Search results for: selling price
1056 [Keynote Talk]: Surveillance of Food Safety Compliance of Hong Kong Street Food
Authors: Mabel Y. C. Yau, Roy C. F. Lai, Hugo Y. H. Or
Abstract:
This study is a pilot surveillance of hygiene compliance and food microbial safety of both licensed and mobile vendors selling Chinese ready–to-eat snack foods in Hong Kong. The study reflects similar situations in running mobile food vending business on trucks. Hong Kong is about to launch the Food Truck Pilot Scheme by the end of 2016 or early 2017. Technically, selling food on the vehicle is no different from hawking food on the street or vending food on the street. Each type of business bears similar food safety issues and cast the same impact on public health. Present findings demonstrate exemplarily situations that also apply to food trucks. 9 types of Cantonese style snacks of 32 samples in total were selected for microbial screening. A total of 16 vending sites including supermarkets, street markets, and snack stores were visited. The study finally focused on a traditional snack, the steamed rice cake with red beans called Put Chai Ko (PCK). PCK is a type of classical Cantonese pastry sold on push carts on the street. It used to be sold at room temperature and served with bamboo sticks in the old days. Some shops would have them sold steam fresh. Microbial examinations on aerobic counts, yeast, and mould, coliform, salmonella as well as Staphylococcus aureus detections were carried out. Salmonella was not detected in all samples. Since PCK does not contain ingredients of beef, poultry, eggs or dairy products, the risk of the presence of Salmonella in PCK was relatively lower although other source of contamination might be possible. Coagulase positive Staphylococcus aureus was found in 6 of the 14 samples sold at room temperature. Among these 6 samples, 3 were PCK. One of the samples was in an unacceptable range of total colony forming units higher than 105. The rest were only satisfactory. Observational evaluations were made with checklists on personal hygiene, premises hygiene, food safety control, food storage, cleaning and sanitization as well as waste disposals. The maximum score was 25 if total compliance were obtained. The highest score among vendors was 20. Three stores were below average, and two of these stores were selling PCK. Most of the non-compliances were on food processing facilities, sanitization conditions and waste disposal. In conclusion, although no food poisoning outbreaks happened during the time of the investigation, the risk of food hazard existed in these stores, especially among street vendors. Attention is needed in the traditional practice of food selling, and that food handlers might not have sufficient knowledge to properly handle food products. Variations in food qualities existed among supply chains or franchise eateries or shops. It was commonly observed that packaging and storage conditions are not properly enforced in the retails. The same situation could be reflected across the food business. It did indicate need of food safety training in the industry and loopholes in quality control among business.Keywords: cantonese snacks, food safety, microbial, hygiene, street food
Procedia PDF Downloads 3011055 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system
Procedia PDF Downloads 1551054 An Evaluation of the Effects of Special Safeguards in Meat upon International Trade and the Brazilian Economy
Authors: Cinthia C. Costa, Heloisa L. Burnquist, Joaquim J. M. Guilhoto
Abstract:
This study identified the impact of special agricultural safeguards (SSG) for the global market of meat and for the Brazilian economy. The tariff lines subject to SSG were selected and the period of analysis was 1995 (when the rules about the SSGs were established) to 2015 (more recent period for which there are notifications). The value of additional tariff was calculated for each of the most important tariff lines. The import volume and the price elasticities for imports were used to estimate the impacts of each additional tariff estimated on imports. Finally, the effect of Brazilian exports of meat without SSG taxes was calculated as well as its impact in the country’s economy by using an input-output matrix. The most important markets that applied SSGs were the U.S. for beef and European Union for poultry. However, the additional tariffs could be estimated in only two of the sixteen years that the U.S. applied SSGs on beef imports, suggesting that its use has been enforced when the average annual price has been higher than the trigger price level. The results indicated that the value of the bovine and poultry meat that could not be exported by Brazil due to SSGs to both markets (EU and the U.S.) was equivalent to BRL 804 million. The impact of this loss in trade was about: BRL 3.7 billion of the economy’s production value (at 2015 prices) and almost BRL 2 billion of the Brazilian Gross Domestic Product (GDP).Keywords: beef, poultry meat, SSG tariff, input-output matrix, Brazil
Procedia PDF Downloads 1191053 Risk Management of Natural Disasters on Insurance Stock Market
Authors: Tarah Bouaricha
Abstract:
The impact of worst natural disasters is analysed in terms of insured losses which happened between 2010 and 2014 on S&P insurance index. Event study analysis is used to test whether natural disasters impact insurance index stock market price. There is no negative impact on insurance stock market price around the disasters event. To analyse the reaction of insurance stock market, normal returns (NR), abnormal returns (AR), cumulative abnormal returns (CAR), cumulative average abnormal returns (CAAR) and a parametric test on AR and on CAR are used.Keywords: study event, natural disasters, insurance, reinsurance, stock market
Procedia PDF Downloads 3931052 Causal Relationship between Macro-Economic Indicators and Fund Unit Price Behaviour: Evidence from Malaysian Equity Unit Trust Fund Industry
Authors: Anwar Hasan Abdullah Othman, Ahamed Kameel, Hasanuddeen Abdul Aziz
Abstract:
In this study, an attempt has been made to investigate the relationship specifically the causal relation between fund unit prices of Islamic equity unit trust fund which measure by fund NAV and the selected macro-economic variables of Malaysian economy by using VECM causality test and Granger causality test. Monthly data has been used from Jan, 2006 to Dec, 2012 for all the variables. The findings of the study showed that industrial production index, political election and financial crisis are the only variables having unidirectional causal relationship with fund unit price. However, the global oil prices is having bidirectional causality with fund NAV. Thus, it is concluded that the equity unit trust fund industry in Malaysia is an inefficient market with respect to the industrial production index, global oil prices, political election and financial crisis. However, the market is approaching towards informational efficiency at least with respect to four macroeconomic variables, treasury bill rate, money supply, foreign exchange rate and corruption index.Keywords: fund unit price, unit trust industry, Malaysia, macroeconomic variables, causality
Procedia PDF Downloads 4691051 Forecasting Market Share of Electric Vehicles in Taiwan Using Conjoint Models and Monte Carlo Simulation
Authors: Li-hsing Shih, Wei-Jen Hsu
Abstract:
Recently, the sale of electrical vehicles (EVs) has increased dramatically due to maturing technology development and decreasing cost. Governments of many countries have made regulations and policies in favor of EVs due to their long-term commitment to net zero carbon emissions. However, due to uncertain factors such as the future price of EVs, forecasting the future market share of EVs is a challenging subject for both the auto industry and local government. This study tries to forecast the market share of EVs using conjoint models and Monte Carlo simulation. The research is conducted in three phases. (1) A conjoint model is established to represent the customer preference structure on purchasing vehicles while five product attributes of both EV and internal combustion engine vehicles (ICEV) are selected. A questionnaire survey is conducted to collect responses from Taiwanese consumers and estimate the part-worth utility functions of all respondents. The resulting part-worth utility functions can be used to estimate the market share, assuming each respondent will purchase the product with the highest total utility. For example, attribute values of an ICEV and a competing EV are given respectively, two total utilities of the two vehicles of a respondent are calculated and then knowing his/her choice. Once the choices of all respondents are known, an estimate of market share can be obtained. (2) Among the attributes, future price is the key attribute that dominates consumers’ choice. This study adopts the assumption of a learning curve to predict the future price of EVs. Based on the learning curve method and past price data of EVs, a regression model is established and the probability distribution function of the price of EVs in 2030 is obtained. (3) Since the future price is a random variable from the results of phase 2, a Monte Carlo simulation is then conducted to simulate the choices of all respondents by using their part-worth utility functions. For instance, using one thousand generated future prices of an EV together with other forecasted attribute values of the EV and an ICEV, one thousand market shares can be obtained with a Monte Carlo simulation. The resulting probability distribution of the market share of EVs provides more information than a fixed number forecast, reflecting the uncertain nature of the future development of EVs. The research results can help the auto industry and local government make more appropriate decisions and future action plans.Keywords: conjoint model, electrical vehicle, learning curve, Monte Carlo simulation
Procedia PDF Downloads 671050 Loan Supply and Asset Price Volatility: An Experimental Study
Authors: Gabriele Iannotta
Abstract:
This paper investigates credit cycles by means of an experiment based on a Kiyotaki & Moore (1997) model with heterogeneous expectations. The aim is to examine how a credit squeeze caused by high lender-level risk perceptions affects the real prices of a collateralised asset, with a special focus on the macroeconomic implications of rising price volatility in terms of total welfare and the number of bankruptcies that occur. To do that, a learning-to-forecast experiment (LtFE) has been run where participants are asked to predict the future price of land and then rewarded based on the accuracy of their forecasts. The setting includes one lender and five borrowers in each of the twelve sessions split between six control groups (G1) and six treatment groups (G2). The only difference is that while in G1 the lender always satisfies borrowers’ loan demand (bankruptcies permitting), in G2 he/she closes the entire credit market in case three or more bankruptcies occur in the previous round. Experimental results show that negative risk-driven supply shocks amplify the volatility of collateral prices. This uncertainty worsens the agents’ ability to predict the future value of land and, as a consequence, the number of defaults increases and the total welfare deteriorates.Keywords: Behavioural Macroeconomics, Credit Cycle, Experimental Economics, Heterogeneous Expectations, Learning-to-Forecast Experiment
Procedia PDF Downloads 1231049 A Research on Inference from Multiple Distance Variables in Hedonic Regression Focus on Three Variables
Authors: Yan Wang, Yasushi Asami, Yukio Sadahiro
Abstract:
In urban context, urban nodes such as amenity or hazard will certainly affect house price, while classic hedonic analysis will employ distance variables measured from each urban nodes. However, effects from distances to facilities on house prices generally do not represent the true price of the property. Distance variables measured on the same surface are suffering a problem called multicollinearity, which is usually presented as magnitude variance and mean value in regression, errors caused by instability. In this paper, we provided a theoretical framework to identify and gather the data with less bias, and also provided specific sampling method on locating the sample region to avoid the spatial multicollinerity problem in three distance variable’s case.Keywords: hedonic regression, urban node, distance variables, multicollinerity, collinearity
Procedia PDF Downloads 4631048 Influence of European Funds on the Sector of Bovine Milk and Meat in Romania in the Period 2007-2013
Authors: Andrei-Marius Sandu
Abstract:
This study aims to analyze the bovine meat and milk sector for the period 2007-2013. For the period analyzed, it is known that Romania has benefited from EU funding through the National Rural Development Programme 2007-2013. In this programme, there were measures that addressed exclusively the animal husbandry sector in Romania. This paper presents data on bovine production of meat, milk and livestock in Romania, but also data on the price and impact the European Funds implementation had on them.Keywords: European funds, measures, national rural development programme, price
Procedia PDF Downloads 4211047 The LNG Paradox: The Role of Gas in the Energy Transition
Authors: Ira Joseph
Abstract:
The LNG paradox addresses the issue of how the most expensive form of gas supply, which is LNG, will grow in an end user market where demand is most competitive, which is power generation. In this case, LNG demand growth is under siege from two entirely different directions. At one end is price; it will be extremely difficult for gas to replace coal in Asia due to the low price of coal and the age of the generation plants. Asia's coal fleet, on average, is less than two decades old and will need significant financial incentives to retire before its state lifespan. While gas would cut emissions in half relative to coal, it would also more than double the price of the fuel source for power generation, which puts it in a precarious position. In most countries in Asia other than China, this cost increase, particularly from imports, is simply not realistic when it is also necessary to focus on economic growth and social welfare. On the other end, renewables are growing at an exponential rate for three reasons. One is that prices are dropping. Two is that policy incentives are driving deployment, and three is that China is forcing renewables infrastructure into the market to take a political seat at the global energy table with Saudi Arabia, the US, and Russia. Plus, more renewables will lower import growth of oil and gas in China, if not end it altogether. Renewables are the predator at the gate of gas demand in power generation and in every year that passes, renewables cut into demand growth projections for gas; in particular, the type of gas that is most expensive, which is LNG. Gas does have a role in the future, particularly within a domestic market. Once it crosses borders in the form of LNG or even pipeline gas, it quickly becomes a premium fuel and must be marketed and used this way. Our research shows that gas will be able to compete with batteries as an intermittency and storage tool and does offer a method to harmonize with renewables as part of the energy transition. As a baseload fuel, however, the role of gas, particularly, will be limited by cost once it needs to cross a border. Gas converted into blue or green hydrogen or ammonia is also an option for storage depending on the location. While this role is much reduced from the primary baseload role that gas once aspired to land, it still offers a credible option for decades to come.Keywords: natural gas, LNG, demand, price, intermittency, storage, renewables
Procedia PDF Downloads 601046 Lexicon-Based Sentiment Analysis for Stock Movement Prediction
Authors: Zane Turner, Kevin Labille, Susan Gauch
Abstract:
Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We present a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.Keywords: computational finance, sentiment analysis, sentiment lexicon, stock movement prediction
Procedia PDF Downloads 1251045 Lexicon-Based Sentiment Analysis for Stock Movement Prediction
Authors: Zane Turner, Kevin Labille, Susan Gauch
Abstract:
Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We introduce a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.Keywords: computational finance, sentiment analysis, sentiment lexicon, stock movement prediction
Procedia PDF Downloads 1681044 Dynamic-cognition of Strategic Mineral Commodities; An Empirical Assessment
Authors: Carlos Tapia Cortez, Serkan Saydam, Jeff Coulton, Claude Sammut
Abstract:
Strategic mineral commodities (SMC) both energetic and metals have long been fundamental for human beings. There is a strong and long-run relation between the mineral resources industry and society's evolution, with the provision of primary raw materials, becoming one of the most significant drivers of economic growth. Due to mineral resources’ relevance for the entire economy and society, an understanding of the SMC market behaviour to simulate price fluctuations has become crucial for governments and firms. For any human activity, SMC price fluctuations are affected by economic, geopolitical, environmental, technological and psychological issues, where cognition has a major role. Cognition is defined as the capacity to store information in memory, processing and decision making for problem-solving or human adaptation. Thus, it has a significant role in those systems that exhibit dynamic equilibrium through time, such as economic growth. Cognition allows not only understanding past behaviours and trends in SCM markets but also supports future expectations of demand/supply levels and prices, although speculations are unavoidable. Technological developments may also be defined as a cognitive system. Since the Industrial Revolution, technological developments have had a significant influence on SMC production costs and prices, likewise allowing co-integration between commodities and market locations. It suggests a close relation between structural breaks, technology and prices evolution. SCM prices forecasting have been commonly addressed by econometrics and Gaussian-probabilistic models. Econometrics models may incorporate the relationship between variables; however, they are statics that leads to an incomplete approach of prices evolution through time. Gaussian-probabilistic models may evolve through time; however, price fluctuations are addressed by the assumption of random behaviour and normal distribution which seems to be far from the real behaviour of both market and prices. Random fluctuation ignores the evolution of market events and the technical and temporal relation between variables, giving the illusion of controlled future events. Normal distribution underestimates price fluctuations by using restricted ranges, curtailing decisions making into a pre-established space. A proper understanding of SMC's price dynamics taking into account the historical-cognitive relation between economic, technological and psychological factors over time is fundamental in attempting to simulate prices. The aim of this paper is to discuss the SMC market cognition hypothesis and empirically demonstrate its dynamic-cognitive capacity. Three of the largest and traded SMC's: oil, copper and gold, will be assessed to examine the economic, technological and psychological cognition respectively.Keywords: commodity price simulation, commodity price uncertainties, dynamic-cognition, dynamic systems
Procedia PDF Downloads 4581043 The Antecedents of Green Purchase Intention in Nigeria: Mediating Effect of Perceived Behavioral Control
Authors: Victoria Masi Haruna Karatu, Nik Kamariah Nikmat
Abstract:
In recent times awareness about the environment and green purchase has been on the increase across nations due to global warming. Previous researchers have attempted to determine what actually influences the purchase intention of consumers in this environmentally conscious epoch. The consumers too have become conscious of what to buy and who to buy from in their purchasing decisions as this action will reflect their concern about the environment and their personal well-being. This trend is a widespread phenomenon in most developed countries of the world. On the contrary evidence revealed that only 5% of the populations of Nigeria involve in green purchase activities thus making the country lag behind its counterparts in green practices. This is not a surprise as Nigeria is facing problems of inadequate green knowledge, non-enforcement of environmental regulations, sensitivity to the price of green products when compared with the conventional ones and distrust towards green products which has been deduced from prior studies of other regions. The main objectives of this study is to examine the direct antecedents of green purchase intention (green availability, government regulations, perceived green knowledge, perceived value and green price sensitivity) in Nigeria and secondly to establish the mediating role of perceived behavioral control on the relationship between these antecedents and green purchase intention. The study adopts quantitative method whereby 700 questionnaires were administered to lecturers in three Nigerian universities. 502 datasets were collected which represents 72 percent response rate. After screening the data only 440 were usable and analyzed using structural equation modeling (SEM) and bootstrapping. From the findings, three antecedents have significant direct relationships with green purchase intention (perceived green knowledge, perceived behavioral control, and green availability) while two antecedents have positive and significant direct relationship with perceived behavioral control (perceived value and green price sensitivity). On the other hand, PBC does not mediate any of the paths from the predictors to criterion variable. This result is discussed in the Nigerian context.Keywords: Green Availability, Green Price Sensitivity, Green Purchase Intention, Perceived Green Knowledge, Perceived Value
Procedia PDF Downloads 4241042 Non-Invasive Techniques of Analysis of Painting in Forensic Fields
Authors: Radka Sefcu, Vaclava Antuskova, Ivana Turkova
Abstract:
A growing market with modern artworks of a high price leads to the creation and selling of artwork counterfeits. Material analysis is an important part of the process of assessment of authenticity. Knowledge of materials and techniques used by original authors is also necessary. The contribution presents possibilities of non-invasive methods of structural analysis in research on paintings. It was proved that unambiguous identification of many art materials is feasible without sampling. The combination of Raman spectroscopy with FTIR-external reflection enabled the identification of pigments and binders on selected artworks of prominent Czech painters from the first half of the 20th century – Josef Čapek, Emil Filla, Václav Špála and Jan Zrzavý. Raman spectroscopy confirmed the presence of a wide range of white pigments - lead white, zinc white, titanium white, barium white and also Freeman's white as a special white pigment of painting. Good results were obtained for red, blue and most of the yellow areas. Identification of green pigments was often impossible due to strong fluorescence. Oil was confirmed as a binding medium on most of the analyzed artworks via FTIR - external reflection. Collected data present the valuable background for the determination of art materials characteristic for each painter (his palette) and its development over time. Obtained results will further serve as comparative material for the authentication of artworks. This work has been financially supported by the project of the Ministry of the Interior of the Czech Republic: The Development of a Strategic Cluster for Effective Instrumental Technological Methods of Forensic Authentication of Modern Artworks (VJ01010004).Keywords: non-invasive analysis, Raman spectroscopy, FTIR-external reflection, forgeries
Procedia PDF Downloads 1701041 House Price Index Predicts a Larger Impact of Habitat Loss than Primary Productivity on the Biodiversity of North American Avian Communities
Authors: Marlen Acosta Alamo, Lisa Manne, Richard Veit
Abstract:
Habitat loss due to land use change is one of the leading causes of biodiversity loss worldwide. This form of habitat loss is a non-random phenomenon since the same environmental factors that make an area suitable for supporting high local biodiversity overlap with those that make it attractive for urban development. We aimed to compare the effect of two non-random habitat loss predictors on the richness, abundance, and rarity of nature-affiliated and human-affiliated North American breeding birds. For each group of birds, we simulated the non-random habitat loss using two predictors: the House Price Index as a measure of the attractiveness of an area for humans and the Normalized Difference Vegetation Index as a proxy for primary productivity. We compared the results of the two non-random simulation sets and one set of random habitat loss simulations using an analysis of variance and followed up with a Tukey-Kramer test when appropriate. The attractiveness of an area for humans predicted estimates of richness loss and increase of rarity higher than primary productivity and random habitat loss for nature-affiliated and human-affiliated birds. For example, at 50% of habitat loss, the attractiveness of an area for humans produced estimates of richness at least 5% lower and of a rarity at least 40% higher than primary productivity and random habitat loss for both groups of birds. Only for the species abundance of nature-affiliated birds, the attractiveness of an area for humans did not outperform primary productivity as a predictor of biodiversity following habitat loss. We demonstrated the value of the House Price Index, which can be used in conservation assessments as an index of the risks of habitat loss for natural communities. Thus, our results have relevant implications for sustainable urban land-use planning practices and can guide stakeholders and developers in their efforts to conserve local biodiversity.Keywords: biodiversity loss, bird biodiversity, house price index, non-random habitat loss
Procedia PDF Downloads 851040 Stock Prediction and Portfolio Optimization Thesis
Authors: Deniz Peksen
Abstract:
This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.Keywords: stock prediction, portfolio optimization, data science, machine learning
Procedia PDF Downloads 801039 Using Historical Data for Stock Prediction
Authors: Sofia Stoica
Abstract:
In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices in the past five years of ten major tech companies – Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We experimented with a variety of models– a linear regressor model, K nearest Neighbors (KNN), a sequential neural network – and algorithms - Multiplicative Weight Update, and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.Keywords: finance, machine learning, opening price, stock market
Procedia PDF Downloads 1871038 Predicting Options Prices Using Machine Learning
Authors: Krishang Surapaneni
Abstract:
The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%Keywords: finance, linear regression model, machine learning model, neural network, stock price
Procedia PDF Downloads 741037 The Effect of Macroeconomic Policies on Cambodia's Economy: ARDL and VECM Model
Authors: Siphat Lim
Abstract:
This study used Autoregressive Distributed Lag (ARDL) approach to cointegration. In the long-run the general price level and exchange rate have a positively significant effect on domestic output. The estimated result further revealed that fiscal stimulus help stimulate domestic output in the long-run, but not in the short-run, while monetary expansion help to stimulate output in both short-run and long-run. The result is complied with the theory which is the macroeconomic policies, fiscal and monetary policy; help to stimulate domestic output in the long-run. The estimated result of the Vector Error Correction Model (VECM) has indicated more clearly that the consumer price index has a positive effect on output with highly statistically significant. Increasing in the general price level would increase the competitiveness among producers than increase in the output. However, the exchange rate also has a positive effect and highly significant on the gross domestic product. The exchange rate depreciation might increase export since the purchasing power of foreigners has increased. More importantly, fiscal stimulus would help stimulate the domestic output in the long-run since the coefficient of government expenditure is positive. In addition, monetary expansion would also help stimulate the output and the result is highly significant. Thus, fiscal stimulus and monetary expansionary would help stimulate the domestic output in the long-run in Cambodia.Keywords: fiscal policy, monetary policy, ARDL, VECM
Procedia PDF Downloads 4311036 An Inquiry of the Impact of Flood Risk on Housing Market with Enhanced Geographically Weighted Regression
Authors: Lin-Han Chiang Hsieh, Hsiao-Yi Lin
Abstract:
This study aims to determine the impact of the disclosure of flood potential map on housing prices. The disclosure is supposed to mitigate the market failure by reducing information asymmetry. On the other hand, opponents argue that the official disclosure of simulated results will only create unnecessary disturbances on the housing market. This study identifies the impact of the disclosure of the flood potential map by comparing the hedonic price of flood potential before and after the disclosure. The flood potential map used in this study is published by Taipei municipal government in 2015, which is a result of a comprehensive simulation based on geographical, hydrological, and meteorological factors. The residential property sales data of 2013 to 2016 is used in this study, which is collected from the actual sales price registration system by the Department of Land Administration (DLA). The result shows that the impact of flood potential on residential real estate market is statistically significant both before and after the disclosure. But the trend is clearer after the disclosure, suggesting that the disclosure does have an impact on the market. Also, the result shows that the impact of flood potential differs by the severity and frequency of precipitation. The negative impact for a relatively mild, high frequency flood potential is stronger than that for a heavy, low possibility flood potential. The result indicates that home buyers are of more concern to the frequency, than the intensity of flood. Another contribution of this study is in the methodological perspective. The classic hedonic price analysis with OLS regression suffers from two spatial problems: the endogeneity problem caused by omitted spatial-related variables, and the heterogeneity concern to the presumption that regression coefficients are spatially constant. These two problems are seldom considered in a single model. This study tries to deal with the endogeneity and heterogeneity problem together by combining the spatial fixed-effect model and geographically weighted regression (GWR). A series of literature indicates that the hedonic price of certain environmental assets varies spatially by applying GWR. Since the endogeneity problem is usually not considered in typical GWR models, it is arguable that the omitted spatial-related variables might bias the result of GWR models. By combing the spatial fixed-effect model and GWR, this study concludes that the effect of flood potential map is highly sensitive by location, even after controlling for the spatial autocorrelation at the same time. The main policy application of this result is that it is improper to determine the potential benefit of flood prevention policy by simply multiplying the hedonic price of flood risk by the number of houses. The effect of flood prevention might vary dramatically by location.Keywords: flood potential, hedonic price analysis, endogeneity, heterogeneity, geographically-weighted regression
Procedia PDF Downloads 2891035 Green Hydrogen: Exploring Economic Viability and Alluring Business Scenarios
Authors: S. Sakthivel
Abstract:
Currently, the global economy is based on the hydrocarbon economy, which is referencing the global hydrocarbon industry. Problems of using these fossil fuels (like oil, NG, coal) are emitting greenhouse gases (GHGs) and price fluctuation, supply/distribution, etc. These challenges can be overcome by using clean energy as hydrogen. The hydrogen economy is the use of hydrogen as a low carbon fuel, particularly for hydrogen vehicles, alternative industrial feedstock, power generation, and energy storage, etc. Engineering consulting firms have a significant role in this ambition and green hydrogen value chain (i.e., integration of renewables, production, storage, and distribution to end-users). Typically, the cost of green hydrogen is a function of the price of electricity needed, the cost of the electrolyser, and the operating cost to run the system. This article focuses on economic viability and explores the alluring business scenarios globally. Break-even analysis was carried out for green hydrogen production and in order to evaluate and compare the impact of the electricity price on the production costs of green hydrogen and relate it to fossil fuel-based brown/grey/blue hydrogen costs. It indicates that the cost of green hydrogen production will fall drastically due to the declining costs of renewable electricity prices and along with the improvement and scaling up of electrolyser manufacturing. For instance, in a scenario where electricity prices are below US$ 40/MWh, green hydrogen cost is expected to reach cost competitiveness.Keywords: green hydrogen, cost analysis, break-even analysis, renewables, electrolyzer
Procedia PDF Downloads 1411034 An Analysis of Present Supplier Selection Criteria of State Pharmaceutical Corporation (SPC) Sri Lanka: A Case Study
Authors: Gamalath M. B. P. Abeysekara
Abstract:
Primary objective of any organization is to enhance the bottom line profit. Strategic procurement is one of the prominent aspects in view of receiving this ultimate objective. Strategic procurement is an activity used in each and every organization in their operations. Pharmaceutical procurement is an especially significant task for any organizations, particularly state sector concerned. The whole pharmaceutical procurement requirement of the country is procured through the State Pharmaceutical Corporation (SPC) of Sri Lanka. They follow Pharmaceutical Procurement Guideline of 2006 as the procurement principle. The main objective of this project is to identify the importance of State Pharmaceutical Corporation supplier selection criteria and critical analysis of pharmaceutical procurement procedure. State Pharmaceutical Corporations applied net price, product quality, past performance, and delivery of suppliers’ as main criteria for the selection suppliers. Data collection for this study was taken place through a questionnaire, given to fifty doctors within the Colombo district attached to five main state hospitals. Data analysis is carried out with mean and standard deviation functions. The ultimate outcomes indicated product quality, net price, and delivery of suppliers’ are the most important criteria behind the selection of suppliers. Critical analysis proved State Pharmaceutical Corporation should focus on net price reduction, improving laboratory testing facilities and effective communication between up and down stream of supply chain.Keywords: government procurement procedure, pharmaceutical procurement supplier selection criteria, importance of SPC supplier selection criteria
Procedia PDF Downloads 4501033 Underground Coal Gasification Technology in Türkiye: A Techno-Economic Assessment
Authors: Fatma Ünal, Hasancan Okutan
Abstract:
Increasing worldwide population and technological requirements lead to an increase in energy demand every year. The demand has been mainly supplied from fossil fuels such as coal and petroleum due to insufficient natural gas resources. In recent years, the amount of coal reserves has reached almost 21 billion tons in Türkiye. These are mostly lignite (%92,7), that contains high levels of moisture and sulfur components. Underground coal gasification technology is one of the most suitable methods in comparison with direct combustion techniques for the evaluation of such coal types. In this study, the applicability of the underground coal gasification process is investigated in the Eskişehir-Alpu lignite reserve as a pilot region, both technologically and economically. It is assumed that the electricity is produced from the obtained synthesis gas in an integrated gasification combined cycle (IGCC). Firstly, an equilibrium model has been developed by using the thermodynamic properties of the gasification reactions. The effect of the type of oxidizing gas, the sulfur content of coal, the rate of water vapor/air, and the pressure of the system have been investigated to find optimum process conditions. Secondly, the parallel and linear controlled recreation and injection point (CRIP) models were implemented as drilling methods, and costs were calculated under the different oxidizing agents (air and high-purity O2). In Parallel CRIP (P-CRIP), drilling cost is found to be lower than the linear CRIP (L-CRIP) since two coal beds simultaneously are gasified. It is seen that CO2 Capture and Storage (CCS) technology was the most effective unit on the total cost in both models. The cost of the synthesis gas produced varies between 0,02 $/Mcal and 0,09 $/Mcal. This is the promising result when considering the selling price of Türkiye natural gas for Q1-2023 (0.103 $ /Mcal).Keywords: energy, lignite reserve, techno-economic analysis, underground coal gasification.
Procedia PDF Downloads 651032 The Impact of Bitcoin on Stock Market Performance
Authors: Oliver Takawira, Thembi Hope
Abstract:
This study will analyse the relationship between Bitcoin price movements and the Johannesburg stock exchange (JSE). The aim is to determine whether Bitcoin price movements affect the stock market performance. As crypto currencies continue to gain prominence as a safe asset during periods of economic distress, this raises the question of whether Bitcoin’s prosperity could affect investment in the stock market. To identify the existence of a short run and long run linear relationship, the study will apply the Autoregressive Distributed Lag Model (ARDL) bounds test and a Vector Error Correction Model (VECM) after testing the data for unit roots and cointegration using the Augmented Dicker Fuller (ADF) and Phillips-Perron (PP). The Non-Linear Auto Regressive Distributed Lag (NARDL) will then be used to check if there is a non-linear relationship between bitcoin prices and stock market prices.Keywords: bitcoin, stock market, interest rates, ARDL
Procedia PDF Downloads 1051031 Resale Housing Development Board Price Prediction Considering Covid-19 through Sentiment Analysis
Authors: Srinaath Anbu Durai, Wang Zhaoxia
Abstract:
Twitter sentiment has been used as a predictor to predict price values or trends in both the stock market and housing market. The pioneering works in this stream of research drew upon works in behavioural economics to show that sentiment or emotions impact economic decisions. Latest works in this stream focus on the algorithm used as opposed to the data used. A literature review of works in this stream through the lens of data used shows that there is a paucity of work that considers the impact of sentiments caused due to an external factor on either the stock or the housing market. This is despite an abundance of works in behavioural economics that show that sentiment or emotions caused due to an external factor impact economic decisions. To address this gap, this research studies the impact of Twitter sentiment pertaining to the Covid-19 pandemic on resale Housing Development Board (HDB) apartment prices in Singapore. It leverages SNSCRAPE to collect tweets pertaining to Covid-19 for sentiment analysis, lexicon based tools VADER and TextBlob are used for sentiment analysis, Granger Causality is used to examine the relationship between Covid-19 cases and the sentiment score, and neural networks are leveraged as prediction models. Twitter sentiment pertaining to Covid-19 as a predictor of HDB price in Singapore is studied in comparison with the traditional predictors of housing prices i.e., the structural and neighbourhood characteristics. The results indicate that using Twitter sentiment pertaining to Covid19 leads to better prediction than using only the traditional predictors and performs better as a predictor compared to two of the traditional predictors. Hence, Twitter sentiment pertaining to an external factor should be considered as important as traditional predictors. This paper demonstrates the real world economic applications of sentiment analysis of Twitter data.Keywords: sentiment analysis, Covid-19, housing price prediction, tweets, social media, Singapore HDB, behavioral economics, neural networks
Procedia PDF Downloads 1131030 Combined Effect of Heat Stimulation and Delay Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar
Authors: Antoni Wibowo, Harry Pujianto, Dewi Retno Sari Saputro
Abstract:
The stock market can provide huge profits in a relatively short time in financial sector; however, it also has a high risk for investors and traders if they are not careful to look the factors that affect the stock market. Therefore, they should give attention to the dynamic fluctuations and movements of the stock market to optimize profits from their investment. In this paper, we present a nonlinear autoregressive exogenous model (NARX) to predict the movements of stock market; especially, the movements of the closing price index. As case study, we consider to predict the movement of the closing price in Indonesia composite index (IHSG) and choose the best structures of NARX for IHSG’s prediction.Keywords: NARX (Nonlinear Autoregressive Exogenous Model), prediction, stock market, time series
Procedia PDF Downloads 2411029 Options Trading and Crash Risk
Authors: Cameron Truong, Mikhail Bhatia, Yangyang Chen, Viet Nga Cao
Abstract:
Using a sample of U.S. firms between 1996 and 2011, this paper documents a positive association between options trading volume and future stock price crash risk. This relation is evidently more pronounced among firms with higher information asymmetry, business uncertainty, and short-sale constraints. In a dichotomous cross-sectional setting, we also document that firms with options trading have higher future crash risk than firms without options trading. We further show in a difference-in-difference analysis that firms experience an increase in crash risk immediately after the listing of options. The results suggest that options traders are able of identifying bad news hoarding by management and choose to trade in a liquid options market in anticipation of future crashes.Keywords: bad news hoarding, cross-sectional setting, options trading, stock price crash
Procedia PDF Downloads 4461028 Leveraging on Application of Customer Relationship Management Strategy as Business Driving Force: A Case Study of Major Industries
Authors: Odunayo S. Faluse, Roger Telfer
Abstract:
Customer relationship management is a business strategy that is centred on the idea that ‘Customer is the driving force of any business’ i.e. Customer is placed in a central position in any business. However, this belief coupled with the advancement in information technology in the past twenty years has experienced a change. In any form of business today it can be concluded that customers are the modern dictators to whom the industry always adjusts its business operations due to the increase in availability of information, intense market competition and ever growing negotiating ideas of customers in the process of buying and selling. The most vital role of any organization is to satisfy or meet customer’s needs and demands, which eventually determines customer’s long-term value to the industry. Therefore, this paper analyses and describes the application of customer relationship management operational strategies in some of the major industries in business. Both developed and up-coming companies nowadays value the quality of customer services and client’s loyalty, they also recognize the customers that are not very sensitive when it comes to changes in price and thereby realize that attracting new customers is more tasking and expensive than retaining the existing customers. However, research shows that several factors have recently amounts to the sudden rise in the execution of CRM strategies in the marketplace, such as a diverted attention of some organization towards integrating ideas in retaining existing customers rather than attracting new one, gathering data about customers through the use of internal database system and acquiring of external syndicate data, also exponential increase in technological intelligence. Apparently, with this development in business operations, CRM research in Academia remain nascent; hence this paper gives detailed critical analysis of the recent advancement in the use of CRM and key research opportunities for future development in using the implementation of CRM as a determinant factor for successful business optimization.Keywords: agriculture, banking, business strategies, CRM, education, healthcare
Procedia PDF Downloads 2211027 Power Relation, Symbolic Rules and the Position of Belis in the Habitus of the East Nusa Tenggara Society’s Customary Marriage
Authors: Siti Rodliyah, Andrik Purwasito, Bani Sudardi, Abdullah Wakit
Abstract:
This study employs sociological-ethnographic basic method and the cultural studies paradigm as the approach in understanding the habitus within the customary marriage of the East Nusa Tenggara society who require belis as a bride-price. The conceptual basis underlying the application of habitus theory and symbolic power in East Nusa Tenggara (NTT) society refers to the Bourdieu’s framework. This study is a result of participatory observation on habitus of a marital system using belis observed by the NTT society as a cognitive structure which connects individuals to the social activities of the customary marriage and makes it unquestionable habits. Knowledge of the social world under the pretext of prosperity for the recipients (family) of a bride-price can be a political instrument for the sustainability of power relations. The ritual-mythical system in the society has never been fully present as a neutral habit. The habitus reflected in the marital relationship among the NTT society enables the men to obtain and exercise their power relations. The sustainability of power relations can be seen from the representation of the social status of a girl and the properties attached to her. This is what gave birth to a symbolic rule, in which the social rules about bride-price or belis eventually will serve the interests of those who occupy a dominant position in the social structure, namely the rich men.Keywords: belis, habitus, East Nusa Tenggara, marital system, power, symbolic
Procedia PDF Downloads 244