Search results for: artificial stock market
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5906

Search results for: artificial stock market

3536 Protection and Renewal Strategies of Historical Blocks from the Perspective of “Staged Authenticity”

Authors: Xu Yingqiang, Wang Zhongde

Abstract:

In the age of stock development, the contradiction between the protection and development of historical blocks in China has become increasingly prominent, among which how to reconcile the contradiction between tourists and local residents and inherit urban culture is an important proposition. Based on this, this paper introduces the theory of " staged authenticity ", combs its development process and related research progress, constructs an analysis and research model of historical blocks based on the theory of " staged authenticity ", and puts forward the protection and renewal strategy of historical blocks from the perspective of " staged authenticity ", which provides theoretical basis for coordinating the tourism-residence contradiction and protecting urban characteristics in the protection and renewal of historical blocks. The research holds that we should pay attention to the important value of "curtain" space, rationally arrange "curtain" and divide "foreground" and "background"; extract "props" from real history and culture to restore the authenticity of "stage" scenes; clever arrangement of tour streamline, so that all scenes are connected in series rhythmically; make the "actors" perform interactively in the "foreground" space, so as to enhance the "audience" sense of scene substitution.

Keywords: historic block, protection and renewal, staged authenticity, curtain

Procedia PDF Downloads 64
3535 The Behavior of Masonry Wall Constructed Using Biaxial Interlocking Concrete Block, Solid Concrete Block and Cement Sand Brick Subjected to the Compressive Load

Authors: Fauziah Aziz, Mohd.fadzil Arshad, Hazrina Mansor, Sedat Kömürcü

Abstract:

Masonry is an isotropic and heterogeneous material due to the presence of the different components within the assembly process. Normally the mortar plays a significant role in the compressive behavior of the traditional masonry structures. Biaxial interlocking concrete block is a masonry unit that comes out with the interlocking concept. This masonry unit can improve the quality of the construction process, reduce the cost of labor, reduce high skill workmanship, and speeding the construction time. Normally, the interlocking concrete block masonry unit in the market place was designed in a way interlocking concept only either x or y-axis, shorter in length, and low compressive strength value. However, the biaxial interlocking concrete block is a dry-stack concept being introduced in this research, offered the specialty compared to the normal interlocking concrete available in the market place due to its length and the geometry of the groove and tongue. This material can be used as a non-load bearing wall, or load-bearing wall depends on the application of the masonry. But, there is a lack of technical data that was produced before. This paper presents a finding on the compressive resistance of the biaxial interlocking concrete block masonry wall compared to the other traditional masonry walls. Two series of biaxial interlocking concrete block masonry walls, namely M1 and M2, a series of solid concrete block and cement sand brick walls M3, and M4 have tested the compressive resistance. M1 is the masonry wall of a hollow biaxial interlocking concrete block meanwhile; M2 is the grouted masonry wall, M3 is a solid concrete block masonry wall, and M4 is a cement sand brick masonry wall. All the samples were tested under static compressive load. The results examine that M2 is higher in compressive resistance compared to the M1, M3, and M4. It shows that the compressive strength of the concrete masonry units plays a significant role in the capacity of the masonry wall.

Keywords: interlocking concrete block, compressive resistance, concrete masonry unit, masonry

Procedia PDF Downloads 167
3534 Use of Artificial Intelligence and Two Object-Oriented Approaches (k-NN and SVM) for the Detection and Characterization of Wetlands in the Centre-Val de Loire Region, France

Authors: Bensaid A., Mostephaoui T., Nedjai R.

Abstract:

Nowadays, wetlands are the subject of contradictory debates opposing scientific, political and administrative meanings. Indeed, given their multiple services (drinking water, irrigation, hydrological regulation, mineral, plant and animal resources...), wetlands concentrate many socio-economic and biodiversity issues. In some regions, they can cover vast areas (>100 thousand ha) of the landscape, such as the Camargue area in the south of France, inside the Rhone delta. The high biological productivity of wetlands, the strong natural selection pressures and the diversity of aquatic environments have produced many species of plants and animals that are found nowhere else. These environments are tremendous carbon sinks and biodiversity reserves depending on their age, composition and surrounding environmental conditions, wetlands play an important role in global climate projections. Covering more than 3% of the earth's surface, wetlands have experienced since the beginning of the 1990s a tremendous revival of interest, which has resulted in the multiplication of inventories, scientific studies and management experiments. The geographical and physical characteristics of the wetlands of the central region conceal a large number of natural habitats that harbour a great biological diversity. These wetlands, one of the natural habitats, are still influenced by human activities, especially agriculture, which affects its layout and functioning. In this perspective, decision-makers need to delimit spatial objects (natural habitats) in a certain way to be able to take action. Thus, wetlands are no exception to this rule even if it seems to be a difficult exercise to delimit a type of environment as whose main characteristic is often to occupy the transition between aquatic and terrestrial environment. However, it is possible to map wetlands with databases, derived from the interpretation of photos and satellite images, such as the European database Corine Land cover, which allows quantifying and characterizing for each place the characteristic wetland types. Scientific studies have shown limitations when using high spatial resolution images (SPOT, Landsat, ASTER) for the identification and characterization of small wetlands (1 hectare). To address this limitation, it is important to note that these wetlands generally represent spatially complex features. Indeed, the use of very high spatial resolution images (>3m) is necessary to map small and large areas. However, with the recent evolution of artificial intelligence (AI) and deep learning methods for satellite image processing have shown a much better performance compared to traditional processing based only on pixel structures. Our research work is also based on spectral and textural analysis on THR images (Spot and IRC orthoimage) using two object-oriented approaches, the nearest neighbour approach (k-NN) and the Super Vector Machine approach (SVM). The k-NN approach gave good results for the delineation of wetlands (wet marshes and moors, ponds, artificial wetlands water body edges, ponds, mountain wetlands, river edges and brackish marshes) with a kappa index higher than 85%.

Keywords: land development, GIS, sand dunes, segmentation, remote sensing

Procedia PDF Downloads 72
3533 Willingness to Purchase and Pay a Price Premium for an Apartment with Exterior Green Walls

Authors: Tamar Trop, Michal Roffeh

Abstract:

One of the emerging trends in construction is installing an exterior “green wall” (GW). GW is an overarching and most common term for various techniques of incorporating greenery into buildings’ vertical elements, mainly facades. This green infrastructure yields numerous benefits for the urban environment, the public, and the buildings’ tenants and users, such as enhancing air quality and biodiversity, managing stormwater runoff, mitigating urban heat island and climate change, improving urban aesthetics and mental wellbeing, improving indoor comfort conditions, and saving energy. Yet, the penetration rate of GWs into the construction market, especially into the housing sector, is still very slow. Furthermore, the research regarding prospective homebuyers’ willingness to purchase and pay a price premium for GW apartments is scarce and does not refer to newly built buildings and specific GW types. This research aims to narrow these knowledge gaps by exploring the willingness of prospective homebuyers in Israel to purchase a newly built apartment with a hydroponic living wall, the size of the PP that they would be willing to pay for it, and the various factors ̶ knowledge-related, concern, economic, and personal ̶ that influence these motivations. A nationwide online survey was conducted among a sample of 514 adults using a structured questionnaire. Findings show that despite low familiarity with GWs and strong concerns about various kinds of nuisance, technical issues, and maintenance costs, potential homebuyers express a relatively high willingness to purchase and pay a significant price premium for such an apartment. The main motivations behind this willingness were found to be potential energy savings and governmental incentives. Study findings can contribute to a better understanding of the maturity of the housing market in Israel to adopt GWs and to better tailor intervention tools for increasing GWs’ uptake among potential homebuyers.

Keywords: green façade, green wall, living wall, willingness to pay

Procedia PDF Downloads 31
3532 The Effect of War on Spatial Differentiation of Real Estate Values and Urban Disorder in Damascus Metropolitan Area

Authors: Mounir Azzam, Valerie Graw, Andreas Rienow

Abstract:

The Syrian war, which commenced in 2011, has resulted in significant changes in the real estate market in the Damascus metropolitan area, with rising levels of insecurity and disputes over tenure rights. The quest for spatial justice is, therefore, imperative, and this study performs a spatiotemporal analysis to investigate the impact of the war on real estate differentiation. Using the hedonic price models including 2,411 housing transactions over the period 2010-2022, this study aims to understand the spatial dynamics of the real estate market in wartime. Our findings indicate that war variables have had a significant impact on the differentiation and depreciation of property prices. Notably, property attributes have a more substantial impact on real estate values than district location, with severely damaged buildings in Damascus city resulting in an 89% decline in prices, while prices in Rural Damascus districts have decreased by 50%. Additionally, this study examines the urban texture of Damascus using correlation and homogeneity statistics derived from the gray-level co-occurrence matrix obtained from Google Earth Engine. We monitored 250 samples from hedonic datasets within three different years of the Syrian war (2015, 2019, and 2022). Our findings show that correlation values were highly differentiated, particularly among Rural Damascus districts, with a total decline of 87.2%. While homogeneity values decreased overall between 2015 and 2019, they improved slightly after 2019. The findings have valuable implications, not only for investment prospects in setting up a successful reconstruction strategy but also for spatial justice of property rights in strongly encouraging sustainable real estate development.

Keywords: hedonic price, real estate differentiation, reconstruction strategy, spatial justice, urban texture analysis

Procedia PDF Downloads 87
3531 Transforming Breast Density Measurement with Artificial Intelligence: Population-Level Insights from BreastScreen NSW

Authors: Douglas Dunn, Ricahrd Walton, Matthew Warner-Smith, Chirag Mistry, Kan Ren, David Roder

Abstract:

Introduction: Breast density is a risk factor for breast cancer, both due to increased fibro glandular tissue that can harbor malignancy and the masking of lesions on mammography. Therefore, evaluation of breast density measurement is useful for risk stratification on an individual and population level. This study investigates the performance of Lunit INSIGHT MMG for automated breast density measurement. We analyze the reliability of Lunit compared to breast radiologists, explore density variations across the BreastScreen NSW population, and examine the impact of breast implants on density measurements. Methods: 15,518 mammograms were utilized for a comparative analysis of intra- and inter-reader reliability between Lunit INSIGHT MMG and breast radiologists. Subsequently, Lunit was used to evaluate 624,113 mammograms for investigation of density variations according to age and birth country, providing insights into diverse population subgroups. Finally, we compared breast density in 4,047 clients with implants to clients without implants, controlling for age and birth country. Results: Inter-reader variability between Lunit and Breast Radiologists weighted kappa coefficient was 0.72 (95%CI 0.71-0.73). Highest breast densities were seen in women with a North-East Asia background, whilst those of Aboriginal background had the lowest density. Across all backgrounds, density was demonstrated to reduce with age, though at different rates according to country of birth. Clients with implants had higher density relative to the age-matched no-implant strata. Conclusion: Lunit INSIGHT MMG demonstrates reasonable inter- and intra-observer reliability for automated breast density measurement. The scale of this study is significantly larger than any previous study assessing breast density due to the ability to process large volumes of data using AI. As a result, it provides valuable insights into population-level density variations. Our findings highlight the influence of age, birth country, and breast implants on density, emphasizing the need for personalized risk assessment and screening approaches. The large-scale and diverse nature of this study enhances the generalisability of our results, offering valuable information for breast cancer screening programs internationally.

Keywords: breast cancer, screening, breast density, artificial intelligence, mammography

Procedia PDF Downloads 5
3530 Integrating Inference, Simulation and Deduction in Molecular Domain Analysis and Synthesis with Peculiar Attention to Drug Discovery

Authors: Diego Liberati

Abstract:

Standard molecular modeling is traditionally done through Schroedinger equations via the help of powerful tools helping to manage them atom by atom, often needing High Performance Computing. Here, a full portfolio of new tools, conjugating statistical inference in the so called eXplainable Artificial Intelligence framework (in the form of Machine Learning of understandable rules) to the more traditional modeling and simulation control theory of mixed dynamic logic hybrid processes, is offered as quite a general purpose even if making an example to a popular chemical physics set of problems.

Keywords: understandable rules ML, k-means, PCA, PieceWise Affine Auto Regression with eXogenous input

Procedia PDF Downloads 29
3529 A Suggested Study Plan for Mining Engineering Program in Northern Border University (NBU) to Match the Requirements of the Local Mining Industry

Authors: Mohammad Aljuhani, Yasamina Aljuhani

Abstract:

The Mining Engineering Department at College of Engineering in NBU is under establishment. It is essential to establish such department in NBU. This is because, it is the only university in the region. Moreover, the mining industry is very active in the northern borders region. However, there is no mining engineering department in KSA except one in King Abdulziz University, which is 1400 km from the mining industry in the northern borders. As a result, department graduates from KAU find difficulties to get suitable jobs in their specialization in spite of their few numbers graduated per year and the presence of many jobs vacancies at the local mining sector. Therefore, the objectives of this research are to identify, measure and analyze the above mentioned problem from educational point of view. One more objective is to add a contribution towards solving such vital, society affecting problem. For achieving the first task of the research, that is problem size identification and analyses, a questionnaire was designed. The questionnaire was directed towards experienced engineers, in the mining and related industries, including the ministry of petroleum and minerals, Saudi Geological Survey, and Ma’aden Company as being prospective employers for the mining sector. The questionnaire target was to evaluate the Saudi mining engineers from an industrial point of view and to detect the main reasons behind their failure to find jobs. In addition, the study focuses in the demand of mining engineers in the northern borders region. Moreover, the study plan of the suggested department is designed based on the requirements of the mining industry. The feedback received from the industry reflected major educational shortcomings. In order to overcome the revealed defects, the second objective of the research was achieved where a suggested study plan “curriculum” has been prepared to take into consideration all the points of weakness so as to improve the graduates’ quality to fit the local mining work market.

Keywords: mining engineering, labor market, qualifications, curriculum, mining industry, mining engineers

Procedia PDF Downloads 271
3528 Discovering Social Entrepreneurship: A Qualitative Study on Stimulants and Obstacles for Social Entrepreneurs in the Hague

Authors: Loes Nijskens

Abstract:

The city of The Hague is coping with several social issues: high unemployment rates, segregation and environmental pollution. The amount of social enterprises in The Hague that want to tackle these issues is increasing, but no clear image exists of the stimulants and obstacles social entrepreneurs encounter. In this qualitative study 20 starting and established social entrepreneurs, investors and stimulators of social entrepreneurship have been interviewed. The findings indicate that the majority of entrepreneurs situated in The Hague focuses on creating jobs (the so called social nurturers) and diminishing food waste. Moreover, the study found smaller groups of social connectors, (who focus on stimulating the social cohesion in the city) and social traders (who create a market for products from developing countries). For the social nurturers, working together with local government to find people with a distance to the labour market is a challenge. The entrepreneurs are missing a governance approach within the local government, wherein space is provided to develop suitable legislation and projects in cooperation with several stakeholders in order to diminish social problems. All entrepreneurs in the sample face(d) the challenge of having a clear purpose of their business in the beginning. Starting social entrepreneurs tend to be idealistic without having defined a business model. Without a defined business model it is difficult to find proper funding for their business. The more advanced enterprises cope with the challenge of measuring social impact. The larger they grow, the more they have to ‘defend’ themselves towards the local government and their customers, of mainly being social. Hence, the more experienced social nurturers still find it difficult to work together with the local government. They tend to settle their business in other municipalities, where they find more effective public-private partnerships. Al this said, the eco-system for social enterprises in The Hague is on the rise. To stimulate the amount and growth of social enterprises the cooperation between entrepreneurs and local government, the developing of social business models and measuring of impact needs more attention.

Keywords: obstacles, social enterprises, stimulants, the Hague

Procedia PDF Downloads 218
3527 Dairy Value Chain: Assessing the Inter Linkage of Dairy Farm and Small-Scale Dairy Processing in Tigray: Case Study of Mekelle City

Authors: Weldeabrha Kiros Kidanemaryam, DepaTesfay Kelali Gidey, Yikaalo Welu Kidanemariam

Abstract:

Dairy services are considered as sources of income, employment, nutrition and health for smallholder rural and urban farmers. The main objective of this study is to assess the interlinkage of dairy farms and small-scale dairy processing in Mekelle, Tigray. To achieve the stated objective, a descriptive research approach was employed where data was collected from 45 dairy farmers and 40 small-scale processors and analyzed by calculating the mean values and percentages. Findings show that the dairy business in the study area is characterized by a shortage of feed and water for the farm. The dairy farm is dominated by breeds of hybrid type, followed by the so called ‘begait’. Though the farms have access to medication and vaccination for the cattle, they fell short of hygiene practices, reliable shade for the cattle and separate space for the claves. The value chain at the milk production stage is characterized by a low production rate, selling raw milk without adding value and a very meager traditional processing practice. Furthermore, small-scale milk processors are characterized by collecting milk from farmers and producing cheese, butter, ghee and sour milk. They do not engage in modern milk processing like pasteurized milk, yogurt and table butter. Most small-scale milk processors are engaged in traditional production systems. Additionally, the milk consumption and marketing part of the chain is dominated by the informal market (channel), where market problems, lack of skill and technology, shortage of loans and weak policy support are being faced as the main challenges. Based on the findings, recommendations and future research areas are forwarded.

Keywords: value-chain, dairy, milk production, milk processing

Procedia PDF Downloads 34
3526 Urgent Need for E -Waste Management in Mongolia

Authors: Enkhjargal Bat-Ochir

Abstract:

The global market of electrical and electronic equipment (EEE) has increasing rapidly while the lifespan of these products has become increasingly shorter. So, e-waste is becoming the world’s fastest growing waste stream. E-waste is a huge problem when it’s not properly disposed of, as these devices contain substances that are harmful to the environment and to human health as they contaminate the land, water, and air. This paper tends to highlight e-waste problem and harmful effects and can grasp the extent of the problem and take the necessary measures to solve it in Mongolia and to improve standards and human health.

Keywords: e -waste, recycle, electrical, Mongolia

Procedia PDF Downloads 419
3525 A Machine Learning Approach for Classification of Directional Valve Leakage in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Due to increasing cost pressure in global markets, artificial intelligence is becoming a technology that is decisive for competition. Predictive quality enables machinery and plant manufacturers to ensure product quality by using data-driven forecasts via machine learning models as a decision-making basis for test results. The use of cross-process Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the quality characteristics of workpieces.

Keywords: predictive quality, hydraulics, machine learning, classification, supervised learning

Procedia PDF Downloads 231
3524 Inventory Policy Above Country Level for Cooperating Countries for Vaccines

Authors: Aysun Pınarbaşı, Béla Vizvári

Abstract:

The countries are the units that procure the vaccines during the COVID-19 pandemic. The delivered quantities are huge. The countries must bear the inventory holding cost according to the variation of stock quantities. This cost depends on the speed of the vaccination in the country. This speed is time-dependent. The vaccinated portion of the population can be approximated by the cumulative distribution function of the Cauchy distribution. A model is provided for determining the minimal-cost inventory policy, and its optimality conditions are provided. The model is solved for 20 countries for different numbers of procurements. The results reveal the individual behavior of each country. We provide an inventory policy for the pandemic period for the countries. This paper presents a deterministic model for vaccines with a demand rate variable over time for the countries. It is aimed to provide an analytical model to deal with the minimization of holding cost and develop inventory policies regarding this aim to be used for a variety of perishable products such as vaccines. The saturation process is introduced, and an approximation of the vaccination curve of the countries has been discussed. According to this aspect, a deterministic model for inventory policy has been developed.

Keywords: covid-19, vaccination, inventory policy, bounded total demand, inventory holding cost, cauchy distribution, sigmoid function

Procedia PDF Downloads 76
3523 Comparison of Applicability of Time Series Forecasting Models VAR, ARCH and ARMA in Management Science: Study Based on Empirical Analysis of Time Series Techniques

Authors: Muhammad Tariq, Hammad Tahir, Fawwad Mahmood Butt

Abstract:

Purpose: This study attempts to examine the best forecasting methodologies in the time series. The time series forecasting models such as VAR, ARCH and the ARMA are considered for the analysis. Methodology: The Bench Marks or the parameters such as Adjusted R square, F-stats, Durban Watson, and Direction of the roots have been critically and empirically analyzed. The empirical analysis consists of time series data of Consumer Price Index and Closing Stock Price. Findings: The results show that the VAR model performed better in comparison to other models. Both the reliability and significance of VAR model is highly appreciable. In contrary to it, the ARCH model showed very poor results for forecasting. However, the results of ARMA model appeared double standards i.e. the AR roots showed that model is stationary and that of MA roots showed that the model is invertible. Therefore, the forecasting would remain doubtful if it made on the bases of ARMA model. It has been concluded that VAR model provides best forecasting results. Practical Implications: This paper provides empirical evidences for the application of time series forecasting model. This paper therefore provides the base for the application of best time series forecasting model.

Keywords: forecasting, time series, auto regression, ARCH, ARMA

Procedia PDF Downloads 348
3522 Landmark Based Catch Trends Assessment of Gray Eel Catfish (Plotosus canius) at Mangrove Estuary in Bangladesh

Authors: Ahmad Rabby

Abstract:

The present study emphasizing the catch trends assessment of Gray eel catfish (Plotosus canius) that was scrutinized on the basis of monthly length frequency data collected from mangrove estuary, Bangladesh during January 2017 to December 2018. A total amount of 1298 specimens were collected to estimate the total length (TL) and weight (W) of P. canius ranged from 13.3 cm to 87.4 cm and 28 g to 5200 g, respectively. The length-weight relationship was W=0.006 L2.95 with R2=0.972 for both sexes. The von Bertalanffy growth function parameters were L∞=93.25 cm and K=0.28 yr-1, hypothetical age at zero length of t0=0.059 years and goodness of the fit of Rn=0.494. The growth performances indices for L∞ and W∞ were computed as Φ'=3.386 and Φ=1.84, respectively. The size at first sexual maturity was estimated in TL as 48.8 cm for pool sexes. The natural mortality was 0.51 yr-1 at average annual water surface temperature as 22 0C. The total instantaneous mortality was 1.24 yr-1 at CI95% of 0.105–1.42 (r2=0.986). While fishing mortality was 0.73 yr-1 and the current exploitation ratio as 0.59. The recruitment was continued throughout the year with one major peak during May-June was 17.20-17.96%. The Beverton-Holt yield per recruit model was analyzed by FiSAT-II, when tc was at 1.43 yr, the Fmax was estimated as 0.6 yr-1 and F0.1 was 0.33 yr-1. Current age at the first capture was approximately 0.6 year, however Fcurrent = 0.73 yr-1 which is beyond the F0.1 indicated that the current stock of P. canius of Bangladesh was overexploited.

Keywords: Plotosus canius, mangrove estuary, asymptotic length, FiSAT-II

Procedia PDF Downloads 151
3521 Engineering in Saudi Arabia: Importance of Communications and Power Engineering

Authors: Hamed D. Alsharari

Abstract:

This paper first analyses the current status regarding electrical engineering higher education in Saudi Arabian public universities. The paper focuses on the two EE sub-specialties most commonly present in Saudi Arabia, power and communications and discusses recruitment in this field, showing various market and employment demand for EE.

Keywords: communications, electrical engineering, higher education, Saudi Arabia, power

Procedia PDF Downloads 407
3520 Digital Twin for a Floating Solar Energy System with Experimental Data Mining and AI Modelling

Authors: Danlei Yang, Luofeng Huang

Abstract:

The integration of digital twin technology with renewable energy systems offers an innovative approach to predicting and optimising performance throughout the entire lifecycle. A digital twin is a continuously updated virtual replica of a real-world entity, synchronised with data from its physical counterpart and environment. Many digital twin companies today claim to have mature digital twin products, but their focus is primarily on equipment visualisation. However, the core of a digital twin should be its model, which can mirror, shadow, and thread with the real-world entity, which is still underdeveloped. For a floating solar energy system, a digital twin model can be defined in three aspects: (a) the physical floating solar energy system along with environmental factors such as solar irradiance and wave dynamics, (b) a digital model powered by artificial intelligence (AI) algorithms, and (c) the integration of real system data with the AI-driven model and a user interface. The experimental setup for the floating solar energy system, is designed to replicate real-ocean conditions of floating solar installations within a controlled laboratory environment. The system consists of a water tank that simulates an aquatic surface, where a floating catamaran structure supports a solar panel. The solar simulator is set up in three positions: one directly above and two inclined at a 45° angle in front and behind the solar panel. This arrangement allows the simulation of different sun angles, such as sunrise, midday, and sunset. The solar simulator is positioned 400 mm away from the solar panel to maintain consistent solar irradiance on its surface. Stability for the floating structure is achieved through ropes attached to anchors at the bottom of the tank, which simulates the mooring systems used in real-world floating solar applications. The floating solar energy system's sensor setup includes various devices to monitor environmental and operational parameters. An irradiance sensor measures solar irradiance on the photovoltaic (PV) panel. Temperature sensors monitor ambient air and water temperatures, as well as the PV panel temperature. Wave gauges measure wave height, while load cells capture mooring force. Inclinometers and ultrasonic sensors record heave and pitch amplitudes of the floating system’s motions. An electric load measures the voltage and current output from the solar panel. All sensors collect data simultaneously. Artificial neural network (ANN) algorithms are central to developing the digital model, which processes historical and real-time data, identifies patterns, and predicts the system’s performance in real time. The data collected from various sensors are partly used to train the digital model, with the remaining data reserved for validation and testing. The digital twin model combines the experimental setup with the ANN model, enabling monitoring, analysis, and prediction of the floating solar energy system's operation. The digital model mirrors the functionality of the physical setup, running in sync with the experiment to provide real-time insights and predictions. It provides useful industrial benefits, such as informing maintenance plans as well as design and control strategies for optimal energy efficiency. In long term, this digital twin will help improve overall solar energy yield whilst minimising the operational costs and risks.

Keywords: digital twin, floating solar energy system, experiment setup, artificial intelligence

Procedia PDF Downloads 9
3519 Leveraging xAPI in a Corporate e-Learning Environment to Facilitate the Tracking, Modelling, and Predictive Analysis of Learner Behaviour

Authors: Libor Zachoval, Daire O Broin, Oisin Cawley

Abstract:

E-learning platforms, such as Blackboard have two major shortcomings: limited data capture as a result of the limitations of SCORM (Shareable Content Object Reference Model), and lack of incorporation of Artificial Intelligence (AI) and machine learning algorithms which could lead to better course adaptations. With the recent development of Experience Application Programming Interface (xAPI), a large amount of additional types of data can be captured and that opens a window of possibilities from which online education can benefit. In a corporate setting, where companies invest billions on the learning and development of their employees, some learner behaviours can be troublesome for they can hinder the knowledge development of a learner. Behaviours that hinder the knowledge development also raise ambiguity about learner’s knowledge mastery, specifically those related to gaming the system. Furthermore, a company receives little benefit from their investment if employees are passing courses without possessing the required knowledge and potential compliance risks may arise. Using xAPI and rules derived from a state-of-the-art review, we identified three learner behaviours, primarily related to guessing, in a corporate compliance course. The identified behaviours are: trying each option for a question, specifically for multiple-choice questions; selecting a single option for all the questions on the test; and continuously repeating tests upon failing as opposed to going over the learning material. These behaviours were detected on learners who repeated the test at least 4 times before passing the course. These findings suggest that gauging the mastery of a learner from multiple-choice questions test scores alone is a naive approach. Thus, next steps will consider the incorporation of additional data points, knowledge estimation models to model knowledge mastery of a learner more accurately, and analysis of the data for correlations between knowledge development and identified learner behaviours. Additional work could explore how learner behaviours could be utilised to make changes to a course. For example, course content may require modifications (certain sections of learning material may be shown to not be helpful to many learners to master the learning outcomes aimed at) or course design (such as the type and duration of feedback).

Keywords: artificial intelligence, corporate e-learning environment, knowledge maintenance, xAPI

Procedia PDF Downloads 121
3518 The Impact of FDI on Economic Growth in Algeria

Authors: Mohammed Yagoub

Abstract:

The new orientation to the market economy sponsored by the Algeria government in the early Nineties of the last century, and its desire to develop investment mechanisms and the promotion of development recently, the access into a partnership with the European Union, and the forthcoming accession to the World Trade Organization, foreign direct investment makes one of the most important means of opening up to foreign markets and bring technology and interact with globalization, this article we will discuss the impact of FDI on economic growth in the Algerian.

Keywords: economic, development, markets, FDI, displacement, globalization

Procedia PDF Downloads 363
3517 Advancements in AI Training and Education for a Future-Ready Healthcare System

Authors: Shamie Kumar

Abstract:

Background: Radiologists and radiographers (RR) need to educate themselves and their colleagues to ensure that AI is integrated safely, useful, and in a meaningful way with the direction it always benefits the patients. AI education and training are fundamental to the way RR work and interact with it, such that they feel confident using it as part of their clinical practice in a way they understand it. Methodology: This exploratory research will outline the current educational and training gaps for radiographers and radiologists in AI radiology diagnostics. It will review the status, skills, challenges of educating and teaching. Understanding the use of artificial intelligence within daily clinical practice, why it is fundamental, and justification on why learning about AI is essential for wider adoption. Results: The current knowledge among RR is very sparse, country dependent, and with radiologists being the majority of the end-users for AI, their targeted training and learning AI opportunities surpass the ones available to radiographers. There are many papers that suggest there is a lack of knowledge, understanding, and training of AI in radiology amongst RR, and because of this, they are unable to comprehend exactly how AI works, integrates, benefits of using it, and its limitations. There is an indication they wish to receive specific training; however, both professions need to actively engage in learning about it and develop the skills that enable them to effectively use it. There is expected variability amongst the profession on their degree of commitment to AI as most don’t understand its value; this only adds to the need to train and educate RR. Currently, there is little AI teaching in either undergraduate or postgraduate study programs, and it is not readily available. In addition to this, there are other training programs, courses, workshops, and seminars available; most of these are short and one session rather than a continuation of learning which cover a basic understanding of AI and peripheral topics such as ethics, legal, and potential of AI. There appears to be an obvious gap between the content of what the training program offers and what the RR needs and wants to learn. Due to this, there is a risk of ineffective learning outcomes and attendees feeling a lack of clarity and depth of understanding of the practicality of using AI in a clinical environment. Conclusion: Education, training, and courses need to have defined learning outcomes with relevant concepts, ensuring theory and practice are taught as a continuation of the learning process based on use cases specific to a clinical working environment. Undergraduate and postgraduate courses should be developed robustly, ensuring the delivery of it is with expertise within that field; in addition, training and other programs should be delivered as a way of continued professional development and aligned with accredited institutions for a degree of quality assurance.

Keywords: artificial intelligence, training, radiology, education, learning

Procedia PDF Downloads 85
3516 Hidro-IA: An Artificial Intelligent Tool Applied to Optimize the Operation Planning of Hydrothermal Systems with Historical Streamflow

Authors: Thiago Ribeiro de Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite

Abstract:

The area of the electricity sector that deals with energy needs by the hydroelectric in a coordinated manner is called Operation Planning of Hydrothermal Power Systems (OPHPS). The purpose of this is to find a political operative to provide electrical power to the system in a given period, with reliability and minimal cost. Therefore, it is necessary to determine an optimal schedule of generation for each hydroelectric, each range, so that the system meets the demand reliably, avoiding rationing in years of severe drought, and that minimizes the expected cost of operation during the planning, defining an appropriate strategy for thermal complementation. Several optimization algorithms specifically applied to this problem have been developed and are used. Although providing solutions to various problems encountered, these algorithms have some weaknesses, difficulties in convergence, simplification of the original formulation of the problem, or owing to the complexity of the objective function. An alternative to these challenges is the development of techniques for simulation optimization and more sophisticated and reliable, it can assist the planning of the operation. Thus, this paper presents the development of a computational tool, namely Hydro-IA for solving optimization problem identified and to provide the User an easy handling. Adopted as intelligent optimization technique is Genetic Algorithm (GA) and programming language is Java. First made the modeling of the chromosomes, then implemented the function assessment of the problem and the operators involved, and finally the drafting of the graphical interfaces for access to the User. The results with the Genetic Algorithms were compared with the optimization technique nonlinear programming (NLP). Tests were conducted with seven hydroelectric plants interconnected hydraulically with historical stream flow from 1953 to 1955. The results of comparison between the GA and NLP techniques shows that the cost of operating the GA becomes increasingly smaller than the NLP when the number of hydroelectric plants interconnected increases. The program has managed to relate a coherent performance in problem resolution without the need for simplification of the calculations together with the ease of manipulating the parameters of simulation and visualization of output results.

Keywords: energy, optimization, hydrothermal power systems, artificial intelligence and genetic algorithms

Procedia PDF Downloads 420
3515 Exploring the Intersection of Accounting, Business, and Economics: Bridging Theory and Practice for Sustainable Growth

Authors: Stephen Acheampong Amoafoh

Abstract:

In today's dynamic economic landscape, businesses face multifaceted challenges that demand strategic foresight and informed decision-making. This abstract explores the pivotal role of financial analytics in driving business performance amidst evolving market conditions. By integrating accounting principles with economic insights, organizations can harness the power of data-driven strategies to optimize resource allocation, mitigate risks, and capitalize on emerging opportunities. This presentation will delve into the practical applications of financial analytics across various sectors, highlighting case studies and empirical evidence to underscore its efficacy in enhancing operational efficiency and fostering sustainable growth. From predictive modeling to performance benchmarking, attendees will gain invaluable insights into leveraging advanced analytics tools to drive profitability, streamline processes, and adapt to changing market dynamics. Moreover, this abstract will address the ethical considerations inherent in financial analytics, emphasizing the importance of transparency, integrity, and accountability in data-driven decision-making. By fostering a culture of ethical conduct and responsible stewardship, organizations can build trust with stakeholders and safeguard their long-term viability in an increasingly interconnected global economy. Ultimately, this abstract aims to stimulate dialogue and collaboration among scholars, practitioners, and policymakers, fostering knowledge exchange and innovation in the realms of accounting, business, and economics. Through interdisciplinary insights and actionable recommendations, participants will be equipped to navigate the complexities of today's business environment and seize opportunities for sustainable success.

Keywords: financial analytics, business performance, data-driven strategies, sustainable growth

Procedia PDF Downloads 53
3514 Use of AI for the Evaluation of the Effects of Steel Corrosion in Mining Environments

Authors: Maria Luisa de la Torre, Javier Aroba, Jose Miguel Davila, Aguasanta M. Sarmiento

Abstract:

Steel is one of the most widely used materials in polymetallic sulfide mining installations. One of the main problems suffered by these facilities is the economic losses due to the corrosion of this material, which is accelerated and aggravated by the contact with acid waters generated in these mines when sulfides come into contact with oxygen and water. This generation of acidic water, in turn, is accelerated by the presence of acidophilic bacteria. In order to gain a more detailed understanding of this corrosion process and the interaction between steel and acidic water, a laboratory experiment was carried out in which carbon steel plates were introduced into four different solutions for 27 days: distilled water (BK), which tried to assimilate the effect produced by rain on this material, an acid solution from a mine with a high Fe2+/Fe3+ (PO) content, another acid solution of water from another mine with a high Fe3+/Fe2+ (PH) content and, finally, one that reproduced the acid mine water with a high Fe2+/Fe3+ content but in which there were no bacteria (ST). Every 24 hours, physicochemical parameters were measured and water samples were taken to carry out an analysis of the dissolved elements. The results of these measurements were processed using an explainable AI model based on fuzzy logic. It could be seen that, in all cases, there was an increase in pH, as well as in the concentrations of Fe and, in particular, Fe(II), as a consequence of the oxidation of the steel plates. Proportionally, the increase in Fe concentration was higher in PO and ST than in PH because Fe precipitates were produced in the latter. The rise of Fe(II) was proportionally much higher in PH and, especially in the first hours of exposure, because it started from a lower initial concentration of this ion. Although to a lesser extent than in PH, the greater increase in Fe(II) also occurred faster in PO than in ST, a consequence of the action of the catalytic bacteria. On the other hand, Cu concentrations decreased throughout the experiment (with the exception of distilled water, which initially had no Cu, as a result of an electrochemical process that generates a precipitation of Cu together with Fe hydroxides. This decrease is lower in PH because the high total acidity keeps it in solution for a longer time. With the application of an artificial intelligence tool, it has been possible to evaluate the effects of steel corrosion in mining environments, corroborating and extending what was obtained by means of classical statistics. Acknowledgments: This work has been supported by MCIU/AEI/10.13039/501100011033/FEDER, UE, throughout the project PID2021-123130OB-I00.

Keywords: carbon steel, corrosion, acid mine drainage, artificial intelligence, fuzzy logic

Procedia PDF Downloads 20
3513 Consumer Preferences when Buying Second Hand Luxury Items

Authors: K. A. Schuck, J. K. Perret, A. Mehn, K. Rommel

Abstract:

Consumers increasingly consider sustainability aspects in their consumption behavior. Although, few fashion brands are already active in the second-hand luxury market with their own online platforms. Separating between base and high-end luxury brands, two online discrete choice experiments determine the drivers behind consumers’ willingness-to-pay for platform characteristics like the type of ownership, giving brands the opportunity to elicit a financial scope they can operate within.

Keywords: choice experiment, luxury, preferences, second-hand, platform, online

Procedia PDF Downloads 127
3512 Smart Construction Sites in KSA: Challenges and Prospects

Authors: Ahmad Mohammad Sharqi, Mohamed Hechmi El Ouni, Saleh Alsulamy

Abstract:

Due to the emerging technologies revolution worldwide, the need to exploit and employ innovative technologies for other functions and purposes in different aspects has become a remarkable matter. Saudi Arabia is considered one of the most powerful economic countries in the world, where the construction sector participates effectively in its economy. Thus, the construction sector in KSA should convoy the rapid digital revolution and transformation and implement smart devices on sites. A Smart Construction Site (SCS) includes smart devices, artificial intelligence, the internet of things, augmented reality, building information modeling, geographical information systems, and cloud information. This paper aims to study the level of implementation of SCS in KSA, analyze the obstacles and challenges of adopting SCS and find out critical success factors for its implementation. A survey of close-ended questions (scale and multi-choices) has been conducted on professionals in the construction sector of Saudi Arabia. A total number of twenty-nine questions has been prepared for respondents. Twenty-four scale questions were established, and those questions were categorized into several themes: quality, scheduling, cost, occupational safety and health, technologies and applications, and general perception. Consequently, the 5-point Likert scale tool (very low to very high) was adopted for this survey. In addition, five close-ended questions with multi-choice types have also been prepared; these questions have been derived from a previous study implemented in the United Kingdom (UK) and the Dominic Republic (DR), these questions have been rearranged and organized to fit the structured survey in order to place the Kingdom of Saudi Arabia in comparison with the United Kingdom (UK) as well as the Dominican Republic (DR). A total number of one hundred respondents have participated in this survey from all regions of the Kingdom of Saudi Arabia: southern, central, western, eastern, and northern regions. The drivers, obstacles, and success factors for implementing smart devices and technologies in KSA’s construction sector have been investigated and analyzed. Besides, it has been concluded that KSA is on the right path toward adopting smart construction sites with attractive results comparable to and even better than the UK in some factors.

Keywords: artificial intelligence, construction projects management, internet of things, smart construction sites, smart devices

Procedia PDF Downloads 156
3511 Reviving the Ancient Craft of Patteda Anchu Saree Weaving of Karnataka, India

Authors: Hemalatha Jain, M. Vasantha

Abstract:

Patteda Anchu is one of the first variety of sari woven centuries ago in Gajendragarh village from Gadag district of north Karnataka. The sari played a significant role in bringing together the socio-cultural aspect in ancient days. It was used as wedding sari for bride and also to adorn goddess Yellamma Saundatti by the devotees. Indian traditional art and crafts were rich in culture and diversity, however with the onset of liberalisation and end of the license raj lot of traditional Indian artwork are on the verge of extinction today. Patteda Anchu is one of the examples of traditional art lost to globalisation. The main aim of the study was to document the ancient weaving tradition of the Patteda Anchu and revive by exploring the weaving possibility as yardage with different product layout. To accomplish the formulated objectives a exploratory cum diagnostic study was planned. Data was collected through observations and interviews schedule during the field visits in Gajendragarh village. There are very few weavers weaving on traditional looms and many weavers who have moved to weaving other sari's or construction work were interviewed to understand the downfall of the sari. The discussions and interviews conducted with the local weavers, shop keepers, sales agents, weaving society, NGOs and Self help groups helped in unearthing the new opportunities to develop products for the local and national market and help start weaving of Patteda Anchu and expand its market. The handloom art details in terms of raw materials, loom set up, dyeing, types of Patteda Anchu, weaving process and colors were documented through photographs, video recordings and supplemented with notes. Based on the analysis of the feedback gathered it was recommended to develop products on the handloom without changing the width frame or design of the traditional weaving methods. The weavers, weavers society and other cooperatives centres also were in consent with the new product development which will help sustain the Patteda Anchu.

Keywords: Gajendragarh, patteda Anchu sari, revival of traditional art, weaving, handloom

Procedia PDF Downloads 518
3510 Pro Grow Business Partnerships: Unlocking the Potential of SMEs Indonesia With Resource Advantage Theory of Competition Approach

Authors: Kesi Widjajanti

Abstract:

To develop the growth of small and medium enterprises (SMEs), it is important to unlock potential resources that can improve their performance. Business Partnerships (BP) are currently an interesting topic of strategy to use to expand markets and maximize financial and marketing performance. However, many business partnerships have not quite a role among small and medium companies in the creative industry in the Batik Craft sector in Indonesia. This study is rooted in the Resource Advantage Theory of Competition ( RAToC), which emphasizes that the advantage of company resources can be sourced from organizational and relational resources. With the basis of this theory, SMEs can optimize the allocation of relational resources and organizational goals, improve operational efficiency, and gain a strategic advantage in the market. Companies that are able to actualize organizational and relational resources better than other market players can be used for the process of increasing their superior performance. This study explores key elements from the RAToC perspective and shows how Business Partnerships have the potential to drive SMEs' growth. By aligning visions, and organizational resources, sharing knowledge and leveraging complementary relational resources, SMEs can increase their competitiveness, enter new markets, and achieve superior performance. The theoretical contribution of RAToC in small companies is due to the role of Pro-Grow Business Partnership strength as an important antecedent for improving SMEs' performance. The benefits (scenarios) of a Business Partnership to grow together are directed at optimizing resources that can create additional value for customers so that they can outperform competitors. Furthermore, managerial implications for SMEs who wish to unlock their resource potential can encourage the role of Pro-Grow Business Partnerships, which have specific characteristics, can absorb experience/knowledge capacity and utilize this knowledge for the development of "together" business ventures.

Keywords: pro grow business partnership, performance, SMEs, resources advantage theory of competition, industry kreatif batik handycraft indonesia

Procedia PDF Downloads 75
3509 Comparative Analysis of the Computer Methods' Usage for Calculation of Hydrocarbon Reserves in the Baltic Sea

Authors: Pavel Shcherban, Vlad Golovanov

Abstract:

Nowadays, the depletion of hydrocarbon deposits on the land of the Kaliningrad region leads to active geological exploration and development of oil and natural gas reserves in the southeastern part of the Baltic Sea. LLC 'Lukoil-Kaliningradmorneft' implements a comprehensive program for the development of the region's shelf in 2014-2023. Due to heterogeneity of reservoir rocks in various open fields, as well as with ambiguous conclusions on the contours of deposits, additional geological prospecting and refinement of the recoverable oil reserves are carried out. The key element is use of an effective technique of computer stock modeling at the first stage of processing of the received data. The following step uses information for the cluster analysis, which makes it possible to optimize the field development approaches. The article analyzes the effectiveness of various methods for reserves' calculation and computer modelling methods of the offshore hydrocarbon fields. Cluster analysis allows to measure influence of the obtained data on the development of a technical and economic model for mining deposits. The relationship between the accuracy of the calculation of recoverable reserves and the need of modernization of existing mining infrastructure, as well as the optimization of the scheme of opening and development of oil deposits, is observed.

Keywords: cluster analysis, computer modelling of deposits, correction of the feasibility study, offshore hydrocarbon fields

Procedia PDF Downloads 166
3508 Data Access, AI Intensity, and Scale Advantages

Authors: Chuping Lo

Abstract:

This paper presents a simple model demonstrating that ceteris paribus countries with lower barriers to accessing global data tend to earn higher incomes than other countries. Therefore, large countries that inherently have greater data resources tend to have higher incomes than smaller countries, such that the former may be more hesitant than the latter to liberalize cross-border data flows to maintain this advantage. Furthermore, countries with higher artificial intelligence (AI) intensity in production technologies tend to benefit more from economies of scale in data aggregation, leading to higher income and more trade as they are better able to utilize global data.

Keywords: digital intensity, digital divide, international trade, scale of economics

Procedia PDF Downloads 68
3507 Blockchain Is Facilitating Intercultural Entrepreneurship: Memoir of a Persian Non-Fungible Tokens Collection

Authors: Mohammad Afkhami, Saeid Reza Ameli Ranani

Abstract:

Since the bitcoin invention in 2008, blockchain technology surpassed so many innovations that the pioneer networks such as Ethereum are adaptable to host a decentral bunch of information containing pictures, audio, video, domains, etc., or even a metaverse versatile avatar. Transformation of tangible goods into virtual assets, known as AR-utility of luxury products, and the intermixture of reality and virtuality organized a worldwide, semi-regulated, and decentralized marketplace for digital goods. Non-fungible tokens (NFTs) are doing a great help to artists worldwide, sharing diverse cultural outlooks by setting up a remote cross-cultural corporation potential and, at the same time, metamorphosizing the middleman role and ceasing the necessity of having a SWIFT-connected bank account. Under critical sanctions, a group of artists in Tehran did not take for granted such an opportunity to show off their artworks undisturbed, offering an introspective attitude, exerting Iranian motifs while intermingling westernized symbols. The cryptocurrency market has already acquired allocation, and interest in the global domain, paving the way for a flourishing enthusiasm among entrepreneurs who have been preoccupied with high-tech start-ups before. In a project found by Iranian female artists, we decipher the ups and downs of the new cyberculture and the environment it provides to fairly promote the artwork and obstacles it put forward in the way of interested entrepreneurs as we get through the details of starting up an NFT collection. An in-depth interview and empirical encounters with diverse Social Network Sites (SNS) and the strategies that other successful projects deploy to sell their artworks in an international and, at the same time, an anonymous market is the main focus, which shapes the paper fieldwork perspective. In conclusion, we discuss strategies for promoting an NFT project.

Keywords: NFT, metaverse, intercultural, art, illustration, start-up, entrepreneurship

Procedia PDF Downloads 101