Search results for: white etching layer
1116 Effects of Machining Parameters on the Surface Roughness and Vibration of the Milling Tool
Authors: Yung C. Lin, Kung D. Wu, Wei C. Shih, Jui P. Hung
Abstract:
High speed and high precision machining have become the most important technology in manufacturing industry. The surface roughness of high precision components is regarded as the important characteristics of the product quality. However, machining chatter could damage the machined surface and restricts the process efficiency. Therefore, selection of the appropriate cutting conditions is of importance to prevent the occurrence of chatter. In addition, vibration of the spindle tool also affects the surface quality, which implies the surface precision can be controlled by monitoring the vibration of the spindle tool. Based on this concept, this study was aimed to investigate the influence of the machining conditions on the surface roughness and the vibration of the spindle tool. To this end, a series of machining tests were conducted on aluminum alloy. In tests, the vibration of the spindle tool was measured by using the acceleration sensors. The surface roughness of the machined parts was examined using white light interferometer. The response surface methodology (RSM) was employed to establish the mathematical models for predicting surface finish and tool vibration, respectively. The correlation between the surface roughness and spindle tool vibration was also analyzed by ANOVA analysis. According to the machining tests, machined surface with or without chattering was marked on the lobes diagram as the verification of the machining conditions. Using multivariable regression analysis, the mathematical models for predicting the surface roughness and tool vibrations were developed based on the machining parameters, cutting depth (a), feed rate (f) and spindle speed (s). The predicted roughness is shown to agree well with the measured roughness, an average percentage of errors of 10%. The average percentage of errors of the tool vibrations between the measurements and the predictions of mathematical model is about 7.39%. In addition, the tool vibration under various machining conditions has been found to have a positive influence on the surface roughness (r=0.78). As a conclusion from current results, the mathematical models were successfully developed for the predictions of the surface roughness and vibration level of the spindle tool under different cutting condition, which can help to select appropriate cutting parameters and to monitor the machining conditions to achieve high surface quality in milling operation.Keywords: machining parameters, machining stability, regression analysis, surface roughness
Procedia PDF Downloads 2311115 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: crime prediction, machine learning, public safety, smart city
Procedia PDF Downloads 1121114 Effects of β-Glucan on the Release of Nitric Oxide by RAW264.7 Cells Stimulated with Escherichia coli Lipopolysaccharide
Authors: Eun Young Choi, So Hui Choe, Jin Yi Hyeon, Ji Young Jin, Bo Ram Keum, Jong Min Lim, Hyung Rae Cho, Kwang Keun Cho, In Soon Choi
Abstract:
This research analyzed the effect of β-glucan that is expected to alleviate the production of inflammatory mediator in macrophagocyte, which was processed by the lipopolysaccharide (LPS) of Escherichia, a pathogen related to allergy. The incubated layer was used for nitric oxide (NO) analysis. The DNA-binding activation of the small unit of NF-κB was measured using ELISA-based kit. In RAW264.7 cells that were vitalized by E.coli LPS, β-glucan inhibited both the combatant and rendering phases of inducible NO synthase (iNOS)-derived NO. β-glucan increased the expression of heme oxygenase-1 (HO-1) in the cell that was stimulated by E.coli LPS, and HO-1 activation was inhibited by SnPP. This shows that NO production induced by LPS is related to the inhibition effect of β-glucan. The phosphorylation of JNK and p38 induced by LPS were not influenced by β-glucan, and IκB-α decomposition was not influenced either. Instead, β-glucan remarkably inhibited the phosphorylation of STAT1 that was induced by E.coli LPS. Overall, β-glucan inhibited the production of NO in macrophagocyte that was vitalized by E.coli LPS through HO-1 induction and STAT1 pathways inhibition in this research. As the host inflammation reaction control by β-glucan weakens the progress of allergy, β-glucan can be used as an effective treatment method.Keywords: β-glucan, lipopolysaccharide (LPS), nitric oxide (NO), RAW264.7 cells, STAT1
Procedia PDF Downloads 4081113 Surface Passivation of Multicrystalline Silicon Solar Cell via Combination of LiBr/Porous Silicon and Grain Boundaies Grooving
Authors: Dimassi Wissem
Abstract:
In this work, we investigate the effect of combination between the porous silicon (PS) layer passivized with Lithium Bromide (LiBr) and grooving of grain boundaries (GB) in multi crystalline silicon. The grain boundaries were grooved in order to reduce the area of these highly recombining regions. Using optimized conditions, grooved GB's enable deep phosphorus diffusion and deep metallic contacts. We have evaluated the effects of LiBr on the surface properties of porous silicon on the performance of silicon solar cells. The results show a significant improvement of the internal quantum efficiency, which is strongly related to the photo-generated current. We have also shown a reduction of the surface recombination velocity and an improvement of the diffusion length after the LiBr process. As a result, the I–V characteristics under the dark and AM1.5 illumination were improved. It was also observed a reduction of the GB recombination velocity, which was deduced from light-beam-induced-current (LBIC) measurements. Such grooving in multi crystalline silicon enables passivization of GB-related defects. These results are discussed and compared to solar cells based on untreated multi crystalline silicon wafers.Keywords: Multicrystalline silicon, LiBr, porous silicon, passivation
Procedia PDF Downloads 3961112 Application of Large Eddy Simulation-Immersed Boundary Volume Penalization Method for Heat and Mass Transfer in Granular Layers
Authors: Artur Tyliszczak, Ewa Szymanek, Maciej Marek
Abstract:
Flow through granular materials is important to a vast array of industries, for instance in construction industry where granular layers are used for bulkheads and isolators, in chemical engineering and catalytic reactors where large surfaces of packed granular beds intensify chemical reactions, or in energy production systems, where granulates are promising materials for heat storage and heat transfer media. Despite the common usage of granulates and extensive research performed in this field, phenomena occurring between granular solid elements or between solids and fluid are still not fully understood. In the present work we analyze the heat exchange process between the flowing medium (gas, liquid) and solid material inside the granular layers. We consider them as a composite of isolated solid elements and inter-granular spaces in which a gas or liquid can flow. The structure of the layer is controlled by shapes of particular granular elements (e.g., spheres, cylinders, cubes, Raschig rings), its spatial distribution or effective characteristic dimension (total volume or surface area). We will analyze to what extent alteration of these parameters influences on flow characteristics (turbulent intensity, mixing efficiency, heat transfer) inside the layer and behind it. Analysis of flow inside granular layers is very complicated because the use of classical experimental techniques (LDA, PIV, fibber probes) inside the layers is practically impossible, whereas the use of probes (e.g. thermocouples, Pitot tubes) requires drilling of holes inside the solid material. Hence, measurements of the flow inside granular layers are usually performed using for instance advanced X-ray tomography. In this respect, theoretical or numerical analyses of flow inside granulates seem crucial. Application of discrete element methods in combination with the classical finite volume/finite difference approaches is problematic as a mesh generation process for complex granular material can be very arduous. A good alternative for simulation of flow in complex domains is an immersed boundary-volume penalization (IB-VP) in which the computational meshes have simple Cartesian structure and impact of solid objects on the fluid is mimicked by source terms added to the Navier-Stokes and energy equations. The present paper focuses on application of the IB-VP method combined with large eddy simulation (LES). The flow solver used in this work is a high-order code (SAILOR), which was used previously in various studies, including laminar/turbulent transition in free flows and also for flows in wavy channels, wavy pipes and over various shape obstacles. In these cases a formal order of approximation turned out to be in between 1 and 2, depending on the test case. The current research concentrates on analyses of the flows in dense granular layers with elements distributed in a deterministic regular manner and validation of the results obtained using LES-IB method and body-fitted approach. The comparisons are very promising and show very good agreement. It is found that the size, number of elements and their distribution have huge impact on the obtained results. Ordering of the granular elements (or lack of it) affects both the pressure drop and efficiency of the heat transfer as it significantly changes mixing process.Keywords: granular layers, heat transfer, immersed boundary method, numerical simulations
Procedia PDF Downloads 1371111 The Choicest Design of InGaP/GaAs Heterojunction Solar Cell
Authors: Djaafar Fatiha, Ghalem Bachir, Hadri Bagdad
Abstract:
We studied mainly the influence of temperature, thickness, molar fraction and the doping of the various layers (emitter, base, BSF and window) on the performances of a photovoltaic solar cell. In a first stage, we optimized the performances of the InGaP/GaAs dual-junction solar cell while varying its operation temperature from 275°K to 375 °K with an increment of 25°C using a virtual wafer fabrication TCAD Silvaco. The optimization at 300 °K led to the following result: Icc =14.22 mA/cm2, Voc =2.42V, FF=91.32 %, η= 22.76 % which is close with those found in the literature. In a second stage ,we have varied the molar fraction of different layers as well their thickness and the doping of both emitters and bases and we have registered the result of each variation until obtaining an optimal efficiency of the proposed solar cell at 300°K which was of Icc=14.35mA/cm2,Voc=2.47V,FF=91.34,and η=23.33% for In(1-x)Ga(x)P molar fraction( x=0.5).The elimination of a layer BSF on the back face of our cell, enabled us to make a remarkable improvement of the short-circuit current (Icc=14.70 mA/cm2) and a decrease in open circuit voltage Voc and output η which reached 1.46V and 11.97% respectively. Therefore, we could determine the critical parameters of the cell and optimize its various technological parameters to obtain the best performance for a dual junction solar cell .This work opens the way with new prospects in the field of the photovoltaic one. Such structures will thus simplify the manufacturing processes of the cells; will thus reduce the costs while producing high outputs of photovoltaic conversion.Keywords: modeling, simulation, multijunction, optimization, Silvaco ATLAS
Procedia PDF Downloads 5031110 Effect of Unbound Granular Materials Nonlinear Resilient Behaviour on Pavement Response and Performance of Low Volume Roads
Authors: Khaled Sandjak, Boualem Tiliouine
Abstract:
Structural analysis of flexible pavements has been and still is currently performed using multi-layer elastic theory. However, for thinly surfaced pavements subjected to low to medium volumes of traffics, the importance of non-linear stress-strain behaviour of unbound granular materials (UGM) requires the use of more sophisticated numerical models for structural design and performance of such pavements. In the present work, nonlinear unbound aggregates constitutive model is implemented within an axisymmetric finite element code developed to simulate the nonlinear behaviour of pavement structures including two local aggregates of different mineralogical nature, typically used in Algerian pavements. The performance of the mechanical model is examined about its capability of representing adequately, under various conditions, the granular material non-linearity in pavement analysis. In addition, deflection data collected by falling weight deflectometer (FWD) are incorporated into the analysis in order to assess the sensitivity of critical pavement design criteria and pavement design life to the constitutive model. Finally, conclusions of engineering significance are formulated.Keywords: FWD backcalculations, finite element simulations, Nonlinear resilient behaviour, pavement response and performance, RLT test results, unbound granular materials
Procedia PDF Downloads 2611109 Ground Improvement with Basal Reinforcement with High Strength Geogrids and PVDs for Embankment over Soft Soils
Authors: Ratnakar Mahajan, Matteo Lelli, Kinjal Parmar
Abstract:
Ground improvement is a very important aspect of infrastructure development, especially when it comes to deep-ground improvement. The use of various geosynthetic applications is very common these days for ground improvement. This paper presents a case study where the combination of two geosynthetic applications was used in order to optimize the design as well as to control the settlements through uniform load distribution. The Agartala-Akaura rail project was made to help increase railway connectivity between India and Bangladesh. Both countries have started the construction of the same. The project requires high railway embankments to be built for the rail link. However, the challenge was to design a proper ground improvement solution as the entire area comprises very soft soil for an average depth of 15m. After due diligence, a combination of two methods was worked out by Maccaferri. PVDs were provided for the consolidation, and on top of that, a layer of high-strength geogrids (Paralink) was proposed as a basal reinforcement. The design approach was followed as described in Indian standards as well as British standards. By introducing a basal reinforcement, the spacing of PVDs could be increased, which allowed quick installation and less material consumption while keeping the consolidation time within the project duration.Keywords: ground improvement, basal reinforcement, PVDs, high strength geogrids, Paralink
Procedia PDF Downloads 741108 Numerical Investigation of the Effect of Sidewalls on Low-Speed Finite Width Cavity Flows
Authors: Foo Kok, Varun Thangamani
Abstract:
Rectangular cavities with a full-span or finite-width configuration have been the basis of much previous research on cavity flows. However, much less attention has been given to the influence of sidewalls, in particular, on low-speed cavity flows. In this study, the flow characteristics of two separate low-speed finite-width cavities with a Reynolds number of 𝑅𝑒𝐷 = 10⁴ are examined using large eddy simulations. Two different lateral boundary conditions are used to investigate the influence of sidewalls on the self-sustaining oscillations and the three-dimensional flow fields inside the cavities. The results show that the full-span finite width cavities are less sensitive to the sidewall effect at a low length-to-width ratio 𝐿/𝐷. The increase in 𝐿/𝐷 leads to a departure from two-dimensional instability and results in the loss of spanwise homogeneity. The analysis of the spanwise flow structures shows that these effects correspond closely to the declination of the centrifugal force from the primary recirculation zone. Such effects are also reflected in the distinct modulation of the secondary vortices in the primary recirculation zone, which suggests that the instabilities observed in the full-span finite-width cavity flows are predominantly dependent on the secondary motion from the primary recirculation zone.Keywords: LES, cavity flows, unsteady shear layer, instability modes, secondary flow
Procedia PDF Downloads 651107 Prediction of Physical Properties and Sound Absorption Performance of Automotive Interior Materials
Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Seong-Jin Cho, Tae-Hyeon Oh, Dae-Kyu Park
Abstract:
Sound absorption coefficient is considered important when designing because noise affects emotion quality of car. It is designed with lots of experiment tunings in the field because it is unreliable to predict it for multi-layer material. In this paper, we present the design of sound absorption for automotive interior material with multiple layers using estimation software of sound absorption coefficient for reverberation chamber. Additionally, we introduce the method for estimation of physical properties required to predict sound absorption coefficient of car interior materials with multiple layers too. It is calculated by inverse algorithm. It is very economical to get information about physical properties without expensive equipment. Correlation test is carried out to ensure reliability for accuracy. The data to be used for the correlation is sound absorption coefficient measured in the reverberation chamber. In this way, it is considered economical and efficient to design automotive interior materials. And design optimization for sound absorption coefficient is also easy to implement when it is designed.Keywords: sound absorption coefficient, optimization design, inverse algorithm, automotive interior material, multiple layers nonwoven, scaled reverberation chamber, sound impedance tubes
Procedia PDF Downloads 3091106 Competition between Regression Technique and Statistical Learning Models for Predicting Credit Risk Management
Authors: Chokri Slim
Abstract:
The objective of this research is attempting to respond to this question: Is there a significant difference between the regression model and statistical learning models in predicting credit risk management? A Multiple Linear Regression (MLR) model was compared with neural networks including Multi-Layer Perceptron (MLP), and a Support vector regression (SVR). The population of this study includes 50 listed Banks in Tunis Stock Exchange (TSE) market from 2000 to 2016. Firstly, we show the factors that have significant effect on the quality of loan portfolios of banks in Tunisia. Secondly, it attempts to establish that the systematic use of objective techniques and methods designed to apprehend and assess risk when considering applications for granting credit, has a positive effect on the quality of loan portfolios of banks and their future collectability. Finally, we will try to show that the bank governance has an impact on the choice of methods and techniques for analyzing and measuring the risks inherent in the banking business, including the risk of non-repayment. The results of empirical tests confirm our claims.Keywords: credit risk management, multiple linear regression, principal components analysis, artificial neural networks, support vector machines
Procedia PDF Downloads 1501105 Thermal Stability and Electrical Conductivity of Ca₅Mg₄₋ₓMₓ(VO₄)₆ (0 ≤ x ≤ 4) where M = Zn, Ni Measured by Impedance Spectroscopy
Authors: Anna S. Tolkacheva, Sergey N. Shkerin, Kirill G. Zemlyanoi, Olga G. Reznitskikh, Pavel D. Khavlyuk
Abstract:
Calcium oxovanadates with garnet related structure are multifunctional oxides in various fields like photoluminescence, microwave dielectrics, and magneto-dielectrics. For example, vanadate garnets are self-luminescent compounds. They attract attention as RE-free broadband excitation and emission phosphors and are candidate materials for UV-based white light-emitting diodes (WLEDs). Ca₅M₄(VO₄)₆ (M = Mg, Zn, Co, Ni, Mn) compounds are also considered promising for application in microwave devices as substrate materials. However, the relation between their structure, composition and physical/chemical properties remains unclear. Given the above-listed observations, goals of this study are to synthesise Ca₅M₄(VO₄)₆ (M = Mg, Zn, Ni) and to study their thermal and electrical properties. Solid solutions Ca₅Mg₄₋ₓMₓ(VO₄)₆ (0 ≤ x ≤ 4) where M is Zn and Ni have been synthesized by sol-gel method. The single-phase character of the final products was checked by powder X-ray diffraction on a Rigaku D/MAX-2200 X-ray diffractometer using Cu Kα radiation in the 2θ range from 15° to 70°. The dependence of thermal properties on chemical composition of solid solutions was studied using simultaneous thermal analyses (DSC and TG). Thermal analyses were conducted in a Netzch simultaneous analyser STA 449C Jupiter, in Ar atmosphere, in temperature range from 25 to 1100°C heat rate was 10 K·min⁻¹. Coefficients of thermal expansion (CTE) were obtained by dilatometry measurements in air up to 800°C using a Netzsch 402PC dilatometer; heat rate was 1 K·min⁻¹. Impedance spectra were obtained via the two-probe technique with an impedance meter Parstat 2273 in air up to 700°C with the variation of pH₂O from 0.04 to 3.35 kPa. Cation deficiency in Ca and Mg sublattice under the substitution of MgO with ZnO up to 1/6 was observed using Rietveld refinement of the crystal structure. Melting point was found to decrease with x changing from 0 to 4 in Ca₅Mg₄₋ₓMₓ(VO₄)₆ where M is Zn and Ni. It was observed that electrical conductivity does not depend on air humidity. The reported study was funded by the RFBR Grant No. 17–03–01280. Sample attestation was carried out in the Shared Access Centers at the IHTE UB RAS.Keywords: garnet structure, electrical conductivity, thermal expansion, thermal properties
Procedia PDF Downloads 1551104 Cost Analysis of Optimized Fast Network Mobility in IEEE 802.16e Networks
Authors: Seyyed Masoud Seyyedoshohadaei, Borhanuddin Mohd Ali
Abstract:
To support group mobility, the NEMO Basic Support Protocol has been standardized as an extension of Mobile IP that enables an entire network to change its point of attachment to the Internet. Using NEMO in IEEE 802.16e (WiMax) networks causes latency in handover procedure and affects seamless communication of real-time applications. To decrease handover latency and service disruption time, an integrated scheme named Optimized Fast NEMO (OFNEMO) was introduced by authors of this paper. In OFNEMO a pre-establish multi tunnels concept, cross function optimization and cross layer design are used. In this paper, an analytical model is developed to evaluate total cost consisting of signaling and packet delivery costs of the OFNEMO compared with RFC3963. Results show that OFNEMO increases probability of predictive mode compared with RFC3963 due to smaller handover latency. Even though OFNEMO needs extra signalling to pre-establish multi tunnel, it has less total cost thanks to its optimized algorithm. OFNEMO can minimize handover latency for supporting real time application in moving networks.Keywords: fast mobile IPv6, handover latency, IEEE802.16e, network mobility
Procedia PDF Downloads 1971103 Laser Based Microfabrication of a Microheater Chip for Cell Culture
Authors: Daniel Nieto, Ramiro Couceiro
Abstract:
Microfluidic chips have demonstrated their significant application potentials in microbiological processing and chemical reactions, with the goal of developing monolithic and compact chip-sized multifunctional systems. Heat generation and thermal control are critical in some of the biochemical processes. The paper presents a laser direct-write technique for rapid prototyping and manufacturing of microheater chips and its applicability for perfusion cell culture outside a cell incubator. The aim of the microheater is to take the role of conventional incubators for cell culture for facilitating microscopic observation or other online monitoring activities during cell culture and provides portability of cell culture operation. Microheaters (5 mm × 5 mm) have been successfully fabricated on soda-lime glass substrates covered with aluminum layer of thickness 120 nm. Experimental results show that the microheaters exhibit good performance in temperature rise and decay characteristics, with localized heating at targeted spatial domains. These microheaters were suitable for a maximum long-term operation temperature of 120ºC and validated for long-time operation at 37ºC. for 24 hours. Results demonstrated that the physiology of the cultured SW480 adenocarcinoma of the colon cell line on the developed microheater chip was consistent with that of an incubator.Keywords: laser microfabrication, microheater, bioengineering, cell culture
Procedia PDF Downloads 2971102 Improvement of Soft Clay Using Floating Cement Dust-Lime Columns
Authors: Adel Belal, Sameh Aboelsoud, Mohy Elmashad, Mohammed Abdelmonem
Abstract:
The two main criteria that control the design and performance of footings are bearing capacity and settlement of soil. In soft soils, the construction of buildings, storage tanks, warehouse, etc. on weak soils usually involves excessive settlement problems. To solve bearing capacity or reduce settlement problems, soil improvement may be considered by using different techniques, including encased cement dust–lime columns. The proposed research studies the effect of adding floating encased cement dust and lime mix columns to soft clay on the clay-bearing capacity. Four experimental tests were carried out. Columns diameters of 3.0 cm, 4.0 cm, and 5.0 cm and columns length of 60% of the clay layer thickness were used. Numerical model was constructed and verified using commercial finite element package (PLAXIS 2D, V8.5). The verified model was used to study the effect of distributing columns around the footing at different distances. The study showed that the floating cement dust lime columns enhanced the clay-bearing capacity with 262%. The numerical model showed that the columns around the footing have a limit effect on the clay improvement.Keywords: bearing capacity, cement dust – lime columns, ground improvement, soft clay
Procedia PDF Downloads 2021101 Forecast of Polyethylene Properties in the Gas Phase Polymerization Aided by Neural Network
Authors: Nasrin Bakhshizadeh, Ashkan Forootan
Abstract:
A major problem that affects the quality control of polymer in the industrial polymerization is the lack of suitable on-line measurement tools to evaluate the properties of the polymer such as melt and density indices. Controlling the polymerization in ordinary method is performed manually by taking samples, measuring the quality of polymer in the lab and registry of results. This method is highly time consuming and leads to producing large number of incompatible products. An online application for estimating melt index and density proposed in this study is a neural network based on the input-output data of the polyethylene production plant. Temperature, the level of reactors' bed, the intensity of ethylene mass flow, hydrogen and butene-1, the molar concentration of ethylene, hydrogen and butene-1 are used for the process to establish the neural model. The neural network is taught based on the actual operational data and back-propagation and Levenberg-Marquart techniques. The simulated results indicate that the neural network process model established with three layers (one hidden layer) for forecasting the density and the four layers for the melt index is able to successfully predict those quality properties.Keywords: polyethylene, polymerization, density, melt index, neural network
Procedia PDF Downloads 1441100 Experimental Study of a Mixture of R290/R600 to Replace R134a in a Domestic Refrigerator
Authors: T. O. Babarinde
Abstract:
Interest in natural refrigerants, such as hydrocarbons has been renewed in recent years because of the environmental problems associated with synthetic chlorofluorocarbon (CFC) and hydro-chlorofluorocarbon (HCFC) refrigerants. Due to the depletion of ozone-layer and global warming effects, synthetic refrigerants are being gradually phased out in accordance with the international protocols that aim to protect the environment. In this work, a refrigerator designed to work with R134a was used for this experiment, Liquefied Petroleum Gas (LPG) which consists of commercial propane and butane in a single evaporator domestic refrigerator with a total volume of 62 litres. In this experiment, type K thermocouples with their probes were used to measure the temperatures of four major components (evaporator, compressor, condenser and expansion device) of the refrigeration system. Also the system was instrumented with two pressure gauges at the inlet and outlet of the compressor for measuring the suction and discharged pressures. Four sets of experiments were carried out using different charges and the charges were measured with a digital charging scale. Thermodynamic properties of the LPG refrigerant were determined. The results obtained showed that the design temperature and pull-down time set by International Standard Organisation (ISO) for refrigerator was achieved using LPG charge of 60g. The system COP increases with 14.6% and the power consumption reduced with 9.8% when compared with R134a. Therefore, LPG can replace R134a in domestic refrigerator.Keywords: domestic refrigerator, experimental, R290/R600, R134a
Procedia PDF Downloads 4321099 Examining Experiences of QTBIPOC Disabled Students in Canadian Post-Secondary Institutions
Authors: Manchari Paranthahan
Abstract:
Higher education has often presented barriers to many communities as a result of its colonial roots. While higher education was initially created for white cis-males, student populations have become more diverse in the past few decades. Despite this increase in diversity, barriers like rising costs and hostile education settings continue to make higher education hard to access for certain demographics. These barriers and limitations are compounded for students who are intersectionality marginalized, such as Queer and Trans Black, Indigenous and People of Colour (QTBIPOC) Disabled students. As of 2021-2022, only 57.5% of the Canadian population between the ages of 25 - 64 held a college or university credential, with only 32.9% holding a bachelor’s degree or higher. In that same time frame, only 0.64% of the students who successfully completed a higher education program identified as transgender or nonbinary. QTBIPOC Disabled students experience diverse forms of oppression while navigating education systems, often preventing them from completing their education successfully. This research project will investigate the complex experiences of intersectional marginalization of QTBIPOC Disabled students in Canadian post-secondary education systems. Through this investigation, this research seeks to reimagine more inclusive and accessible education systems in Canada and beyond. The social and academic experiences of QTBIPOC Disabled students in education systems are largely absent from scholarly literature, speaking to their continued marginalization and erasure from academic discourses. The lack of representation for this community in academia reinforces the idea that there is no space for marginalized bodies in further education, a discriminatory belief that this research project aims to investigate and reframe with this project. This research study will be informed by Critical Race theory, Queer Theory and Critical Disability Theories. Through a blend of critical narrative ethnography and ethnodrama for my methodological framing. Using these methodologies will speak to the intersecting factors that impact the experiences that QTBIPOC Disabled students have in education systems while offering space to analyze and create new systems of learning that benefits all students.Keywords: QTBIPOC, queer, disability, pedagogy
Procedia PDF Downloads 251098 4-Channel CWDM Optical Transceiver Applying Silicon Photonics Ge-Photodiode and MZ-Modulator
Authors: Do-Won Kim, Andy Eu Jin Lim, Raja Muthusamy Kumarasamy, Vishal Vinayak, Jacky Wang Yu-Shun, Jason Liow Tsung Yang, Patrick Lo Guo Qiang
Abstract:
In this study, we demonstrate 4-channel coarse wavelength division multiplexing (CWDM) optical transceiver based on silicon photonics integrated circuits (PIC) of waveguide Ge-photodiode (Ge-PD) and Mach Zehnder (MZ)-modulator. 4-channel arrayed PICs of Ge-PD and MZ-modulator are verified to operate at 25 Gbps/ch achieving 4x25 Gbps of total data rate. 4 bare dies of single-channel commercial electronics ICs (EICs) of trans-impedance amplifier (TIA) for Ge-PD and driver IC for MZ-modulator are packaged with PIC on printed circuit board (PCB) in a chip-on-board (COB) manner. Each single-channel EIC is electrically connected to the one channel of 4-channel PICs by wire bonds to trace. The PICs have 4-channel multiplexer for MZ-modulator and 4-channel demultiplexer for Ge-PD. The 4-channel multiplexer/demultiplexer have echelle gratings for4 CWDM optic signals of which center wavelengths are 1511, 1531, 1553, and 1573 nm. Its insertion loss is around 4dB with over 15dB of extinction ratio.The dimension of 4-channel Ge-PD is 3.6x1.4x0.3mm, and its responsivity is 1A/W with dark current of less than 20 nA.Its measured 3dB bandwidth is around 20GHz. The dimension of the 4-channel MZ-modulator is 3.6x4.8x0.3mm, and its 3dB bandwidth is around 11Ghz at -2V of reverse biasing voltage. It has 2.4V•cmbyVπVL of 6V for π shift to 4 mm length modulator.5x5um of Inversed tapered mode size converter with less than 2dB of coupling loss is used for the coupling of the lensed fiber which has 5um of mode field diameter.The PCB for COB packaging and signal transmission is designed to have 6 layers in the hybrid layer structure. 0.25 mm-thick Rogers Duroid RT5880 is used as the first core dielectric layer for high-speed performance over 25 Gbps. It has 0.017 mm-thick of copper layers and its dielectric constant is 2.2and dissipation factor is 0.0009 at 10 GHz. The dimension of both single ended and differential microstrip transmission lines are calculated using full-wave electromagnetic (EM) field simulator HFSS which RF industry is using most. It showed 3dB bandwidth at around 15GHz in S-parameter measurement using network analyzer. The wire bond length for transmission line and ground connection from EIC is done to have less than 300 µm to minimize the parasitic effect to the system.Single layered capacitors (SLC) of 100pF and 1000pF are connected as close as possible to the EICs for stabilizing the DC biasing voltage by decoupling. Its signal transmission performance is under measurement at 25Gbps achieving 100Gbps by 4chx25Gbps. This work can be applied for the active optical cable (AOC) and quad small form-factor pluggable (QSFP) for high-speed optical interconnections. Its demands are quite large in data centers targeting 100 Gbps, 400 Gbps, and 1 Tbps. As the demands of high-speed AOC and QSFP for the application to intra/inter data centers increase, this silicon photonics based high-speed 4 channel CWDM scheme can have advantages not only in data throughput but also cost effectiveness since it reduces fiber cost dramatically through WDM.Keywords: active optical cable(AOC), 4-channel coarse wavelength division multiplexing (CWDM), communication system, data center, ge-photodiode, Mach Zehnder (MZ) modulator, optical interconnections, optical transceiver, photonics integrated circuits (PIC), quad small form-factor pluggable (QSFP), silicon photonics
Procedia PDF Downloads 4181097 Posterior Circulation Ischemic Strokes in Olympic and Division 1 Wrestlers
Authors: Christen Kutz
Abstract:
Objective: The aim of this study is to review a case series of 4 high-level Olympic and Division 1 wrestlers who experienced debilitating posterior circulation ischemic strokes during or after a competitive wrestling event and to identify risk factors, etiology and outcomes of stroke in young, healthy elite wrestlers. Background: Stroke occurs in one in 10,000 people under age 64. In young adults, the most common causes of stroke are cardiac embolism, hypercoagulable state, and vasculopathy. One-third of these strokes occur in young, fit individuals. There is little published literature about ischemic strokes that occur in wrestlers. Based on the nature of wrestling, the risk of injury or dissection to neurovascular structures may be a possible theory, but very few case reports exist. Methodology: 4 wrestlers under the age of 44 with a known history of ischemic stroke participated in individual interviews either in person or virtually. Each of the wrestlers provided their demographic information, wrestling background, clinical presentation at the time of stroke, imaging results, identification of potential risk factors, acute treatment and recovery. Results: 3 white male Division 1 wrestlers (2 Lehigh University, 1 Lock Haven University) and 1 black male 2008 Olympian experienced posterior circulation strokes. Case #1 felt a “pop” while wrestling (lateral medullary infarct, possible vertebral artery dissection); Case #2 awoke with severe vertigo, sweating, and vomiting after wrestling the previous day (left cerebellar infarct, (+) protein S deficiency); Case #3 severe vertigo, ataxia, and sensation of impending doom after wrestling earlier that week (left cerebellar infarct, hypoplastic left vertebral artery (+) anti-cardiolipin antibodies). Case #4 severe dizziness, confusion (left cerebellar stroke, vertebral artery dissection, small PFO). Conclusion: 3 wrestlers were started on anti-platelet therapy, risk factors were modified, and returned to their sport. 1 wrestler was placed on anti-coagulation and retired from competition.Keywords: stroke, wrestling, Olympic, posterior circulation
Procedia PDF Downloads 761096 A System Architecture for Hand Gesture Control of Robotic Technology: A Case Study Using a Myo™ Arm Band, DJI Spark™ Drone, and a Staubli™ Robotic Manipulator
Authors: Sebastian van Delden, Matthew Anuszkiewicz, Jayse White, Scott Stolarski
Abstract:
Industrial robotic manipulators have been commonplace in the manufacturing world since the early 1960s, and unmanned aerial vehicles (drones) have only begun to realize their full potential in the service industry and the military. The omnipresence of these technologies in their respective fields will only become more potent in coming years. While these technologies have greatly evolved over the years, the typical approach to human interaction with these robots has not. In the industrial robotics realm, a manipulator is typically jogged around using a teach pendant and programmed using a networked computer or the teach pendant itself via a proprietary software development platform. Drones are typically controlled using a two-handed controller equipped with throttles, buttons, and sticks, an app that can be downloaded to one’s mobile device, or a combination of both. This application-oriented work offers a novel approach to human interaction with both unmanned aerial vehicles and industrial robotic manipulators via hand gestures and movements. Two systems have been implemented, both of which use a Myo™ armband to control either a drone (DJI Spark™) or a robotic arm (Stäubli™ TX40). The methodologies developed by this work present a mapping of armband gestures (fist, finger spread, swing hand in, swing hand out, swing arm left/up/down/right, etc.) to either drone or robot arm movements. The findings of this study present the efficacy and limitations (precision and ergonomic) of hand gesture control of two distinct types of robotic technology. All source code associated with this project will be open sourced and placed on GitHub. In conclusion, this study offers a framework that maps hand and arm gestures to drone and robot arm control. The system has been implemented using current ubiquitous technologies, and these software artifacts will be open sourced for future researchers or practitioners to use in their work.Keywords: human robot interaction, drones, gestures, robotics
Procedia PDF Downloads 1581095 Role of Onion Extract for Neuro-Protection in Experimental Stroke Model
Authors: Richa Shri, Varinder Singh, Kundan Singh Bora, Abhishek Bhanot, Rahul Kumar, Amit Kumar, Ravinder Kaur
Abstract:
The term ‘neuroprotection’ means preserving/salvaging function and structure of neurons. Neuroprotection is an adjunctive treatment option for neurodegenerative disorders. Oxidative stress is considered a major culprit in neurodegenerative disorders; hence, management strategies include use of antioxidants. Our search for a neuroprotective agent began with Allium cepa L. or onions, (family Amaryllidaceae) - a potent antioxidant. We have investigated the neuroprotective potential of onions in experimental models of ischemic stroke, diabetic neuropathy, neuropathic pain, and dementia. In pre and post-ischemic stroke model, the methanol extract of outer scales of onion bulbs (MEOS) prevented memory loss and motor in-coordination; reduced oxidative stress and cerebral infarct size. This also prevented and ameliorated diabetic neuropathy in mice. The MEOS was fractionated to yield a flavonoid rich fraction (FRF) that successfully reversed ischemia-reperfusion induced neuronal damage, thereby demonstrating that the flavonoids are responsible for the activity. The FRF effectively ameliorated chronic constriction induced neuropathic pain in rats. The FRF was subjected to bioactivity-guided fractionated. It was seen that FRF is more effective as compared to the isolated components probably due to synergism among the constituents (i.e., quercetin and quercetin glucosides) in the FRF. The outer scales of onion bulbs have great potential for prevention as well as for treatment of neuronal disorders. Red onions, with higher amounts of flavonoids as compared to the white onions, produced more significant neuroprotection. Thus, the standardized FRF from the waste material of a commonly used vegetable, especially the red variety, may be developed as a valuable neuroprotective agent.Keywords: Allium cepa, antioxidant activity, flavonoid rich fraction, neuroprotection
Procedia PDF Downloads 1521094 The Effect of Acrylic Gel Grouting on Groundwater in Porous Media
Authors: S. Wagner, C. Boley, Y. Forouzandeh
Abstract:
When digging excavations, groundwater bearing layers are often encountered. In order to allow anhydrous excavation, soil groutings are carried out, which form a water-impermeable layer. As it is injected into groundwater areas, the effects of the materials used on the environment must be known. Developing an eco-friendly, economical and low viscous acrylic gel which has a sealing effect on groundwater is therefore a significant task. At this point the study begins. Basic investigations with the rheometer and a reverse column experiment have been performed with different mixing ratios of an acrylic gel. A dynamic rheology study was conducted to determine the time at which the gel still can be processed and the maximum gel strength is reached. To examine the effect of acrylic gel grouting on determine the parameters pH value, turbidity, electric conductivity, and total organic carbon on groundwater, an acrylic gel was injected in saturated sand filled the column. The structure was rinsed with a constant flow and the eluate was subsequently examined. The results show small changes in pH values and turbidity but there is a dependency between electric conductivity and total organic carbon. The curves of the two parameters react at the same time, which means that the electrical conductivity in the eluate can be measured constantly until the maximum is reached and only then must total organic carbon (TOC) samples be taken.Keywords: acrylic gel grouting, dynamic rheology study, electric conductivity, total organic carbon
Procedia PDF Downloads 1461093 Electro-Thermo-Mechanical Behaviour of Functionally Graded Material Usage in Lead Acid Storage Batteries and the Benefits
Authors: Sandeep Das
Abstract:
Terminal post is one of the most important features of a Battery. The design and manufacturing of post are very much critical especially when threaded inserts (Bolt-on type) are used since all the collected energy is delivered from the lead part to the threaded insert (Cu or Cu alloy). Any imperfection at the interface may cause Voltage drop, high resistance, high heat generation, etc. This may be because of sudden change of material properties from lead to Cu alloys. To avoid this problem, a scheme of material gradation is proposed for achieving continuous variation of material properties for the Post used in commercially available lead acid battery. The Functionally graded (FG) material for the post is considered to be composed of different layers of homogeneous material. The volume fraction of the materials used corresponding to each layer is calculated by considering its variation along the direction of current flow (z) according to a power law. Accordingly, the effective properties of the homogeneous layers are estimated and the Post composed of this FG material is modeled using the commercially available ANSYS software. The solid 186 layered structural solid element has been used for discretization of the model of the FG Post. A thermal electric analysis is performed on the layered FG model. The model developed has been validated by comparing the results of the existing Post model& experimental analysisKeywords: ANSYS, functionally graded material, lead-acid battery, terminal post
Procedia PDF Downloads 1401092 Statistical Discrimination of Blue Ballpoint Pen Inks by Diamond Attenuated Total Reflectance (ATR) FTIR
Authors: Mohamed Izzharif Abdul Halim, Niamh Nic Daeid
Abstract:
Determining the source of pen inks used on a variety of documents is impartial for forensic document examiners. The examination of inks is often performed to differentiate between inks in order to evaluate the authenticity of a document. A ballpoint pen ink consists of synthetic dyes in (acidic and/or basic), pigments (organic and/or inorganic) and a range of additives. Inks of similar color may consist of different composition and are frequently the subjects of forensic examinations. This study emphasizes on blue ballpoint pen inks available in the market because it is reported that approximately 80% of questioned documents analysis involving ballpoint pen ink. Analytical techniques such as thin layer chromatography, high-performance liquid chromatography, UV-vis spectroscopy, luminescence spectroscopy and infrared spectroscopy have been used in the analysis of ink samples. In this study, application of Diamond Attenuated Total Reflectance (ATR) FTIR is straightforward but preferable in forensic science as it offers no sample preparation and minimal analysis time. The data obtained from these techniques were further analyzed using multivariate chemometric methods which enable extraction of more information based on the similarities and differences among samples in a dataset. It was indicated that some pens from the same manufactures can be similar in composition, however, discrete types can be significantly different.Keywords: ATR FTIR, ballpoint, multivariate chemometric, PCA
Procedia PDF Downloads 4571091 Prevalence of Enterocytozoon hepatopenaei in Shrimp Cultured in Inland Saline Water
Authors: Naveen Kumar B. T., Anuj Tyagi, Prabjeet Singh, Shanthanagouda A. H., Sumeet Rai
Abstract:
Inland saline water resources are gaining the importance in expanding the aquaculture activities to mitigate the nutritional and food security issues of the world. For profitable and sustainable aquaculture practices, scientific farming, biosecurity measure, and best fish health management should be the integral part of developmental activities. Keeping in line with global awareness and trends, the Indian government has taken an innovative step to conduct disease surveillance and awareness programme for aquatic disease through network project. This ‘National Surveillance Programme for Aquatic Animal Diseases (NSPAAD)’ is being implemented in collaboration of national institutes and state agriculture universities with funding support from National Fisheries Development Board (NFDB), Govt. of India. Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, an NSPAAD collaborator, has been actively engaged in disease surveillance in the Indian state of Punjab. Shrimp farming in inland saline areas of Punjab is expanding at a tremendous pace under the guidance of GADVASU along with the support of State Fisheries Department. Under this national disease surveillance programme, we reported Enterocytozoon hepatopenaei (EHP) infection in the Litopenaeus vannamei cultured in the inland saline waters. Polymerase chain reaction (PCR) based diagnosis was carried out using the OIE (World Organisation for Animal Health) protocol. It was observed that out of 20 shrimp farms, two farms were 1st step PCR positive and two more farms were nested PCR positive. All the EHP positive ponds had shown the white faeces along with mortalities at very low rate. Therefore, implementation of biosecurity and continuous surveillance and monitoring program for finfish and shellfish aquaculture are in need of the hour to prevent and control the large-scale disease outbreaks and subsequent economic losses.Keywords: disease, EHP, inland saline water, shrimp culture
Procedia PDF Downloads 2621090 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling
Authors: Amin Nezarat, Naeime Seifadini
Abstract:
Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.Keywords: predicting, deep learning, neural network, urban trip
Procedia PDF Downloads 1381089 Effect of Collection Technique of Blood on Clinical Pathology
Authors: Marwa Elkalla, E. Ali Abdelfadil, Ali. Mohamed. M. Sami, Ali M. Abdel-Monem
Abstract:
To assess the impact of the blood collection technique on clinical pathology markers and to establish reference intervals, a study was performed using normal, healthy C57BL/6 mice. Both sexes were employed, and they were randomly assigned to different groups depending on the phlebotomy technique used. The blood was drawn in one of four ways: intracardiac (IC), caudal vena cava (VC), caudal vena cava (VC) plus a peritoneal collection of any extravasated blood, or retroorbital phlebotomy (RO). Several serum biochemistries, such as a liver function test, a complete blood count with differentials, and a platelet count, were analysed from the blood and serum samples analysed. Red blood cell count, haemoglobin (p >0.002), hematocrit, alkaline phosphatase, albumin, total protein, and creatinine were all significantly greater in female mice. Platelet counts, specific white blood cell numbers (total, neutrophil, lymphocyte, and eosinophil counts), globulin, amylase, and the BUN/creatinine ratio were all greater in males. The VC approach seemed marginally superior to the IC approach for the characteristics under consideration and was linked to the least variation among both sexes. Transaminase levels showed the greatest variation between study groups. The aspartate aminotransferase (AST) values were linked with decreased fluctuation for the VC approach, but the alanine aminotransferase (ALT) values were similar between the IC and VC groups. There was a lot of diversity and range in transaminase levels between the MC and RO groups. We found that the RO approach, the only one tested that allowed for repeated sample collection, yielded acceptable ALT readings. The findings show that the test results are significantly affected by the phlebotomy technique and that the VC or IC techniques provide the most reliable data. When organising a study and comparing data to reference ranges, the ranges supplied here by collection method and sex can be utilised to determine the best approach to data collection. The authors suggest establishing norms based on the procedures used by each individual researcher in his or her own lab.Keywords: clinical, pathology, blood, effect
Procedia PDF Downloads 961088 Mothers and Moneymakers: A Case Study of How Citizen-Women Shape U.S. Marriage Migration Politics Online
Authors: Gina Longo
Abstract:
Social media, internet technology, and affordable travel have created avenues like tourism and internet chatrooms for Western women to meet foreign partners without paid, third-party intermediaries in regions like the Middle East/North Africa (MENA) and Sub-Saharan Africa (SSA), where men from mid-level developing countries meet and marry Western women and try to relocate. Foreign nationals who marry U.S. citizens have an expedited track to naturalization. U.S. immigration officials require that “green card” petitioning couples demonstrate that their relationships are “valid and subsisting” (i.e., for love) and not fraudulent (i.e., for immigration papers). These requirements are ostensibly gender- and racially-neutral, but migration itself is not; black and white women petitioners who seek partners from these regions and solicit advice from similar others about the potential obstacles to their petitions’ success online. Using an online ethnography and textual analysis of conversation threads on a large on-line immigration forum where U.S. petitioners exchange such information, this study examines how gendered and racialized standards of legitimacy are applied to family and sexuality and used discursively online among women petitioners differently to achieve “genuineness” and define “red flags” indicating potential marriage fraud. This paper argues that forum-women members police immigration requests even before cases reach an immigration officer, and use this social media platform to reconstruct gendered and racialized hierarchies of U.S. citizenship. Women petitioners use the formal criteria of U.S. immigration in ways that reveal gender and racial ideologies, expectations for conformity to a gendered hegemonic family ideal, and policing of women’s sexual agency, fertility, and desirability. These intersectional norms shape their online discussions about the suitability of marriages and of the migration of non-citizen male partners of color to the United States.Keywords: marriage fraud, migration, online forums, women
Procedia PDF Downloads 1201087 Device Modelling and Analysis of Eco-friendly Inverted Solar Cell Structure Using Valency Ordered Inorganic Double Perovskite Material
Authors: Sindhu S Nair, Atul Thakur, Preeti Thakur, Trukhanov Alex
Abstract:
Perovskite-based absorbing materials that are organic, inorganic, or hybrid have gained interest as an appealing candidate for the development of solar cell devices. Lead-based perovskites are among the most promising materials, but their application is plagued with toxicity and stability concerns. Most of the perovskite solar cell consists of conventional (n-i-p) structure with organic or inorganic charge transport materials. The commercial application of such device is limited due to higher J-V hysteresis and the need for high temperature during fabrication. This numerical analysis primarily directs to investigate the performance of various inorganic lead-free valency ordered double perovskite absorber materials and to develop an inverted perovskite solar cell device structure. Simulation efforts using SCAPS-1D was carried out with various organic and inorganic charge transport materials with absorber layer materials, and their performance has been evaluated for various factors of thickness, absorber thickness, absorber defect density, and interface defect density to achieve the optimized structure.Keywords: perovskite materials, solar cell, inverted solar cell, inorganic perovskite solar cell materials, cell efficiency
Procedia PDF Downloads 83