Search results for: recovery time
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19549

Search results for: recovery time

17179 Analyzing Boson Star as a Candidate for Dark Galaxy Using ADM Formulation of General Relativity

Authors: Aria Ratmandanu

Abstract:

Boson stars can be viewed as zero temperature ground state, Bose-Einstein condensates, characterized by enormous occupation numbers. Time-dependent spherically symmetric spacetime can be a model of Boson Star. We use (3+1) split of Einstein equation (ADM formulation of general relativity) to solve Einstein field equation coupled to a complex scalar field (Einstein-Klein-Gordon Equation) on time-dependent spherically symmetric spacetime, We get the result that Boson stars are pulsating stars with the frequency of oscillation equal to its density. We search for interior solution of Boson stars and get the T.O.V. (Tollman-Oppenheimer-Volkoff) equation for Boson stars. Using T.O.V. equation, we get the equation of state and the relation between pressure and density, its total mass and along with its gravitational Mass. We found that the hypothetical particle Axion could form a Boson star with the size of a milky way galaxy and make it a candidate for a dark galaxy, (a galaxy that consists almost entirely of dark matter).

Keywords: axion, boson star, dark galaxy, time-dependent spherically symmetric spacetime

Procedia PDF Downloads 244
17178 Smart Sensor Data to Predict Machine Performance with IoT-Based Machine Learning and Artificial Intelligence

Authors: C. J. Rossouw, T. I. van Niekerk

Abstract:

The global manufacturing industry is utilizing the internet and cloud-based services to further explore the anatomy and optimize manufacturing processes in support of the movement into the Fourth Industrial Revolution (4IR). The 4IR from a third world and African perspective is hindered by the fact that many manufacturing systems that were developed in the third industrial revolution are not inherently equipped to utilize the internet and services of the 4IR, hindering the progression of third world manufacturing industries into the 4IR. This research focuses on the development of a non-invasive and cost-effective cyber-physical IoT system that will exploit a machine’s vibration to expose semantic characteristics in the manufacturing process and utilize these results through a real-time cloud-based machine condition monitoring system with the intention to optimize the system. A microcontroller-based IoT sensor was designed to acquire a machine’s mechanical vibration data, process it in real-time, and transmit it to a cloud-based platform via Wi-Fi and the internet. Time-frequency Fourier analysis was applied to the vibration data to form an image representation of the machine’s behaviour. This data was used to train a Convolutional Neural Network (CNN) to learn semantic characteristics in the machine’s behaviour and relate them to a state of operation. The same data was also used to train a Convolutional Autoencoder (CAE) to detect anomalies in the data. Real-time edge-based artificial intelligence was achieved by deploying the CNN and CAE on the sensor to analyse the vibration. A cloud platform was deployed to visualize the vibration data and the results of the CNN and CAE in real-time. The cyber-physical IoT system was deployed on a semi-automated metal granulation machine with a set of trained machine learning models. Using a single sensor, the system was able to accurately visualize three states of the machine’s operation in real-time. The system was also able to detect a variance in the material being granulated. The research demonstrates how non-IoT manufacturing systems can be equipped with edge-based artificial intelligence to establish a remote machine condition monitoring system.

Keywords: IoT, cyber-physical systems, artificial intelligence, manufacturing, vibration analytics, continuous machine condition monitoring

Procedia PDF Downloads 89
17177 Optimal Maintenance Clustering for Rail Track Components Subject to Possession Capacity Constraints

Authors: Cuong D. Dao, Rob J.I. Basten, Andreas Hartmann

Abstract:

This paper studies the optimal maintenance planning of preventive maintenance and renewal activities for components in a single railway track when the available time for maintenance is limited. The rail-track system consists of several types of components, such as rail, ballast, and switches with different preventive maintenance and renewal intervals. To perform maintenance or renewal on the track, a train free period for maintenance, called a possession, is required. Since a major possession directly affects the regular train schedule, maintenance and renewal activities are clustered as much as possible. In a highly dense and utilized railway network, the possession time on the track is critical since the demand for train operations is very high and a long possession has a severe impact on the regular train schedule. We present an optimization model and investigate the maintenance schedules with and without the possession capacity constraint. In addition, we also integrate the social-economic cost related to the effects of the maintenance time to the variable possession cost into the optimization model. A numerical example is provided to illustrate the model.

Keywords: rail-track components, maintenance, optimal clustering, possession capacity

Procedia PDF Downloads 265
17176 Wheeled Robot Stable Braking Process under Asymmetric Traction Coefficients

Authors: Boguslaw Schreyer

Abstract:

During the wheeled robot’s braking process, the extra dynamic vertical forces act on all wheels: left, right, front or rear. Those forces are directed downward on the front wheels while directed upward on the rear wheels. In order to maximize the deceleration, therefore, minimize the braking time and braking distance, we need to calculate a correct torque distribution: the front braking torque should be increased, and rear torque should be decreased. At the same time, we need to provide better transversal stability. In a simple case of all adhesion coefficients being the same under all wheels, the torque distribution may secure the optimal (maximal) control of the robot braking process, securing the minimum braking distance and a minimum braking time. At the same time, the transversal stability is relatively good. At any time, we control the transversal acceleration. In the case of the transversal movement, we stop the braking process and re-apply braking torque after a defined period of time. If we correctly calculate the value of the torques, we may secure the traction coefficient under the front and rear wheels close to its maximum. Also, in order to provide an optimum braking control, we need to calculate the timing of the braking torque application and the timing of its release. The braking torques should be released shortly after the wheels passed a maximum traction coefficient (while a wheels’ slip increases) and applied again after the wheels pass a maximum of traction coefficient (while the slip decreases). The correct braking torque distribution secures the front and rear wheels, passing this maximum at the same time. It guarantees an optimum deceleration control, therefore, minimum braking time. In order to calculate a correct torque distribution, a control unit should receive the input signals of a rear torque value (which changes independently), the robot’s deceleration, and values of the vertical front and rear forces. In order to calculate the timing of torque application and torque release, more signals are needed: speed of the robot: angular speed, and angular deceleration of the wheels. In case of different adhesion coefficients under the left and right wheels, but the same under each pair of wheels- the same under right wheels and the same under left wheels, the Select-Low (SL) and select high (SH) methods are applied. The SL method is suggested if transversal stability is more important than braking efficiency. Often in the case of the robot, more important is braking efficiency; therefore, the SH method is applied with some control of the transversal stability. In the case that all adhesion coefficients are different under all wheels, the front-rear torque distribution is maintained as in all previous cases. However, the timing of the braking torque application and release is controlled by the rear wheels’ lowest adhesion coefficient. The Lagrange equations have been used to describe robot dynamics. Matlab has been used in order to simulate the process of wheeled robot braking, and in conclusion, the braking methods have been selected.

Keywords: wheeled robots, braking, traction coefficient, asymmetric

Procedia PDF Downloads 166
17175 A Comprehensive Evaluation of IGBTs Performance under Zero Current Switching

Authors: Ly. Benbahouche

Abstract:

Currently, several soft switching topologies have been studied to achieve high power switching efficiency, reduced cost, improved reliability and reduced parasites. It is well known that improvement in power electronics systems always depend on advanced in power devices. The IGBT has been successfully used in a variety of switching applications such as motor drives and appliance control because of its superior characteristics. The aim of this paper is focuses on simulation and explication of the internal dynamics of IGBTs behaviour under the most popular soft switching schemas that is Zero Current Switching (ZCS) environments. The main purpose of this paper is to point out some mechanisms relating to current tail during the turn-off and examination of the response at turn-off with variation of temperature, inductance L, snubber capacitors Cs, and bus voltage in order to achieve an improved understanding of internal carrier dynamics. It is shown that the snubber capacitor, the inductance and even the temperature controls the magnitude and extent of the tail current, hence the turn-off time (switching speed of the device). Moreover, it has also been demonstrated that the ZCS switching can be utilized efficiently to improve and reduce the power losses as well as the turn-off time. Furthermore, the turn-off loss in ZCS was found to depend on the time of switching of the device.

Keywords: PT-IGBT, ZCS, turn-off losses, dV/dt

Procedia PDF Downloads 319
17174 Oneness of Scriptures and Oneness of God

Authors: Shyam Sunder Gupta

Abstract:

GOD is an infinite source of knowledge. From time to time, as per the need of mankind, GOD keeps revealing, some small, selected part of HIS knowledge as WORDS, to a chosen entity whose responsibility is to function as Messenger and share WORDS, in the form of verses, with common masses. GOD has confirmed that Messenger may not understand every WORD revealed to him, and HE directs Messenger to learn from persons who have knowledge of WORDS revealed in earlier times, as some revealed content is identical and some different by design. In due course of time, Verses, as communicated orally, are collected, and edited by an individual in a planned manner or by a group of individuals and get edited unintentionally and converted in the form of Scripture. Whatever gets collected, depending on the knowledge of the Editor(s), some errors, scientific and other forms, get into Scripture. In the present world, there are three major religions: Christianity, Islam and Hinduism, accounting for more than two-thirds of the world’s population. Each of the religions has its own Scripture, namely the Bible, Quran, and Veda. Since the source of WORDS for each of these Scriptures is the same, there is ONENESS of all Scriptures. There are amazing similarities between the events described, like the flood during the time of Noah and King Satyavara. The description of the creation of man and woman is identical. Description of Last Day, categorization of human beings, identical names, etc., have remarkable similarities. Ram, the hero of Ramayana, is a common name in Hinduism and two of Jesus’ ancestors’ names were Ram and many names in the Bible are derived from Ram. Attributes of GOD are common in all Scriptures, namely, GOD is Eternal, Unborn, Immortal, Creator of Universe(s) and everything that exists within the Universe, Omnipotent, Omnipresent, Omniscient, Subtlest of all, Unchangeable, Unique, Always Works, Source of Eternal Bliss, etc. There is the Oneness of GOD.

Keywords: GOD, scriptures, oneness, WORDS, Jesus, Ram

Procedia PDF Downloads 63
17173 Paper Concrete: A Step towards Sustainability

Authors: Hemanth K. Balaga, Prakash Nanthagopalan

Abstract:

Every year a huge amount of paper gets discarded of which only a minute fraction is being recycled and the rest gets dumped as landfills. Paper fibres can be recycled only a limited number of times before they become too short or weak to make high quality recycled paper. This eventually adds to the already big figures of waste paper that is being generated and not recycled. It would be advantageous if this prodigious amount of waste can be utilized as a low-cost sustainable construction material and make it as a value added product. The generic term for the material under investigation is paper-concrete. This is a fibrous mix made of Portland cement, water and pulped paper and/or other aggregates. The advantages of this material include light weight, good heat and sound insulation capability and resistance to flame. The disadvantages include low strength compared to conventional concrete and its hydrophilic nature. The properties vary with the variation of cement and paper content in the mix. In the present study, Portland Pozzolona Cement and news print paper were used for the preparation of paper concrete cubes. Initially, investigations were performed to determine the minimum soaking period required for the softening of the paper fibres. Further different methodologies were explored for proper blending of the pulp with cement paste. The properties of paper concrete vary with the variation of cement to paper to water ratio. The study mainly addresses the parameters of strength and weight loss of the concrete cubes with age and the time that is required for the dry paper fibres to become soft enough in water to bond with the cement. The variation of compressive strength with cement content, water content, and time was studied. The water loss of the cubes with time and the minimum time required for the softening of paper fibres were investigated .Results indicate that the material loses 25-50 percent of the initial weight at the end of 28 days, and a maximum 28 day compressive strength (cubes) of 5.4 Mpa was obtained.

Keywords: soaking time, difference water, minimum water content, maximum water content

Procedia PDF Downloads 257
17172 An Approximation Method for Exact Boundary Controllability of Euler-Bernoulli

Authors: A. Khernane, N. Khelil, L. Djerou

Abstract:

The aim of this work is to study the numerical implementation of the Hilbert uniqueness method for the exact boundary controllability of Euler-Bernoulli beam equation. This study may be difficult. This will depend on the problem under consideration (geometry, control, and dimension) and the numerical method used. Knowledge of the asymptotic behaviour of the control governing the system at time T may be useful for its calculation. This idea will be developed in this study. We have characterized as a first step the solution by a minimization principle and proposed secondly a method for its resolution to approximate the control steering the considered system to rest at time T.

Keywords: boundary control, exact controllability, finite difference methods, functional optimization

Procedia PDF Downloads 348
17171 Forecasting the Fluctuation of Currency Exchange Rate Using Random Forest

Authors: Lule Basha, Eralda Gjika

Abstract:

The exchange rate is one of the most important economic variables, especially for a small, open economy such as Albania. Its effect is noticeable in one country's competitiveness, trade and current account, inflation, wages, domestic economic activity, and bank stability. This study investigates the fluctuation of Albania’s exchange rates using monthly average foreign currency, Euro (Eur) to Albanian Lek (ALL) exchange rate with a time span from January 2008 to June 2021, and the macroeconomic factors that have a significant effect on the exchange rate. Initially, the Random Forest Regression algorithm is constructed to understand the impact of economic variables on the behavior of monthly average foreign currencies exchange rates. Then the forecast of macro-economic indicators for 12 months was performed using time series models. The predicted values received are placed in the random forest model in order to obtain the average monthly forecast of the Euro to Albanian Lek (ALL) exchange rate for the period July 2021 to June 2022.

Keywords: exchange rate, random forest, time series, machine learning, prediction

Procedia PDF Downloads 104
17170 Detection of Muscle Swelling Using the Cnts-Based Poc Wearable Strain Sensor

Authors: Nadeem Qaiser, Sherjeel Munsif Khan, Muhammad Mustafa Hussian, Vincent Tung

Abstract:

One of the emerging fields in the detection of chronic diseases is based on the point-of-care (POC) early monitoring of the symptoms and thus provides a state-of-the-art personalized healthcare system. Nowadays, wearable and flexible sensors are being used for analyzing sweat, glucose, blood pressure, and other skin conditions. However, localized jaw-bone swelling called parotid-swelling caused by some viruses has never been tracked before. To track physical motion or deformations, strain sensors, especially piezoresistive ones, are widely used. This work, for the first time, reports carbon nanotubes (CNTs)-based piezoresistive sensing patch that is highly flexible and stretchable and can record muscle deformations in real-time. The developed patch offers an excellent gauge factor for in-plane stretching and spatial expansion with low hysteresis. To calibrate the volumetric muscle expansion, we fabricated the pneumatic actuator that experienced volumetric expansion and thus redefined the gauge factor. Moreover, we employ a Bluetooth-low-energy system that can send information about muscle activity in real-time to a smartphone app. We utilized COMSOL calculations to reveal the mechanical robustness of the patch. The experiments showed the sensing patch's greater cyclability, making it a patch for personal healthcare and an excellent choice for monitoring the real-time POC monitoring of the human muscle swelling.

Keywords: piezoresistive strain sensor, FEM simulations, CNTs sensor, flexible

Procedia PDF Downloads 88
17169 Effects of Transcranial Direct Current Stimulation on Post-Stroke Dysphagia

Authors: Ehsan Kaviani, Azin Golmoradizade

Abstract:

Introduction: Traditionally, tendons are considered to only contain tenocytes that are responsible for the maintenance, repair, and remodeling of tendons. Stem cells, which are termed tendon-derived stem cells, so this study we investigate the effect of transcranial direct current stimulation combined with swallowing training on post-stroke dysphagia. Methods: This review article is about effects of transcranial direct current stimulation (tDCS) on post-stroke dysphagia that were extracted from Science Direct, Pro quest, and Pub med Data Bases. 15 articles had been selected according to inclusion criteria from 2014 to 2019, and 6 of them had been deleted by exclusion criteria. Results: The results of our systematic review suggest that tDCS may represent a promising novel treatment for post-stroke dysphagia. However, to date, little is known about the optimal parameters of tDCS for relieving post-stroke dysphagia. Further studies are warranted to refine this promising intervention by exploring the optimal parameters of tDCS. Conclusion: anodal tDCS over the affected hemisphere may be as effective as cathodal tDCS on the unaffected hemisphere to enhance recovery after subacute ischemic stroke and anodal tdcs applied over the affected pharyngeal motor cortex can enhance the outcome of swallowing training in post-stroke dysphagia.

Keywords: dysphagia, stroke, cortical stimulation, transcranial direct current stimulation

Procedia PDF Downloads 137
17168 Characterization and Predictors of Community Integration of People with Psychiatric Problems: Comparisons with the General Population

Authors: J. Cabral, C. Barreto Carvalho, C. da Motta, M. Sousa

Abstract:

Community integration is a construct that an increasing body of research has shown to have a significant impact in well-being and recovery of people with psychiatric problems. However, there are few studies that explore which factors can be associated and predict community integration. Moreover, community integration has been mostly studied in minority groups, and currently literature on the definition and manifestation of community integration in the more general population is scarce. Thus, the current study aims to characterize community integration and explore possible predictor variables in a sample of participants with psychiatric problems (PP, N=183) and a sample of participants from the general population (GP, N=211). Results show that people with psychiatric problems present above average values of community integration, but are significantly lower than their healthy counterparts. It was also possible to observe that community integration does not vary in terms of the socio-demographic characteristics of both groups in this study. Correlation and multiple regression showed that, among several variables that literature present as relevant in the community integration process, only three variables emerged as having the most explanatory value in community integration of both groups: sense of community, basic needs satisfaction and submission. These results also shown that those variables have increased explanatory power in the PP sample, which leads us to emphasize the need to address this issue in future studies and increase the understanding of the factors that can be involved in the promotion of community integration, in order to devise more effective interventions in this field.

Keywords: community integration, mental illness, predictors, psychiatric problems

Procedia PDF Downloads 488
17167 Monitoring Synthesis of Biodiesel through Online Density Measurements

Authors: Arnaldo G. de Oliveira, Jr, Matthieu Tubino

Abstract:

The transesterification process of triglycerides with alcohols that occurs during the biodiesel synthesis causes continuous changes in several physical properties of the reaction mixture, such as refractive index, viscosity and density. Amongst them, density can be an useful parameter to monitor the reaction, in order to predict the composition of the reacting mixture and to verify the conversion of the oil into biodiesel. In this context, a system was constructed in order to continuously determine changes in the density of the reacting mixture containing soybean oil, methanol and sodium methoxide (30 % w/w solution in methanol), stirred at 620 rpm at room temperature (about 27 °C). A polyethylene pipe network connected to a peristaltic pump was used in order to collect the mixture and pump it through a coil fixed on the plate of an analytical balance. The collected mass values were used to trace a curve correlating the mass of the system to the reaction time. The density variation profile versus the time clearly shows three different steps: 1) the dispersion of methanol in oil causes a decrease in the system mass due to the lower alcohol density followed by stabilization; 2) the addition of the catalyst (sodium methoxide) causes a larger decrease in mass compared to the first step (dispersion of methanol in oil) because of the oil conversion into biodiesel; 3) the final stabilization, denoting the end of the reaction. This density variation profile provides information that was used to predict the composition of the mixture over the time and the reaction rate. The precise knowledge of the duration of the synthesis means saving time and resources on a scale production system. This kind of monitoring provides several interesting features such as continuous measurements without collecting aliquots.

Keywords: biodiesel, density measurements, online continuous monitoring, synthesis

Procedia PDF Downloads 576
17166 Information Extraction Based on Search Engine Results

Authors: Mohammed R. Elkobaisi, Abdelsalam Maatuk

Abstract:

The search engines are the large scale information retrieval tools from the Web that are currently freely available to all. This paper explains how to convert the raw resulted number of search engines into useful information. This represents a new method for data gathering comparing with traditional methods. When a query is submitted for a multiple numbers of keywords, this take a long time and effort, hence we develop a user interface program to automatic search by taking multi-keywords at the same time and leave this program to collect wanted data automatically. The collected raw data is processed using mathematical and statistical theories to eliminate unwanted data and converting it to usable data.

Keywords: search engines, information extraction, agent system

Procedia PDF Downloads 430
17165 Aqueous Two Phase Extraction of Jonesia denitrificans Xylanase 6 in PEG 1000/Phosphate System

Authors: Nawel Boucherba, Azzedine Bettache, Abdelaziz Messis, Francis Duchiron, Said Benallaoua

Abstract:

The impetus for research in the field of bioseparation has been sparked by the difficulty and complexity in the downstream processing of biological products. Indeed, 50% to 90% of the production cost for a typical biological product resides in the purification strategy. There is a need for efficient and economical large scale bioseparation techniques which will achieve high purity and high recovery while maintaining the biological activity of the molecule. One such purification technique which meets these criteria involves the partitioning of biomolecules between two immiscible phases in an aqueous system (ATPS). The Production of xylanases is carried out in 500ml of a liquid medium based on birchwood xylan. In each ATPS, PEG 1000 is added to a mixture consisting of dipotassium phosphate, sodium chloride and the culture medium inoculated with the strain Jonesia denitrificans, the mixture was adjusted to different pH. The concentration of PEG 1000 was varied: 8 to 16 % and the NaCl percentages are also varied from 2 to 4% while maintaining the other parameters constant. The results showed that the best ATPS for purification of xylanases is composed of PEG 1000 at 8.33%, 13.14 % of K2HPO4, 1.62% NaCl at pH 7. We obtained a yield of 96.62 %, a partition coefficient of 86.66 and a purification factor of 2.9. The zymogram showed that the activity is mainly detected in the top phase.

Keywords: Jonesia denitrificans BN13, xylanase, aqueous two phases system, zymogram

Procedia PDF Downloads 400
17164 Smart Brain Wave Sensor for Paralyzed- a Real Time Implementation

Authors: U.B Mahadevswamy UBM, Siraj Ahmed Siraj

Abstract:

As the title of the paper indicates about brainwaves and its uses for various applications based on their frequencies and different parameters which can be implemented as real time application with the title a smart brain wave sensor system for paralyzed patients. Brain wave sensing is to detect a person's mental status. The purpose of brain wave sensing is to give exact treatment to paralyzed patients. The data or signal is obtained from the brainwaves sensing band. This data are converted as object files using Visual Basics. The processed data is further sent to Arduino which has the human's behavioral aspects like emotions, sensations, feelings, and desires. The proposed device can sense human brainwaves and detect the percentage of paralysis that the person is suffering. The advantage of this paper is to give a real-time smart sensor device for paralyzed patients with paralysis percentage for their exact treatment. Keywords:-Brainwave sensor, BMI, Brain scan, EEG, MCH.

Keywords: Keywords:-Brainwave sensor , BMI, Brain scan, EEG, MCH

Procedia PDF Downloads 157
17163 Research on Resilience-Oriented Disintegration in System-of-System

Authors: Hang Yang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge

Abstract:

The system-of-systems (SoS) are utilized to characterize networks formed by integrating individual complex systems that demonstrate interdependence and interconnectedness. Research on the disintegration issue in SoS is significant in improving network survivability, maintaining network security, and optimizing SoS architecture. Accordingly, this study proposes an integrated framework called resilience-oriented disintegration in SoS (SoSRD), for modeling and solving the issue of SoS disintegration. Firstly, a SoS disintegration index (SoSDI) is presented to evaluate the disintegration effect of SoS. This index provides a practical description of the disintegration process and is the first integration of the network disintegration model and resilience models. Subsequently, we propose a resilience-oriented disintegration method based on reinforcement learning (RDRL) to enhance the efficiency of SoS disintegration. This method is not restricted by the problem scenario as well as considering the coexistence of disintegration (node/link removal) and recovery (node/link addition) during the process of SoS disintegration. Finally, the effectiveness and superiority of the proposed SoSRD are demonstrated through a case study. We demonstrate that our proposed framework outperforms existing indexes and methods in both node and link disintegration scenarios, providing a fresh perspective on network disintegration. The findings provide crucial insights into dismantling harmful SoS and designing a more resilient SoS.

Keywords: system-of-systems, disintegration index, resilience, reinforcement learning

Procedia PDF Downloads 18
17162 On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation

Authors: Gyo Woo Lee, Man Young Kim

Abstract:

A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time.

Keywords: reheating furnace, steel slab, radiative heat transfer, WSGGM, emissivity, residence time

Procedia PDF Downloads 289
17161 Design of Effective Decoupling Point in Build-To-Order Systems: Focusing on Trade-Off Relation between Order-To-Delivery Lead Time and Work in Progress

Authors: Zhiyong Li, Hiroshi Katayama

Abstract:

Since 1990s, e-commerce and internet business have been grown gradually over the word and customers tend to express their demand attributes in terms of specification requirement on parts, component, product structure etc. This paper deals with designing effective decoupling points for build to order systems under e-commerce environment, which can be realized through tradeoff relation analysis between two major criteria, customer order lead time and value of work in progress. These KPIs are critical for successful BTO business, namely time-based service effectiveness on coping with customer requirements for the first issue and cost effective ness with risk aversive operations for the second issue. Approach of this paper consists of investigation of successful business standing for BTO scheme, manufacturing model development of this scheme, quantitative evaluation of proposed models by calculation of two KPI values under various decoupling point distributions and discussion of the results brought by pattern of decoupling point distribution, where some cases provide the pareto optimum performances. To extract the relevant trade-off relation between considered KPIs among 2-dimensional resultant performance, useful logic developed by former research work, i.e. Katayama and Fonseca, is applied. Obtained characteristics are evaluated as effective information for managing BTO manufacturing businesses.

Keywords: build-to-order (BTO), decoupling point, e-commerce, order-to-delivery lead time (ODLT), work in progress (WIP)

Procedia PDF Downloads 326
17160 The Excess Loop Delay Calibration in a Bandpass Continuous-Time Delta Sigma Modulators Based on Q-Enhanced LC Filter

Authors: Sorore Benabid

Abstract:

The Q-enhanced LC filters are the most used architecture in the Bandpass (BP) Continuous-Time (CT) Delta-Sigma (ΣΔ) modulators, due to their: high frequencies operation, high linearity than the active filters and a high quality factor obtained by Q-enhanced technique. This technique consists of the use of a negative resistance that compensate the ohmic losses in the on-chip inductor. However, this technique introduces a zero in the filter transfer function which will affect the modulator performances in term of Dynamic Range (DR), stability and in-band noise (Signal-to-Noise Ratio (SNR)). In this paper, we study the effect of this zero and we demonstrate that a calibration of the excess loop delay (ELD) is required to ensure the best performances of the modulator. System level simulations are done for a 2ndorder BP CT (ΣΔ) modulator at a center frequency of 300MHz. Simulation results indicate that the optimal ELD should be reduced by 13% to achieve the maximum SNR and DR compared to the ideal LC-based ΣΔ modulator.

Keywords: continuous-time bandpass delta-sigma modulators, excess loop delay, on-chip inductor, Q-enhanced LC filter

Procedia PDF Downloads 329
17159 Adaptive Backstepping Control of Uncertain Nonlinear Systems with Input Backlash

Authors: Ali Anwar, Hu Qinglei, Li Bo, Muhammad Taha Ali

Abstract:

In this paper a generic model of perturbed nonlinear systems is considered which is affected by hard backlash nonlinearity at the input. The nonlinearity is modelled by a dynamic differential equation which presents a more precise shape as compared to the existing linear models and is compatible with nonlinear design technique such as backstepping. Moreover, a novel backstepping based nonlinear control law is designed which explicitly incorporates a continuous-time adaptive backlash inverse model. It provides a significant flexibility to control engineers, whereby they can use the estimated backlash spacing value specified on actuators such as gears etc. in the adaptive Backlash Inverse model during the control design. It ensures not only global stability but also stringent transient performance with desired precision. It is also robust to external disturbances upon which the bounds are taken as unknown and traverses the backlash spacing efficiently with underestimated information about the actual value. The continuous-time backlash inverse model is distinguished in the sense that other models are either discrete-time or involve complex computations. Furthermore, numerical simulations are presented which not only illustrate the effectiveness of proposed control law but also its comparison with PID and other backstepping controllers.

Keywords: adaptive control, hysteresis, backlash inverse, nonlinear system, robust control, backstepping

Procedia PDF Downloads 465
17158 Silica Nanoparticles Induced Oxidative Stress and Inflammation in MRC-5 Human Lung Fibroblasts

Authors: Anca Dinischiotu, Sorina Nicoleta Voicu

Abstract:

Silica nanoparticles (SiO2-NPs) are widely used in consumer products such as paints, plastics, insulation materials, tires, concrete production, as well as in gene delivery systems and imaging procedures. Environmental human exposure to them occurs during utilization of these products, in a time-dependent manner, the uptake being by topic and inhalation route especially. SiO2-NPs enter cells and induce membrane damage, oxidative stress and inflammatory reactions in a concentration-dependent manner. In this study, MRC-5 cells (human fetal lung fibroblasts) were exposed to amorphous SiO2-NPs at a dose of 62.5 μg/ml for 24, 48 and 72 hours. The size distribution of NPs was a lognormal function, in the range 3-14 nm. A time-dependent decrease of total reduced glutathione concentration by 36%, 50%, and 78% and an increase of NO level by 62%, 32%, respectively 24% compared to control were noticed. An up-regulation of NF-kB expression by 20%, 50% respectively 10% and of Nrf-2 by 139%, 58%, and 16% compared to control after 24, 48 and 72 hours was noticed also. The expression of IL-1β, IL-6, IL-8, and COX-2 was up-regulated in a time-dependent manner. Also, the expression of MMP-2 and MMP-9 were down-regulated after 48 and 72 hours, whereas their activities raised in a time-dependent manner. Exposure of cells to NPs up-regulated the expression of inducible NO synthase, as previously was shown, and probably this is the reason for the increased level of NO, that can react with the thiol groups of reduced glutathione molecules, diminishing its concentration Nrf2 is a transcription factor translocated in nucleus, under oxidative stress, where downstream gene expression activates in order to modulate the adaptive intracellular response against oxidative stress. The cross-talk between Nrf2 and NF-kB activities regulates the inflammatory processes. The activation of NF-kB could activate up-regulation of IL-1β, IL-6, and IL-8. The increase of COX-2 expression could be correlated with IL-1β one. Also, probably in response to the pro-inflammatory cytokines, MMP-2 and MMP-9 were induced and activated. In conclusion, the exposure of MRC-5 cells to SiO2-NPs generated inflammation in a time-dependent manner.

Keywords: inflammation, MRC-5 cells, oxidative stress, silica nanoparticles

Procedia PDF Downloads 148
17157 Multiscale Entropy Analysis of Electroencephalogram (EEG) of Alcoholic and Control Subjects

Authors: Lal Hussain, Wajid Aziz, Imtiaz Ahmed Awan, Sharjeel Saeed

Abstract:

Multiscale entropy analysis (MSE) is a useful technique recently developed to quantify the dynamics of physiological signals at different time scales. This study is aimed at investigating the electroencephalogram (EEG) signals to analyze the background activity of alcoholic and control subjects by inspecting various coarse-grained sequences formed at different time scales. EEG recordings of alcoholic and control subjects were taken from the publically available machine learning repository of University of California (UCI) acquired using 64 electrodes. The MSE analysis was performed on the EEG data acquired from all the electrodes of alcoholic and control subjects. Mann-Whitney rank test was used to find significant differences between the groups and result were considered statistically significant for p-values<0.05. The area under receiver operator curve was computed to find the degree separation between the groups. The mean ranks of MSE values at all the times scales for all electrodes were higher control subject as compared to alcoholic subjects. Higher mean ranks represent higher complexity and vice versa. The finding indicated that EEG signals acquired through electrodes C3, C4, F3, F7, F8, O1, O2, P3, T7 showed significant differences between alcoholic and control subjects at time scales 1 to 5. Moreover, all electrodes exhibit significance level at different time scales. Likewise, the highest accuracy and separation was obtained at the central region (C3 and C4), front polar regions (P3, O1, F3, F7, F8 and T8) while other electrodes such asFp1, Fp2, P4 and F4 shows no significant results.

Keywords: electroencephalogram (EEG), multiscale sample entropy (MSE), Mann-Whitney test (MMT), Receiver Operator Curve (ROC), complexity analysis

Procedia PDF Downloads 377
17156 Thermal and Mechanical Properties of Powder Injection Molded Alumina Nano-Powder

Authors: Mostafa Rezaee Saraji, Ali Keshavarz Panahi

Abstract:

In this work, the processing steps for producing alumina parts using powder injection molding (PIM) technique and nano-powder were investigated and the thermal conductivity and flexural strength of samples were determined as a function of sintering temperature and holding time. In the first step, the feedstock with 58 vol. % of alumina nano-powder with average particle size of 100nm was prepared using Extrumixing method to obtain appropriate homogeneity. This feedstock was injection molded into the two cavity mold with rectangular shape. After injection molding step, thermal and solvent debinding methods were used for debinding of molded samples and then these debinded samples were sintered in different sintering temperatures and holding times. From the results, it was found that the flexural strength and thermal conductivity of samples increased by increasing sintering temperature and holding time; in sintering temperature of 1600ºC and holding time of 5h, the flexural strength and thermal conductivity of sintered samples reached to maximum values of 488MPa and 40.8 W/mK, respectively.

Keywords: alumina nano-powder, thermal conductivity, flexural strength, powder injection molding

Procedia PDF Downloads 330
17155 Indeterminacy: An Urban Design Tool to Measure Resilience to Climate Change, a Caribbean Case Study

Authors: Tapan Kumar Dhar

Abstract:

How well are our city forms designed to adapt to climate change and its resulting uncertainty? What urban design tools can be used to measure and improve resilience to climate change, and how would they do so? In addressing these questions, this paper considers indeterminacy, a concept originated in the resilience literature, to measure the resilience of built environments. In the realm of urban design, ‘indeterminacy’ can be referred to as built-in design capabilities of an urban system to serve different purposes which are not necessarily predetermined. An urban system, particularly that with a higher degree of indeterminacy, can enable the system to be reorganized and changed to accommodate new or unknown functions while coping with uncertainty over time. Underlying principles of this concept have long been discussed in the urban design and planning literature, including open architecture, landscape urbanism, and flexible housing. This paper argues that the concept indeterminacy holds the potential to reduce the impacts of climate change incrementally and proactively. With regard to sustainable development, both planning and climate change literature highly recommend proactive adaptation as it involves less cost, efforts, and energy than last-minute emergency or reactive actions. Nevertheless, the concept still remains isolated from resilience and climate change adaptation discourses even though the discourses advocate the incremental transformation of a system to cope with climatic uncertainty. This paper considers indeterminacy, as an urban design tool, to measure and increase resilience (and adaptive capacity) of Long Bay’s coastal settlements in Negril, Jamaica. Negril is one of the popular tourism destinations in the Caribbean highly vulnerable to sea-level rise and its associated impacts. This paper employs empirical information obtained from direct observation and informal interviews with local people. While testing the tool, this paper deploys an urban morphology study, which includes land use patterns and the physical characteristics of urban form, including street networks, block patterns, and building footprints. The results reveal that most resorts in Long Bay are designed for pre-determined purposes and offer a little potential to use differently if needed. Additionally, Negril’s street networks are found to be rigid and have limited accessibility to different points of interest. This rigidity can expose the entire infrastructure further to extreme climatic events and also impedes recovery actions after a disaster. However, Long Bay still has room for future resilient developments in other relatively less vulnerable areas. In adapting to climate change, indeterminacy can be reached through design that achieves a balance between the degree of vulnerability and the degree of indeterminacy: the more vulnerable a place is, the more indeterminacy is useful. This paper concludes with a set of urban design typologies to increase the resilience of coastal settlements.

Keywords: climate change adaptation, resilience, sea-level rise, urban form

Procedia PDF Downloads 367
17154 Reducing System Delay to Definitive Care For STEMI Patients, a Simulation of Two Different Strategies in the Brugge Area, Belgium

Authors: E. Steen, B. Dewulf, N. Müller, C. Vandycke, Y. Vandekerckhove

Abstract:

Introduction: The care for a ST-elevation myocardial infarction (STEMI) patient is time-critical. Reperfusion therapy within 90 minutes of initial medical contact is mandatory in the improvement of the outcome. Primary percutaneous coronary intervention (PCI) without previous fibrinolytic treatment, is the preferred reperfusion strategy in patients with STEMI, provided it can be performed within guideline-mandated times. Aim of the study: During a one year period (January 2013 to December 2013) the files of all consecutive STEMI patients with urgent referral from non-PCI facilities for primary PCI were reviewed. Special attention was given to a subgroup of patients with prior out-of-hospital medical contact generated by the 112-system. In an effort to reduce out-of-hospital system delay to definitive care a change in pre-hospital 112 dispatch strategies is proposed for these time-critical patients. Actual time recordings were compared with travel time simulations for two suggested scenarios. A first scenario (SC1) involves the decision by the on scene ground EMS (GEMS) team to transport the out-of-hospital diagnosed STEMI patient straight forward to a PCI centre bypassing the nearest non-PCI hospital. Another strategy (SC2) explored the potential role of helicopter EMS (HEMS) where the on scene GEMS team requests a PCI-centre based HEMS team for immediate medical transfer to the PCI centre. Methods and Results: 49 (29,1% of all) STEMI patients were referred to our hospital for emergency PCI by a non-PCI facility. 1 file was excluded because of insufficient data collection. Within this analysed group of 48 secondary referrals 21 patients had an out-of-hospital medical contact generated by the 112-system. The other 27 patients presented at the referring emergency department without prior contact with the 112-system. The table below shows the actual time data from first medical contact to definitive care as well as the simulated possible gain of time for both suggested strategies. The PCI-team was always alarmed upon departure from the referring centre excluding further in-hospital delay. Time simulation tools were similar to those used by the 112-dispatch centre. Conclusion: Our data analysis confirms prolonged reperfusion times in case of secondary emergency referrals for STEMI patients even with the use of HEMS. In our setting there was no statistical difference in gain of time between the two suggested strategies, both reducing the secondary referral generated delay with about one hour and by this offering all patients PCI within the guidelines mandated time. However, immediate HEMS activation by the on scene ground EMS team for transport purposes is preferred. This ensures a faster availability of the local GEMS-team for its community. In case these options are not available and the guideline-mandated times for primary PCI are expected to be exceeded, primary fibrinolysis should be considered in a non-PCI centre.

Keywords: STEMI, system delay, HEMS, emergency medicine

Procedia PDF Downloads 320
17153 PPB-Level H₂ Gas-Sensor Based on Porous Ni-MOF Derived NiO@CuO Nanoflowers for Superior Sensing Performance

Authors: Shah Sufaid, Hussain Shahid, Tianyan You, Liu Guiwu, Qiao Guanjun

Abstract:

Nickel oxide (NiO) is an optimal material for precise detection of hydrogen (H₂) gas due to its high catalytic activity and low resistivity. However, the gas response kinetics of H₂ gas molecules with the surface of NiO concurrence limitation imposed by its solid structure, leading to a diminished gas response value and slow electron-hole transport. Herein, NiO@CuO NFs with porous sharp-tip and nanospheres morphology were successfully synthesized by using a metal-organic framework (MOFs) as a precursor. The fabricated porous 2 wt% NiO@CuO NFs present outstanding selectivity towards H₂ gas, including a high sensitivity of a response value (170 to 20 ppm at 150 °C) higher than that of porous Ni-MOF (6), low detection limit (300 ppb) with a notable response (21), short response and recovery times at (300 ppb, 40/63 s and 20 ppm, 100/167 s), exceptional long-term stability and repeatability. Furthermore, an understanding of NiO@CuO sensor functioning in an actual environment has been obtained by using the impact of relative humidity as well. The boosted hydrogen sensing properties may be attributed due to synergistic effects of numerous facts including p-p heterojunction at the interface between NiO and CuO nanoflowers. Particularly, a porous Ni-MOF structure combined with the chemical sensitization effect of NiO with the rough surface of CuO nanosphere, are examined. This research presents an effective method for development of Ni-MOF derived metal oxide semiconductor (MOS) heterostructures with rigorous morphology and composition, suitable for gas sensing application.

Keywords: NiO@CuO NFs, metal organic framework, porous structure, H₂, gas sensing

Procedia PDF Downloads 47
17152 Tailoring Polythiophene Nanocomposites with MnS/CoS Nanoparticles for Enhanced Surface-Enhanced Raman Spectroscopy (SERS) Detection of Mercury Ions in Water

Authors: Temesgen Geremew

Abstract:

The excessive emission of heavy metal ions from industrial processes poses a serious threat to both the environment and human health. This study presents a distinct approach utilizing (PTh-MnS/CoS NPs) for the highly selective and sensitive detection of Hg²⁺ ions in water. Such detection is crucial for safeguarding human health, protecting the environment, and accurately assessing toxicity. The fabrication method employs a simple and efficient chemical precipitation technique, harmoniously combining polythiophene, MnS, and CoS NPs to create highly active substrates for SERS. The MnS@Hg²⁺ exhibits a distinct Raman shift at 1666 cm⁻¹, enabling specific identification and demonstrating the highest responsiveness among the studied semiconductor substrates with a detection limit of only 1 nM. This investigation demonstrates reliable and practical SERS detection for Hg²⁺ ions. Relative standard deviation (RSD) ranged from 0.49% to 9.8%, and recovery rates varied from 96% to 102%, indicating selective adsorption of Hg²⁺ ions on the synthesized substrate. Furthermore, this research led to the development of a remarkable set of substrates, including (MnS, CoS, MnS/CoS, and PTh-MnS/CoS) nanoparticles were created right there on SiO₂/Si substrate, all exhibiting sensitive, robust, and selective SERS for Hg²⁺ ion detection. These platforms effectively monitor Hg²⁺ concentrations in real environmental samples.

Keywords: surface-enhanced raman spectroscopy (SERS), sensor, mercury ions, nanoparticles, and polythiophene.

Procedia PDF Downloads 82
17151 A Study to Explore the Views of Students regarding E-Learning as an Instructional Tool at University Level

Authors: Zafar Iqbal

Abstract:

This study involved students of 6th semester enrolled in a Bachelor of Computer Science Program at university level. In this era of science and technology, e-learning can be helpful for grassroots in providing them access to education tenant in less developed areas. It is a potential substitute of face-to-face teaching being used in different countries. The purpose of the study was to explore the views of students about e-learning (Facebook) as an instructional tool. By using purposive sampling technique an intact class of 30 students included both male and female were selected where e-learning was used as an instructional tool. The views of students were explored through qualitative approach by using focus group interviews. The approach was helpful to develop comprehensive understanding of students’ views towards e- learning. In addition, probing questions were also asked and recorded. Data was transcribed, generated nodes and then coded text against these nodes. For this purpose and further analysis, NVivo 10 software was used. Themes were generated and tangibly presented through cluster analysis. Findings were interesting and provide sufficient evidence that face book is a subsequent e-learning source for students of higher education. Students acknowledged it as best source of learning and it was aligned with their academic and social behavior. It was not time specific and therefore, feasible for students who work day time and can get on line access to the material when they got free time. There were some distracters (time wasters) reported by the students but can be minimized by little effort. In short, e-learning is need of the day and potential learning source for every individual who have access to internet living at any part of the globe.

Keywords: e-learning, facebook, instructional tool, higher education

Procedia PDF Downloads 376
17150 Investigating Clarity Ultrasound Transperineal Ultrasound Imaging as a Method of Localising the Prostate, Compared to Cone Beam Computed Tomography with Fiducials

Authors: Harley Stephens

Abstract:

Although fiducial marker insertion is regarded as the ‘gold standard’ in terms of image guided radiotherapy (IGRT), its application must be considered carefully as the procedure can be invasive, time-consuming, and reliant on consultant expertise. Precision of the fiducials is dependent on these markers remaining in the same location and on the prostate not changing shape during the course treatment. To facilitate the acquirement of non-ionising IGRT and intra-fractional prostate tracking, Clarity TPUS was developed as an alternative imaging system. The main benefits of Clarity TPUS are that it is non-invasive, non-ionising and cost-effective. Other studies have compared fiducials to transabdominal ultrasound, which has since been proven to not be as accurate as trans-perineal imaging, as included in this study. CBCT fiducial translations and Clarity TPUS translations for 120 images as part of the PACE-C prostate SABR trial were retrospectively evaluated by three imaging specialists. Differences were analysed using correlation and Bland-Altman plots. Inter-observer matches agreed within 3mm 88.3 % of the time in left/right direction, 86.7 % of the time in in superior/inferior direction, and 91.7% of the time in ant/post direction. They agreed within 5mm more than 98.3 % of the time in all directions. The intra-class correlation co-efficient was calculated for each direction to show agreement between imaging specialist for inter-observer variability. Each was 0.95 or above, with 1 indicating perfect reliability. Agreement between observers was slightly higher for CBCT and fiducials at 98.7% agreement within 5 mm, compared to clarity TPUS where 96.7% agreement was seen within 5mm. Clarity TPUS has the benefit of no additional dose and intra-fractional monitoring, and results show a good correlation between the different modalities. Inter-observer variability is to be considered, and further research with a larger population would be of benefit.

Keywords: oncology, prostate radiotherapy, image guided radiotherapy, IGRT

Procedia PDF Downloads 109