Search results for: performance-related fitness
164 Ordinary Differentiation Equations (ODE) Reconstruction of High-Dimensional Genetic Networks through Game Theory with Application to Dissecting Tree Salt Tolerance
Authors: Libo Jiang, Huan Li, Rongling Wu
Abstract:
Ordinary differentiation equations (ODE) have proven to be powerful for reconstructing precise and informative gene regulatory networks (GRNs) from dynamic gene expression data. However, joint modeling and analysis of all genes, essential for the systematical characterization of genetic interactions, are challenging due to high dimensionality and a complex pattern of genetic regulation including activation, repression, and antitermination. Here, we address these challenges by unifying variable selection and game theory through ODE. Each gene within a GRN is co-expressed with its partner genes in a way like a game of multiple players, each of which tends to choose an optimal strategy to maximize its “fitness” across the whole network. Based on this unifying theory, we designed and conducted a real experiment to infer salt tolerance-related GRNs for Euphrates poplar, a hero tree that can grow in the saline desert. The pattern and magnitude of interactions between several hub genes within these GRNs were found to determine the capacity of Euphrates poplar to resist to saline stress.Keywords: gene regulatory network, ordinary differential equation, game theory, LASSO, saline resistance
Procedia PDF Downloads 642163 Influence of Chemical Pollution on Thermal Habitats of the Ciliate Tetrahymena thermophila
Authors: Doufoungognon C. Kone
Abstract:
Global change, in particular pollution and global warming, threatens ecosystems and the biodiversity they harbor. Due to pollutants exposure, organisms might modify their thermal niches in order to track the thermal conditions limiting the negative impacts of chemical stressors depending on their mode of action. This study tests the influence of different pollutants, copper, salt, and chloramphenicol, on the thermal preferences of the ciliate Tetrahymena thermophila. Six genotypes were exposed to a gradient of concentrations ranging from 0 to 500mg/L for copper, 0 to 300 mg/l for chloramphenicol, and 0 to 12g/l for salt in synthetic media at eight temperatures ranging from 11 to 39° C. The measured fitness proxies are the maximum growth rate and the 50% growth inhibitory concentration (IC50). The results show that the majority of genotypes are more resistant to chloramphenicol in temperatures below their thermal optimum without pollutants, while they better tolerate other salt and copper in temperatures above their thermal optimum. In addition, generalists reduce their niche width while specialists widen it in chloramphenicol. Overall, results suggest that global warming would have a particularly deleterious effect in the case of chemical pollution. This pollution would induce the full disruption of the thermal habitats.Keywords: ciliate, thermal niche, growth rate, toxicity, multiple stressors
Procedia PDF Downloads 93162 Design Guidelines for an Enhanced Interaction Experience in the Domain of Smartphone-Based Applications for Sport and Fitness
Authors: Paolo Pilloni, Fabrizio Mulas, Salvatore Carta
Abstract:
Nowadays, several research studies point up that an active lifestyle is essential for physical and mental health benefits. Mobile phones have greatly influenced people’s habits and attitudes also in the way they exercise. Our research work is mainly focused on investigating how to exploit mobile technologies to favour people’s exertion experience. To this end, we developed an exertion framework users can exploit through a real world mobile application, called BLINDED, designed to act as a virtual personal trainer to support runners during their trainings. In this work, inspired by both previous findings in the field of interaction design for people with visual impairments, feedback gathered from real users of our framework, and positive results obtained from two experimentations, we present some new interaction facilities we designed to enhance the interaction experience during a training. The positive obtained results helped us to derive some interaction design recommendations we believe will be a valid support for designers of future mobile systems conceived to be used in circumstances where there are limited possibilities of interaction.Keywords: human computer interaction, interaction design guidelines, persuasive mobile technologies for sport and health
Procedia PDF Downloads 535161 Heuristic Search Algorithm (HSA) for Enhancing the Lifetime of Wireless Sensor Networks
Authors: Tripatjot S. Panag, J. S. Dhillon
Abstract:
The lifetime of a wireless sensor network can be effectively increased by using scheduling operations. Once the sensors are randomly deployed, the task at hand is to find the largest number of disjoint sets of sensors such that every sensor set provides complete coverage of the target area. At any instant, only one of these disjoint sets is switched on, while all other are switched off. This paper proposes a heuristic search method to find the maximum number of disjoint sets that completely cover the region. A population of randomly initialized members is made to explore the solution space. A set of heuristics has been applied to guide the members to a possible solution in their neighborhood. The heuristics escalate the convergence of the algorithm. The best solution explored by the population is recorded and is continuously updated. The proposed algorithm has been tested for applications which require sensing of multiple target points, referred to as point coverage applications. Results show that the proposed algorithm outclasses the existing algorithms. It always finds the optimum solution, and that too by making fewer number of fitness function evaluations than the existing approaches.Keywords: coverage, disjoint sets, heuristic, lifetime, scheduling, Wireless sensor networks, WSN
Procedia PDF Downloads 454160 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition
Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang
Abstract:
Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor
Procedia PDF Downloads 154159 Computational Aerodynamic Shape Optimisation Using a Concept of Control Nodes and Modified Cuckoo Search
Authors: D. S. Naumann, B. J. Evans, O. Hassan
Abstract:
This paper outlines the development of an automated aerodynamic optimisation algorithm using a novel method of parameterising a computational mesh by employing user–defined control nodes. The shape boundary movement is coupled to the movement of the novel concept of the control nodes via a quasi-1D-linear deformation. Additionally, a second order smoothing step has been integrated to act on the boundary during the mesh movement based on the change in its second derivative. This allows for both linear and non-linear shape transformations dependent on the preference of the user. The domain mesh movement is then coupled to the shape boundary movement via a Delaunay graph mapping. A Modified Cuckoo Search (MCS) algorithm is used for optimisation within the prescribed design space defined by the allowed range of control node displacement. A finite volume compressible NavierStokes solver is used for aerodynamic modelling to predict aerodynamic design fitness. The resulting coupled algorithm is applied to a range of test cases in two dimensions including the design of a subsonic, transonic and supersonic intake and the optimisation approach is compared with more conventional optimisation strategies. Ultimately, the algorithm is tested on a three dimensional wing optimisation case.Keywords: mesh movement, aerodynamic shape optimization, cuckoo search, shape parameterisation
Procedia PDF Downloads 343158 Post-Exercise Effects of Cold Water Immersion over a 48-Hour Recovery Period on the Physical and Haematological Parameters of Male University-Level Rugby Players
Authors: Adele Broodryk, Cindy Pienaar, Martinique Sparks, Ben Coetzee
Abstract:
Background: Cold water immersion (CWI) is a popular recovery modality utilised. However, discrepancies exist regarding the results over a 48 hour recovery period. Aim: To evaluate the effects of CWI and passive recovery (PAR) on a range of haematological and physical parameters over a 48-hour using a cross-sectional, pre-post-test design. Subjects and Methods: Both the and physical parameters were evaluated at baseline, after a 15-min fitness session, and at 0, 24 and 48 hours post-recovery in 23 male university rugby players. The CWI group sat in a cold water pool (8°C) for 20 min whereas the PAR group remained seated. Results: At 0 hours post-CWI, three (blood lactate (BLa-), Sodium (Na+) and haemoglobin) returned to baseline values, however Vertical Jump Test (VJT) height results decreased whereas after PAR it improved. From 0 to 24 and/or 48 h, four (Partial Oxygen (PO2) VJT-height, plasma glucose, and Na+) significantly increased (p ≤ 0.05) in either and/or both groups. Significant intergroup differences (p ≤ 0.05) were noticed in the physical tests. Conclusions: PAR is superior as an acute modality (0 hours) due to CWI cooling the body down. However, CWI demonstrates advantageous over a 24-hour period in a wide range of haematological variables.Keywords: cryotherapy, recuperation, haematological, rugby
Procedia PDF Downloads 267157 Robust Recognition of Locomotion Patterns via Data-Driven Machine Learning in the Cloud Environment
Authors: Shinoy Vengaramkode Bhaskaran, Kaushik Sathupadi, Sandesh Achar
Abstract:
Human locomotion recognition is important in a variety of sectors, such as robotics, security, healthcare, fitness tracking and cloud computing. With the increasing pervasiveness of peripheral devices, particularly Inertial Measurement Units (IMUs) sensors, researchers have attempted to exploit these advancements in order to precisely and efficiently identify and categorize human activities. This research paper introduces a state-of-the-art methodology for the recognition of human locomotion patterns in a cloud environment. The methodology is based on a publicly available benchmark dataset. The investigation implements a denoising and windowing strategy to deal with the unprocessed data. Next, feature extraction is adopted to abstract the main cues from the data. The SelectKBest strategy is used to abstract optimal features from the data. Furthermore, state-of-the-art ML classifiers are used to evaluate the performance of the system, including logistic regression, random forest, gradient boosting and SVM have been investigated to accomplish precise locomotion classification. Finally, a detailed comparative analysis of results is presented to reveal the performance of recognition models.Keywords: artificial intelligence, cloud computing, IoT, human locomotion, gradient boosting, random forest, neural networks, body-worn sensors
Procedia PDF Downloads 15156 Arbitrarily Shaped Blur Kernel Estimation for Single Image Blind Deblurring
Authors: Aftab Khan, Ashfaq Khan
Abstract:
The research paper focuses on an interesting challenge faced in Blind Image Deblurring (BID). It relates to the estimation of arbitrarily shaped or non-parametric Point Spread Functions (PSFs) of motion blur caused by camera handshake. These PSFs exhibit much more complex shapes than their parametric counterparts and deblurring in this case requires intricate ways to estimate the blur and effectively remove it. This research work introduces a novel blind deblurring scheme visualized for deblurring images corrupted by arbitrarily shaped PSFs. It is based on Genetic Algorithm (GA) and utilises the Blind/Reference-less Image Spatial QUality Evaluator (BRISQUE) measure as the fitness function for arbitrarily shaped PSF estimation. The proposed BID scheme has been compared with other single image motion deblurring schemes as benchmark. Validation has been carried out on various blurred images. Results of both benchmark and real images are presented. Non-reference image quality measures were used to quantify the deblurring results. For benchmark images, the proposed BID scheme using BRISQUE converges in close vicinity of the original blurring functions.Keywords: blind deconvolution, blind image deblurring, genetic algorithm, image restoration, image quality measures
Procedia PDF Downloads 447155 A Machine Learning Pipeline for Real-Time Activity Detection on Low Computational Power Devices for Metaverse Applications
Authors: Amit Kumar, Amanpreet Chander, Ashish Sahani
Abstract:
This paper presents our recent work on real-time human activity detection based on the media pipe pipeline and machine learning algorithms. The proposed system can detect human activities, including running, jumping, squatting, bending to the left or right, and standing still. This is a robust solution for developing a yoga, dance, metaverse, and fitness application that checks for the correction of the pose without having any additional monitor like a personal trainer. MediaPipe solution offers an open-source cross-platform which utilizes a two-step detector-tracker ML pipeline for live detection of key landmarks on our body which can be used for motion data collection. The prediction of real-time poses uses a variety of machine learning techniques and different types of analysis. Without primarily relying on powerful desktop environments for inference, our method achieves real-time performance on the majority of contemporary mobile phones, desktops/laptops, Python, or even the web. Experimental results show that our method outperforms the existing method in terms of accuracy and real-time capability, achieving an accuracy of 99.92% on testing datasets.Keywords: human activity detection, media pipe, machine learning, metaverse applications
Procedia PDF Downloads 182154 Chaos Fuzzy Genetic Algorithm
Authors: Mohammad Jalali Varnamkhasti
Abstract:
The genetic algorithms have been very successful in handling difficult optimization problems. The fundamental problem in genetic algorithms is premature convergence. This paper, present a new fuzzy genetic algorithm based on chaotic values instead of the random values in genetic algorithm processes. In this algorithm, for initial population is used chaotic sequences and then a new sexual selection proposed for selection mechanism. In this technique, the population is divided such that the male and female would be selected in an alternate way. The layout of the male and female chromosomes in each generation is different. A female chromosome is selected by tournament selection size from the female group. Then, the male chromosome is selected, in order of preference based on the maximum Hamming distance between the male chromosome and the female chromosome or The highest fitness value of male chromosome (if more than one male chromosome is having the maximum Hamming distance existed), or Random selection. The selections of crossover and mutation operators are achieved by running the fuzzy logic controllers, the crossover and mutation probabilities are varied on the basis of the phenotype and genotype characteristics of the chromosome population. Computational experiments are conducted on the proposed techniques and the results are compared with some other operators, heuristic and local search algorithms commonly used for solving p-median problems published in the literature.Keywords: genetic algorithm, fuzzy system, chaos, sexual selection
Procedia PDF Downloads 389153 Formulation of a Stress Management Program for Human Error Prevention in Nuclear Power Plants
Authors: Hyeon-Kyo Lim, Tong-il Jang, Yong-Hee Lee
Abstract:
As for any nuclear power plant, human error is one of the most dreaded factors that may result in unexpected accidents. Thus, for accident prevention, it is quite indispensable to analyze and to manage the influence of any factor which may raise the possibility of human errors. Among lots factors, stress has been reported to have significant influence on human performance. Stress level of a person may fluctuate over time. To handle the possibility over time, robust stress management program is required, especially in nuclear power plants. Therefore, to overcome the possibility of human errors, this study aimed to develop a stress management program as a part of Fitness-for-Duty (FFD) Program for the workers in nuclear power plants. The meaning of FFD might be somewhat different by research objectives, appropriate definition of FFD was accomplished in this study with special reference to human error prevention, and diverse stress factors were elicited for management of human error susceptibility. In addition, with consideration of conventional FFD management programs, appropriate tests and interventions were introduced over the whole employment cycle including selection and screening of workers, job allocation, job rotation, and disemployment as well as Employee-Assistance-Program (EAP). The results showed that most tools mainly concentrated their weights on common organizational factors such as Demands, Supports, and Relationships in sequence, which were referred as major stress factors.Keywords: human error, accident prevention, work performance, stress, fatigue
Procedia PDF Downloads 328152 Optimization of Poly-β-Hydroxybutyrate Recovery from Bacillus Subtilis Using Solvent Extraction Process by Response Surface Methodology
Authors: Jayprakash Yadav, Nivedita Patra
Abstract:
Polyhydroxybutyrate (PHB) is an interesting material in the field of medical science, pharmaceutical industries, and tissue engineering because of its properties such as biodegradability, biocompatibility, hydrophobicity, and elasticity. PHB is naturally accumulated by several microbes in their cytoplasm during the metabolic process as energy reserve material. PHB can be extracted from cell biomass using halogenated hydrocarbons, chemicals, and enzymes. In this study, a cheaper and non-toxic solvent, acetone, was used for the extraction process. The different parameters like acetone percentage, and solvent pH, process temperature, and incubation periods were optimized using the Response Surface Methodology (RSM). RSM was performed and the determination coefficient (R2) value was found to be 0.8833 from the quadratic regression model with no significant lack of fit. The designed RSM model results indicated that the fitness of the response variable was significant (P-value < 0.0006) and satisfactory to denote the relationship between the responses in terms of PHB recovery and purity with respect to the values of independent variables. Optimum conditions for the maximum PHB recovery and purity were found to be solvent pH 7, extraction temperature - 43 °C, incubation time - 70 minutes, and percentage acetone – 30 % from this study. The maximum predicted PHB recovery was found to be 0.845 g/g biomass dry cell weight and the purity was found to be 97.23 % using the optimized conditions.Keywords: acetone, PHB, RSM, halogenated hydrocarbons, extraction, bacillus subtilis.
Procedia PDF Downloads 442151 The Influence of Gossip on the Absorption Probabilities in Moran Process
Authors: Jurica Hižak
Abstract:
Getting to know the agents, i.e., identifying the free riders in a population, can be considered one of the main challenges in establishing cooperation. An ordinary memory-one agent such as Tit-for-tat may learn “who is who” in the population through direct interactions. Past experiences serve them as a landmark to know with whom to cooperate and against whom to retaliate in the next encounter. However, this kind of learning is risky and expensive. A cheaper and less painful way to detect free riders may be achieved by gossiping. For this reason, as part of this research, a special type of Tit-for-tat agent was designed – a “Gossip-Tit-for-tat” agent that can share data with other agents of its kind. The performances of both strategies, ordinary Tit-for-tat and Gossip-Tit-for-tat, against Always-defect have been compared in the finite-game framework of the Iterated Prisoner’s Dilemma via the Moran process. Agents were able to move in a random-walk fashion, and they were programmed to play Prisoner’s Dilemma each time they met. Moreover, at each step, one randomly selected individual was eliminated, and one individual was reproduced in accordance with the Moran process of selection. In this way, the size of the population always remained the same. Agents were selected for reproduction via the roulette wheel rule, i.e., proportionally to the relative fitness of the strategy. The absorption probability was calculated after the population had been absorbed completely by cooperators, which means that all the states have been occupied and all of the transition probabilities have been determined. It was shown that gossip increases absorption probabilities and therefore enhances the evolution of cooperation in the population.Keywords: cooperation, gossip, indirect reciprocity, Moran process, prisoner’s dilemma, tit-for-tat
Procedia PDF Downloads 99150 Challenges of Teaching Physical Education to Students With Special Needs in Regular School Settings
Authors: Christine Okello
Abstract:
Physical Education (PE) curriculum provides school age students to explore issues that are likely to impact on health, safety, and well-being. The current curriculum includes the physical activity component, intended to improve physical fitness, social skills as well as building confidence. While this viewpoint is vital, there are challenges and stigma attached when specific issues are either ignored, inadequately addressed, or not seen to be important. The department stipulates that students attend a school that is closest to their home, to access available government transportation to and from school. Equivalently, parents of students with a disability decide where their children attend school. A choice between a regular classroom, mainstream Special Unit classroom, or a School for Specific Purposes (SSP). Parents who take their children to regular schools may be oblivious of the details of the curriculum. Physical Education outcomes does not stipulate the extent to which a student must perform or expected to perform. It is therefore due to the classroom teacher to adjust their teaching goals or outcomes to suit all students in their classroom. A student who can run a hundred meters race in 20 seconds may belong in the same classroom as a student in a wheelchair. While these students are challenged because of a lack of performance, teachers are challenged to effectively teach successful PE lessons, and on the other hand students without a disability may not be able to attain their optimum. This paper will identify areas of need, address the challenges, and explore a possible solution.Keywords: special needs, disability, challenges, physical education
Procedia PDF Downloads 65149 An Automated Optimal Robotic Assembly Sequence Planning Using Artificial Bee Colony Algorithm
Authors: Balamurali Gunji, B. B. V. L. Deepak, B. B. Biswal, Amrutha Rout, Golak Bihari Mohanta
Abstract:
Robots play an important role in the operations like pick and place, assembly, spot welding and much more in manufacturing industries. Out of those, assembly is a very important process in manufacturing, where 20% of manufacturing cost is wholly occupied by the assembly process. To do the assembly task effectively, Assembly Sequences Planning (ASP) is required. ASP is one of the multi-objective non-deterministic optimization problems, achieving the optimal assembly sequence involves huge search space and highly complex in nature. Many researchers have followed different algorithms to solve ASP problem, which they have several limitations like the local optimal solution, huge search space, and execution time is more, complexity in applying the algorithm, etc. By keeping the above limitations in mind, in this paper, a new automated optimal robotic assembly sequence planning using Artificial Bee Colony (ABC) Algorithm is proposed. In this algorithm, automatic extraction of assembly predicates is done using Computer Aided Design (CAD) interface instead of extracting the assembly predicates manually. Due to this, the time of extraction of assembly predicates to obtain the feasible assembly sequence is reduced. The fitness evaluation of the obtained feasible sequence is carried out using ABC algorithm to generate the optimal assembly sequence. The proposed methodology is applied to different industrial products and compared the results with past literature.Keywords: assembly sequence planning, CAD, artificial Bee colony algorithm, assembly predicates
Procedia PDF Downloads 240148 Low Back Pain and Patients Lifting Behaviors among Nurses Working in Al Sadairy Hospital, Aljouf
Authors: Fatma Abdel Moneim Al Tawil
Abstract:
Low back pain (LBP) among nurses has been the subject of research studies worldwide. However, evidence of the influence of patients lifting behaviors and LBP among nurses in Saudi Arabia remains scarce. The purpose of this study was to investigate the relationship between LBP and nurses lifting behaviors. LBP questionnaire was distributed to 100 nurses working in Alsadairy Hospital distributed as Emergency unit(9),Coronary Care unit (9), Intensive Care Unit (7), Dialysis unit (30), Burn unit (5), surgical unit (11), Medical (14) and, X-ray unit (15). The questionnaire included demographic data, attitude scale, Team work scale, Back pain history and Knowledge scale. Regarding to emergency unit, there is appositive significant relation between teamwork scale and Knowledge as r = (0.807) and P =0.05. Regarding to ICU unit, there is a positive significant relation between teamwork scale and attitude scale as r= (0.781) and P =0.05. Regarding to Dialysis unit, there is a positive significant relation between attitude scale and teamwork scale as r=(0.443) and P =0.05. The findings suggest enhanced awareness of occupational safety with safe patient handling practices among nursing students must be emphasized and integrated into their educational curriculum. Moreover, back pain prevention program should incorporate the promotion of an active lifestyle and fitness training the implementation of institutional patient handling policies.Keywords: low back pain, lifting behaviors, nurses, team work
Procedia PDF Downloads 436147 A Convergent Interacting Particle Method for Computing Kpp Front Speeds in Random Flows
Authors: Tan Zhang, Zhongjian Wang, Jack Xin, Zhiwen Zhang
Abstract:
We aim to efficiently compute the spreading speeds of reaction-diffusion-advection (RDA) fronts in divergence-free random flows under the Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity. We study a stochastic interacting particle method (IPM) for the reduced principal eigenvalue (Lyapunov exponent) problem of an associated linear advection-diffusion operator with spatially random coefficients. The Fourier representation of the random advection field and the Feynman-Kac (FK) formula of the principal eigenvalue (Lyapunov exponent) form the foundation of our method implemented as a genetic evolution algorithm. The particles undergo advection-diffusion and mutation/selection through a fitness function originated in the FK semigroup. We analyze the convergence of the algorithm based on operator splitting and present numerical results on representative flows such as 2D cellular flow and 3D Arnold-Beltrami-Childress (ABC) flow under random perturbations. The 2D examples serve as a consistency check with semi-Lagrangian computation. The 3D results demonstrate that IPM, being mesh-free and self-adaptive, is simple to implement and efficient for computing front spreading speeds in the advection-dominated regime for high-dimensional random flows on unbounded domains where no truncation is needed.Keywords: KPP front speeds, random flows, Feynman-Kac semigroups, interacting particle method, convergence analysis
Procedia PDF Downloads 51146 Modeling Slow Crack Growth under Thermal and Chemical Effects for Fitness Predictions of High-Density Polyethylene Material
Authors: Luis Marquez, Ge Zhu, Vikas Srivastava
Abstract:
High-density polyethylene (HDPE) is one of the most commonly used thermoplastic polymer materials for water and gas pipelines. Slow crack growth failure is a well-known phenomenon in high-density polyethylene material and causes brittle failure well below the yield point with no obvious sign. The failure of transportation pipelines can cause catastrophic environmental and economic consequences. Using the non-destructive testing method to predict slow crack growth failure behavior is the primary preventative measurement employed by the pipeline industry but is often costly and time-consuming. Phenomenological slow crack growth models are useful to predict the slow crack growth behavior in the polymer material due to their ability to evaluate slow crack growth under different temperature and loading conditions. We developed a quantitative method to assess the slow crack growth behavior in the high-density polyethylene pipeline material under different thermal conditions based on existing physics-based phenomenological models. We are also working on developing an experimental protocol and quantitative model that can address slow crack growth behavior under different chemical exposure conditions to improve the safety, reliability, and resilience of HDPE-based pipeline infrastructure.Keywords: mechanics of materials, physics-based modeling, civil engineering, fracture mechanics
Procedia PDF Downloads 208145 A Study of Effect of Yoga on Choice Visual Reaction Time of Soccer Players
Authors: Vikram Singh, Parmod Kumar Sethi
Abstract:
The objective of the study was to study the effectiveness of common yoga protocol on reaction time (choice visual reaction time, measured in milliseconds/seconds) of male football players in the age group of 16 to 21 years. The 40 boys were measured initially on parameters of years of experience, level of participation. They were randomly assigned into two groups i.e. control and experimental. CVRT for both the groups was measured on day-1 and post intervention (common yoga protocol here) was measured after 45 days of training to the experimental group after they had finished with their regular fitness and soccer skill training. One way ANOVA (Univariate analysis) and Independent t-test using SPSS 23 statistical package were applied to get and analyze the results. The experimental yoga protocol group showed a significant reduction in CVRT, whereas the insignificant difference in reaction times was observed for control group after 45 days. The effect size was more than 52% for CVRT indicating that the effect of treatment was large. Power of the study was also found to be high (> .80). There was a significant difference after 45 days of yoga protocol in choice visual reaction time of experimental group (p = .000), t (21.93) = 6.410, p = .000 (two-tailed). The null hypothesis (that there would be no difference in reaction times of control and experimental groups) was rejected. Where p< .05. Therefore alternate hypothesis was accepted.Keywords: reaction time, yoga protocol, t-test, soccer players
Procedia PDF Downloads 241144 A Multi-Objective Programming Model to Supplier Selection and Order Allocation Problem in Stochastic Environment
Authors: Rouhallah Bagheri, Morteza Mahmoudi, Hadi Moheb-Alizadeh
Abstract:
This paper aims at developing a multi-objective model for supplier selection and order allocation problem in stochastic environment, where purchasing cost, percentage of delivered items with delay and percentage of rejected items provided by each supplier are supposed to be stochastic parameters following any arbitrary probability distribution. In this regard, dependent chance programming is used which maximizes probability of the event that total purchasing cost, total delivered items with delay and total rejected items are less than or equal to pre-determined values given by decision maker. The abovementioned stochastic multi-objective programming problem is then transformed into a stochastic single objective programming problem using minimum deviation method. In the next step, the further problem is solved applying a genetic algorithm, which performs a simulation process in order to calculate the stochastic objective function as its fitness function. Finally, the impact of stochastic parameters on the given solution is examined via a sensitivity analysis exploiting coefficient of variation. The results show that whatever stochastic parameters have greater coefficients of variation, the value of the objective function in the stochastic single objective programming problem is deteriorated.Keywords: supplier selection, order allocation, dependent chance programming, genetic algorithm
Procedia PDF Downloads 316143 Profiles of Physical Fitness and Enjoyment among Children: Associations with Sport Participation
Authors: Norjali Wazir M. R. W., Pion P., Mostaert M., De Meester A., Lenoir M., Bardid F.
Abstract:
Background and study aim: Most of the people assume that someone will perform well on something they like. A tool evaluating how much an individual likes an activity can also be guidance for talent detection and to keep youngster doing what they like as a recreational sport. The purpose of this study was to identify the relationship between physical performances with something that they like. Material and methods: In this cross-sectional study, 558 pupils age between 8 years to 11 years were tested using test battery containing 7 physical performance tests (I Do) compared to a pictorial scale containing 7 pictures (I Like) referring to the physical performance tests. Pearson correlation was computed to investigate the relation between the actual performance and the enjoyment. Results: Moderate significant correlations between each of the respective I Do, and I Like components were found. It appears that the correlation between the endurance items is higher as compared to the other six characteristics. Rerunning the analysis for age and sex groups separately resulted in only one significant correlation across all age group, namely between the evaluations of cardiovascular endurance. Conclusions: Information on enjoyment appears to be a useful and cost-effective addition to current multidimensional test batteries in a sport. By providing a clear picture on activities the young child or athlete likes or dislikes, attrition can be increased if a child starts his ‘career’ in a sport that alludes to skills or tasks he/she likes. This enjoyment will increase the intrinsic motivation, which is beneficial for sustained sports participation as well as for avoiding dropout in promising young athletes.Keywords: I Do, I Like, physical performance, enjoyment
Procedia PDF Downloads 154142 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique
Authors: C. Manjula, Lilly Florence
Abstract:
Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.Keywords: decision tree, genetic algorithm, machine learning, software defect prediction
Procedia PDF Downloads 332141 Electroencephalography Activity during Sensory Organization Balance Test
Authors: Tariq Ali Gujar, Anita Hökelmann
Abstract:
Postural balance plays essential role throughout life in daily activities. Somatosensory, visual and vestibular inputs play the fundamental role in maintaining body equilibrium to balance the posture. The aim of this study was to find out electroencephalography (EEG) responses during balance activity of young people during Sensory Organization Balance Test. The outcome of this study will help to create the fitness and neurorehabilitation plan. 25 young people (25 ± 3.1 years) have been analyzed on Balance Master NeuroCom® with the coupling of Brain Vision 32 electrode wireless EEG system during the Sensory Organization Test. From the results it has been found that the balance score of samples is significantly higher under the influence of somatosensory input as compared to visual and vestibular input (p < 0.05). The EEG between somatosensory and visual input to balance the posture showed significantly higher (p < 0.05) alpha and beta activities during somatosensory input in somatosensory, attention and visual functions of the cortex whereas executive and motor functions of the cerebral cortex showed significantly higher (p < 0.05) alpha EEG activity during the visual input. The results suggest that somatosensory and attention function of the cerebral cortex has alpha and beta activity, respectively high during somatosensory and vestibular input in maintaining balance. In patients with balance impairments both physical and cognitive training, including neurofeedback will be helpful to improve balance abilities.Keywords: balance, electroencephalography activity, somatosensory, visual, vestibular
Procedia PDF Downloads 585140 Survey of Epidemiology and Mechanisms of Badminton Injury Using Medical Check-Up and Questionnaire of School Age Badminton Players
Authors: Xiao Zhou, Kazuhiro Imai, Xiaoxuan Liu
Abstract:
Badminton is one type of racket sports that requires repetitive overhead motion, with the shoulder in abduction/external rotation and requires players to perform jumps, lunges, and quick directional changes. These characteristics could be stressful for body regions that may cause badminton injuries. Regarding racket players including badminton players, there have not been any studies that have utilized medical check-up to evaluate epidemiology and mechanism of injuries. In addition, epidemiology of badminton injury in school age badminton players is unknown. The first purpose of this study was to investigate the badminton injuries, physical fitness parameters, and intensity of shoulder pain using medical check-up so that the mechanisms of shoulder injuries might be revealed. The second purpose of this study was to survey the distribution of badminton injuries in elementary school age players so that injury prevention can be implemented as early as possible. The results of this study revealed that shoulder pain occurred in all players, and present shoulder pain players had smaller weight, greater shoulder external rotation (ER) gain, significantly thinner circumference of upper limbs and greater trunk extension. Identifying players with specific of these factors may enhance the prevention of badminton injury. This study also shows that there are high incidences of knee, ankle, plantar, and shoulder injury or pain in elementary school age badminton players. Injury prevention program might be implemented for elementary school age players.Keywords: badminton injury, epidemiology, medical check-up, school age players
Procedia PDF Downloads 141139 Comparative Analysis of Characterologic Features of Cadets with High Psychomotor Skills Who Study in Polish Air Force Academy
Authors: Justyna Skrzyńska, Zdzisław Kobos, Zbigniew Wochyński
Abstract:
The assessment of characterologic type is an essential element which decides about the proper task performance in the Air Forces. The aim of the research was to specify the percentage distribution of characterologic features by cadets studying particular courses in Polish Air Force Academy with the use of questionnaire. 34 first-year cadets chosen by lot and disunited into aircrafts pilots (N-10), helicopter pilots (N-13) and navigators(N-11) participated in the research. All of the questioned have had their psychomotor education examined in Military Aviation Medicine Institute in Warsaw, Poland. Moreover all of them are characterised by very good fitness. In the research, an anonymous poll(based on Myers-Briggs Type Indicator) appraising cadets’ characterologic type has been used. Cadets were provided with the same accommodation and nutrition. The findings have shown that percentage distribution was diversified, however it could be distinctly observed that most of future helicopter pilots (69%) are introverts whereas the majority of aircrafts pilots (70%) and navigators (100%) are extraverts. Moreover, it was also observed that 70% of cadets studying aircrafts pilotage run regular lifestyle and have judging skill according to Myers-Briggs Type Indicator. In future navigators group, 73% of students do not have this characteristic. The research has shown that cadets studying pilotage are more likely to demonstrate the characteristics which are essential for a performance of the important tasks in pilots environment than the cadets studying navigation.Keywords: pilot, Myers-Briggs Type indicator, questionnaire research, cadets, psychomotor education
Procedia PDF Downloads 485138 Response of Insulin Resistance Indicators to Aerobic Exercise at Different Intensities in Obese College Students
Authors: Long-Shan Wu, Ming-Chen Ko, Chien-Chang Ho, Po-Fu Lee, Li-Yun Chen, Ching-Yu Tseng
Abstract:
The purpose of this study was to determine whether progressive aerobic exercise intensity effects the changes in insulin resistance indicators among obese college students in Taiwan. Forty-eight obese subjects [body mass index (BMI) ≧ 27 kg/m2, aged 18-26 years old] were randomized into four equal groups (n = 12): light-intensity training group (LITG): 40-50% of their heart rate reserve (HRR); middle-intensity training group (MITG): 50-70% of their HRR; high-intensity training group (HITG): 70-80% of their HRR, and control group (CG). The aerobic exercise training program was performed 60 minutes per day on a treadmill three days/week in a training period of 12 weeks. All subjects’ anthropometric data, blood biochemical parameters, and health-related physical fitness components were measured at baseline and after 12 weeks. At baseline, all insulin resistance indicators did not differ significantly among the four groups (p > 0.05). After 12-week exercise intervention, the HITG had significantly more changes in insulin level than the MITG, LITG, and CG. Our findings suggested that a short-term aerobic exercise program can play an important role in improving insulin resistance indicators; either middle-intensity training significantly increases the insulin level, but the high-intensity exercise training program effectively improves obese college students’ insulin resistance.Keywords: aerobic training, exercise intensity, insulin resistance, obesity
Procedia PDF Downloads 298137 An Efficient Hybrid Feedstock Pretreatment Technique for the Release of Fermentable Sugar from Cassava Peels for Biofuel Production
Authors: Gabriel Sanjo Aruwajoye, E. B. Gueguim Kana
Abstract:
Agricultural residues present a low-cost feedstock for bioenergy production around the world. Cassava peels waste are rich in organic molecules that can be readily converted to value added products such as biomaterials and biofuels. However, due to the presence of high proportion of structural carbohydrates and lignin, the hydrolysis of this feedstock is imperative to achieve maximum substrate utilization and energy yield. This study model and optimises the release of Fermentable Sugar (FS) from cassava peels waste using the Response Surface Methodology. The investigated pretreatment input parameters consisted of soaking temperature (oC), soaking time (hours), autoclave duration (minutes), acid concentration (% v/v), substrate solid loading (% w/v) within the range of 30 to 70, 0 to 24, 5 to 20, 0 to 5 and 2 to 10 respectively. The Box-Behnken design was used to generate 46 experimental runs which were investigated for FS release. The obtained data were used to fit a quadratic model. A coefficient of determination of 0.87 and F value of 8.73 was obtained indicating the good fitness of the model. The predicted optimum pretreatment conditions were 69.62 oC soaking temperature, 2.57 hours soaking duration, 5 minutes autoclave duration, 3.68 % v/v HCl and 9.65 % w/v solid loading corresponding to FS yield of 91.83g/l (0.92 g/g cassava peels) thus 58% improvement on the non-optimised pretreatment. Our findings demonstrate an efficient pretreatment model for fermentable sugar release from cassava peels waste for various bioprocesses.Keywords: feedstock pretreatment, cassava peels, fermentable sugar, response surface methodology
Procedia PDF Downloads 371136 Improving the Quality of Staff Performance with a Talent-Driven Approach: Case Study of SAIPA Automotive Manufacturing Company in Iran
Authors: Abdolmajid Mosleh, Afzal Ghasimi
Abstract:
The purpose of this research is to investigate and identify effective factors that can improve the quality of personal performance in industrial companies. In the present study, it was assumed that the hidden variables of talent management could be explained by an important part of the variance in improving the quality of employee performance. This research is targeted in terms of applied research. The statistical population of the research is SAIPA automobile company with a number (N=10291); the sample of 380 people was selected based on the Cochran formula in a random sampling method among employed people. The measurement tool in this research was a questionnaire of 33 items with a control questionnaire that included two talent management departments (talent identification and talent exploitation) and improvements in staff performance (enhancement of technical and specialized capabilities, managerial capability, organizational interaction, and communication). The reliability of the internal consistency method was confirmed by the Cronbach's alpha coefficient and the two half-ways. In order to determine the validity of the questionnaire structure, confirmatory factor analysis was used. Based on the results of the data analysis, the effect of talent management on improving the quality of staff performance was confirmed. Based on the results of inferential statistics and structural equations of the proposed model, it had high fitness.Keywords: employee performance, talent management, performance improvement, SAIPA automobile manufacturing company
Procedia PDF Downloads 93135 Supplier Selection and Order Allocation Using a Stochastic Multi-Objective Programming Model and Genetic Algorithm
Authors: Rouhallah Bagheri, Morteza Mahmoudi, Hadi Moheb-Alizadeh
Abstract:
In this paper, we develop a supplier selection and order allocation multi-objective model in stochastic environment in which purchasing cost, percentage of delivered items with delay and percentage of rejected items provided by each supplier are supposed to be stochastic parameters following any arbitrary probability distribution. To do so, we use dependent chance programming (DCP) that maximizes probability of the event that total purchasing cost, total delivered items with delay and total rejected items are less than or equal to pre-determined values given by decision maker. After transforming the above mentioned stochastic multi-objective programming problem into a stochastic single objective problem using minimum deviation method, we apply a genetic algorithm to get the later single objective problem solved. The employed genetic algorithm performs a simulation process in order to calculate the stochastic objective function as its fitness function. At the end, we explore the impact of stochastic parameters on the given solution via a sensitivity analysis exploiting coefficient of variation. The results show that as stochastic parameters have greater coefficients of variation, the value of objective function in the stochastic single objective programming problem is worsened.Keywords: dependent chance programming, genetic algorithm, minimum deviation method, order allocation, supplier selection
Procedia PDF Downloads 259