedia PDF Downloads 140