Search results for: thermal niche
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3557

Search results for: thermal niche

3557 Influence of Chemical Pollution on Thermal Habitats of the Ciliate Tetrahymena thermophila

Authors: Doufoungognon C. Kone

Abstract:

Global change, in particular pollution and global warming, threatens ecosystems and the biodiversity they harbor. Due to pollutants exposure, organisms might modify their thermal niches in order to track the thermal conditions limiting the negative impacts of chemical stressors depending on their mode of action. This study tests the influence of different pollutants, copper, salt, and chloramphenicol, on the thermal preferences of the ciliate Tetrahymena thermophila. Six genotypes were exposed to a gradient of concentrations ranging from 0 to 500mg/L for copper, 0 to 300 mg/l for chloramphenicol, and 0 to 12g/l for salt in synthetic media at eight temperatures ranging from 11 to 39° C. The measured fitness proxies are the maximum growth rate and the 50% growth inhibitory concentration (IC50). The results show that the majority of genotypes are more resistant to chloramphenicol in temperatures below their thermal optimum without pollutants, while they better tolerate other salt and copper in temperatures above their thermal optimum. In addition, generalists reduce their niche width while specialists widen it in chloramphenicol. Overall, results suggest that global warming would have a particularly deleterious effect in the case of chemical pollution. This pollution would induce the full disruption of the thermal habitats.

Keywords: ciliate, thermal niche, growth rate, toxicity, multiple stressors

Procedia PDF Downloads 57
3556 Hominin Niche in the Times of Climate Change

Authors: Emilia Hunt, Sally C. Reynolds, Fiona Coward, Fabio Parracho Silva, Philip Hopley

Abstract:

Ecological niche modeling is widely used in conservation studies, but application to the extinct hominin species is a relatively new approach. Being able to understand what ecological niches were occupied by respective hominin species provides a new perspective into influences on evolutionary processes. Niche separation or overlap can tell us more about specific requirements of the species within the given timeframe. Many of the ancestral species lived through enormous climate changes: glacial and interglacial periods, changes in rainfall, leading to desertification or flooding of regions and displayed impressive levels of adaptation necessary for their survival. This paper reviews niche modeling methodologies and their application to hominin studies. Traditional conservation methods might not be directly applicable to extinct species and are not comparable to hominins. Hominin niche also includes aspects of technologies, use of fire and extended communication, which are not traditionally used in building conservation models. Future perspectives on how to improve niche modeling for extinct hominin species will be discussed.

Keywords: hominin niche, climate change, evolution, adaptation, ecological niche modelling

Procedia PDF Downloads 159
3555 Niche Authorities and Social Activism: Interrogating the Activities of Selected Bloggers in Ghana

Authors: Akosua Asantewaa Anane

Abstract:

Social media and its networking sites have become beneficial to society. With the advent of Web 2.0, many people are becoming technologically savvy and attracted to internet-based activities. With the click of a button, users are now sharing more information on topics, events and issues than before. A new phenomenon in the Ghanaian journalism sphere is the advent of blogger and citizen journalism, some of whom have become niche authorities. Niche authorities have emerged through the habitual and persistent curation of news on specific topics, resulting in the steady growth and emergence of valuable contributions to news sharing. Minimal studies have been conducted on niche authorities and their role in social activism in Ghana. This study, anchored on Cialdini’s Six Principles of Persuasion (reciprocation, consistency, social proof, liking, authority and scarcity), explores the features of niche authorities, their areas of expertise, as well as their authoritative voices in the curation of news stories. Using qualitative content analysis, cyber ethnography and thematic analysis of purposively sampled social media posts of five niche authorities, the study interrogates how these niche authorities employ the six principles of persuasion on their platforms to spark conversations on development, social inclusion and gender-based issues in the country. The study discusses how niche authorities deploy the principles in social activism and further recommends nurturing and mentoring communication strategies to progressively guide the youth to become future niche authorities in news curation and news sharing.

Keywords: social activism, cialdini’s six principles of persuasion, news curation, niche authorities

Procedia PDF Downloads 30
3554 Second Order Journalism: A Study of Selected Niche Authorities on Facebook and Twitter

Authors: Yvonne Dedzo

Abstract:

Social media has become a powerful tool in bridging the distance between individuals regardless of their location. It has become a convenient platform for public discussion and, consequently, generated the phenomenon of citizen journalists who have become both proactive and reactive participants in the dissemination of news, information and other epochal and historical events. This phenomenon has fueled the growth of niche authorities who deliver exceptional democratically consequential information online. This study, therefore, investigates how some selected niche authorities maintain their status on social media. Using the selective processes theory, the study further interrogates the information shared by niche authorities and further analyses the extent to which a public interest-altruistic motive or personal interest-self-serving motive drives their agenda of new sharing and usage. Through cyber-ethnography and, qualitative content analysis and semi-structured interviews, data was gathered and analysed from the posts of two purposely selected niche authorities on Facebook and Twitter. The findings indicate that niche authorities maintain their status by being consistent, prompt, informative, resourceful and interactive in their postings on the social media platform. The study also discovered that even though niche authorities are motivated by both public interest-altruism and interest-self-serving, the latter had a higher of motivation than the former.

Keywords: social medida, citizen journalist, niche authorities, selective processes theory

Procedia PDF Downloads 33
3553 Homogeneity among Diversity

Authors: Yu Guang

Abstract:

“Case studies are the preferred strategy when ‘how’ or ‘why’ questions are being posed.” Therefore, the study is based on two cases: strategy performed in JingNan War and by NIKE. The two samples are chosen as they are of comparability. Data are gathered and PEST and SWOT are used as analysis models to examine their strategic employment in order that the answer to brilliant strategies in variety is found. The niche strategy has been used in the past and present, in the battle fields and business. The homogeneity among diversity is the skill of performing strategies.

Keywords: challenger, homogeneity, managing diversity, niche strategy

Procedia PDF Downloads 494
3552 Exploring the Possibility of Islamic Banking as a Viable Alternative to the Conventional Banking Model

Authors: Lavan Vickneson

Abstract:

In today’s modern economy, the conventional banking model is the primary banking system used around the world. A significant problem faced by the conventional banking model is the recurring nature of banking crises. History’s record of the various banking crises, ranging from the Great Depression to the 2008 subprime mortgage crisis, is testament to the fact that banking crises continue to strike despite the preventive measures in place, such as bank’s minimum capital requirements and deposit guarantee schemes. If banking crises continue to occur despite these preventive measures, it necessarily follows that there are inherent flaws with the conventional banking model itself. In light of this, a possible alternative banking model to the conventional banking model is Islamic banking. To date, Islamic banking has been a niche market, predominantly serving Muslim investors. This paper seeks to explore the possibility of Islamic banking being more than just a niche market and playing a greater role in banking sectors around the world, by being a viable alternative to the conventional banking model.

Keywords: bank crises, conventional banking model, Islamic banking, niche market

Procedia PDF Downloads 248
3551 Precursor Muscle Cell’s Phenotype under Compression in a Biomimetic Mechanical Niche

Authors: Fatemeh Abbasi, Arne Hofemeier, Timo Betz

Abstract:

Muscle growth and regeneration critically depend on satellite cells (SCs) which are muscle stem cells located between the basal lamina and myofibres. Upon damage, SCs become activated, enter the cell cycle, and give rise to myoblasts that form new myofibres, while a sub-population self-renew and re-populate the muscle stem cell niche. In aged muscle as well as in certain muscle diseases such as muscular dystrophy, some of the SCs lose their regenerative ability. Although it is demonstrated that the chemical composition of SCs quiescent niche is different from the activated niche, the mechanism initially activated in the SCs remains unknown. While extensive research efforts focused on potential chemical activation, no such factor has been identified to the author’s best knowledge. However, it is substantiated that niche mechanics affects SCs behaviors, such as stemness and engraftment. We hypothesize that mechanical stress in the healthy niche (homeostasis) is different from the regenerative niche and that this difference could serve as an early signal activating SCs upon fiber damage. To investigate this hypothesis, we develop a biomimetic system to reconstitute both, the mechanical and the chemical environment of the SC niche. Cells will be confined between two elastic polyacrylamide (PAA) hydrogels with controlled elastic moduli and functionalized surface chemistry. By controlling the distance between the PAA hydrogel surfaces, we vary the compression forces exerted by the substrates on the cells, while the lateral displacement of the upper hydrogel will create controlled shear forces. To establish such a system, a simplified system is presented. We engineered a sandwich-like configuration of two elastic PAA layer with stiffnesses between 1 and 10 kPa and confined a precursor myoblast cell line (C2C12) in between these layers. Our initial observations in this sandwich model indicate that C2C12 cells show different behaviors under mechanical compression if compared to a control one-layer gel without compression. Interestingly, this behavior is stiffness-dependent. While the shape of C2C12 cells in the sandwich consisting of two stiff (10 kPa) layers was much more elongated, showing almost a neuronal phenotype, the cell shape in a sandwich situation consisting of one stiff and one soft (1 kPa) layer was more spherical. Surprisingly, even in proliferation medium and at very low cell density, the sandwich situation stimulated cell differentiation with increased striation and myofibre formation. Such behavior is commonly found for confluent cells in differentiation medium. These results suggest that mechanical changes in stiffness and applied pressure might be a relevant stimulation for changes in muscle cell behavior.

Keywords: C2C12 cells, compression, force, satellite cells, skeletal muscle

Procedia PDF Downloads 93
3550 Two Major Methods to Control Thermal Resistance of Focus Ring for Process Uniformity Enhance

Authors: Jin-Uk Park

Abstract:

Recently, the semiconductor industry is rapidly demanding complicated structures and mass production. From the point of view of mass production, the ETCH industry is concentrating on maintaining the ER (Etch rate) of the wafer edge constant regardless of changes over time. In this study, two major thermal factors affecting process were identified and controlled. First, the filler of the thermal pad was studied. Second, the significant difference of handling the thermal pad during PM was studied.

Keywords: etcher, thermal pad, wet cleaning, thermal conductivity

Procedia PDF Downloads 162
3549 Using the Transient Plane Source Method for Measuring Thermal Parameters of Electroceramics

Authors: Peter Krupa, Svetozár Malinarič

Abstract:

Transient plane source method has been used to measure the thermal diffusivity and thermal conductivity of a compact isostatic electro-ceramics at room temperature. The samples were fired at temperatures from 100 up to 1320 degrees Celsius in steps of 50. Bulk density and specific heat capacity were also measured with their corresponding standard uncertainties. The results were compared with further thermal analysis (dilatometry and thermogravimetry). Structural processes during firing were discussed.

Keywords: TPS method, thermal conductivity, thermal diffusivity, thermal analysis, electro-ceramics, firing

Procedia PDF Downloads 443
3548 A Long Tail Study of eWOM Communities

Authors: M. Olmedilla, M. R. Martinez-Torres, S. L. Toral

Abstract:

Electronic Word-Of-Mouth (eWOM) communities represent today an important source of information in which more and more customers base their purchasing decisions. They include thousands of reviews concerning very different products and services posted by many individuals geographically distributed all over the world. Due to their massive audience, eWOM communities can help users to find the product they are looking for even if they are less popular or rare. This is known as the long tail effect, which leads to a larger number of lower-selling niche products. This paper analyzes the long tail effect in a well-known eWOM community and defines a tool for finding niche products unavailable through conventional channels.

Keywords: eWOM, online user reviews, long tail theory, product categorization, social network analysis

Procedia PDF Downloads 388
3547 Thermal Properties of the Ground in Cyprus and Their Correlations and Effect on the Efficiency of Ground Heat Exchangers

Authors: G. A. Florides, E. Theofanous, I. Iosif-Stylianou, P. Christodoulides, S. Kalogirou, V. Messarites, Z. Zomeni, E. Tsiolakis, P. D. Pouloupatis, G. P. Panayiotou

Abstract:

Ground Coupled Heat Pumps (GCHPs) exploit effectively the heat capacity of the ground, with the use of Ground Heat Exchangers (GHE). Depending on the mode of operation of the GCHPs, GHEs dissipate or absorb heat from the ground. For sizing the GHE the thermal properties of the ground need to be known. This paper gives information about the density, thermal conductivity, specific heat and thermal diffusivity of various lithologies encountered in Cyprus with various relations between these properties being examined through comparison and modeling. The results show that the most important correlation is the one encountered between thermal conductivity and thermal diffusivity with both properties showing similar response to the inlet and outlet flow temperature of vertical and horizontal heat exchangers.

Keywords: ground heat exchangers, ground thermal conductivity, ground thermal diffusivity, ground thermal properties

Procedia PDF Downloads 351
3546 A Literature Review of the Trend towards Indoor Dynamic Thermal Comfort

Authors: James Katungyi

Abstract:

The Steady State thermal comfort model which dominates thermal comfort practice and which posits the ideal thermal conditions in a narrow range of thermal conditions does not deliver the expected comfort levels among occupants. Furthermore, the buildings where this model is applied consume a lot of energy in conditioning. This paper reviews significant literature about thermal comfort in dynamic indoor conditions including the adaptive thermal comfort model and alliesthesia. A major finding of the paper is that the adaptive thermal comfort model is part of a trend from static to dynamic indoor environments in aspects such as lighting, views, sounds and ventilation. Alliesthesia or thermal delight is consistent with this trend towards dynamic thermal conditions. It is within this trend that the two fold goal of increased thermal comfort and reduced energy consumption lies. At the heart of this trend is a rediscovery of the link between the natural environment and human well-being, a link that was partially severed by over-reliance on mechanically dominated artificial indoor environments. The paper concludes by advocating thermal conditioning solutions that integrate mechanical with natural thermal conditioning in a balanced manner in order to meet occupant thermal needs without endangering the environment.

Keywords: adaptive thermal comfort, alliesthesia, energy, natural environment

Procedia PDF Downloads 185
3545 Thermal Analysis of Photovoltaic Integrated Greenhouse Solar Dryer

Authors: Sumit Tiwari, Rohit Tripathi, G. N. Tiwari

Abstract:

Present study focused on the utilization of solar energy by the help of photovoltaic greenhouse solar dryer under forced mode. A single slope photovoltaic greenhouse solar dryer has been proposed and thermal modelling has been developed. Various parameters have been calculated by thermal modelling such as greenhouse room temperature, cell temperature, crop temperature and air temperature at exit of greenhouse. Further cell efficiency, thermal efficiency, and overall thermal efficiency have been calculated for a typical day of May and November. It was found that system can generate equivalent thermal energy up to 7.65 kW and 6.66 kW per day for clear day of May and November respectively.

Keywords: characteristics curve, photovoltaic, thermal modelling, thermal efficiency

Procedia PDF Downloads 416
3544 Thermal Fatigue Behavior of 400 Series Ferritic Stainless Steels

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

In this study, thermal fatigue properties of 400 series ferritic stainless steels have been evaluated in the temperature ranges of 200-800oC and 200-900oC. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. It has been revealed that load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property. Thermal fatigue resistance of 430J1L stainless steel is found to be superior to the other steels.

Keywords: ferritic stainless steel, automotive exhaust, thermal fatigue, microstructure, load relaxation

Procedia PDF Downloads 312
3543 The Implementation of a Numerical Technique to Thermal Design of Fluidized Bed Cooler

Authors: Damiaa Saad Khudor

Abstract:

The paper describes an investigation for the thermal design of a fluidized bed cooler and prediction of heat transfer rate among the media categories. It is devoted to the thermal design of such equipment and their application in the industrial fields. It outlines the strategy for the fluidization heat transfer mode and its implementation in industry. The thermal design for fluidized bed cooler is used to furnish a complete design for a fluidized bed cooler of Sodium Bicarbonate. The total thermal load distribution between the air-solid and water-solid along the cooler is calculated according to the thermal equilibrium. The step by step technique was used to accomplish the thermal design of the fluidized bed cooler. It predicts the load, air, solid and water temperature along the trough. The thermal design for fluidized bed cooler revealed to the installation of a heat exchanger consists of (65) horizontal tubes with (33.4) mm diameter and (4) m length inside the bed trough.

Keywords: fluidization, powder technology, thermal design, heat exchangers

Procedia PDF Downloads 472
3542 An Attempt to Improve Student´s Understanding on Thermal Conductivity Using Thermal Cameras

Authors: Mariana Faria Brito Francisquini

Abstract:

Many thermal phenomena are present and play a substantial role in our daily lives. This presence makes the study of this area at both High School and University levels a very widely explored topic in the literature. However, a lot of important concepts to a meaningful understanding of the world are neglected at the expense of a traditional approach with senseless algebraic problems. In this work, we intend to show how the introduction of new technologies in the classroom, namely thermal cameras, can work in our favor to make a clearer understanding of many of these concepts, such as thermal conductivity. The use of thermal cameras in the classroom tends to diminish the everlasting abstractness in thermal phenomena as they enable us to visualize something that happens right before our eyes, yet we cannot see it. In our study, we will provide the same amount of heat to metallic cylindrical rods of the same length, but different materials in order to study the thermal conductivity of each one. In this sense, the thermal camera allows us to visualize the increase in temperature along each rod in real time enabling us to infer how heat is being transferred from one part of the rod to another. Therefore, we intend to show how this approach can contribute to the exposure of students to more enriching, intellectually prolific, scenarios than those provided by traditional approaches.

Keywords: teaching physics, thermal cameras, thermal conductivity, thermal physics

Procedia PDF Downloads 247
3541 Thermal Stability and Insulation of a Cement Mixture Using Graphene Oxide Nanosheets

Authors: Nasser A. M. Habib

Abstract:

The impressive physical properties of graphene derivatives, including thermal properties, have made them an attractive addition to advanced construction nanomaterial. In this study, we investigated the impact of incorporating low amounts of graphene oxide (GO) into cement mixture nanocomposites on their heat storage and thermal stability. The composites were analyzed using Fourier transmission infrared, thermo-gravimetric analysis, and field emission scanning electron microscopy. Results showed that GO significantly improved specific heat by 30%, reduced thermal conductivity by 15%, and reduced thermal decomposition to only 3% at a concentration of 1.2 wt%. These findings suggest that the cement mixture can withstand high temperatures and may be suitable for specific applications requiring thermal stability and insulation properties.

Keywords: cement mixture composite, graphene oxide, thermal decomposition, thermal conductivity

Procedia PDF Downloads 24
3540 Field Study for Evaluating Winter Thermal Performance of Auckland School Buildings

Authors: Bin Su

Abstract:

Auckland has a temperate climate with comfortable warm, dry summers and mild, wet winters. An Auckland school normally does not need air conditioning for cooling during the summer and only needs heating during the winter. The Auckland school building thermal design should more focus on winter thermal performance and indoor thermal comfort for energy efficiency. This field study of testing indoor and outdoor air temperatures, relative humidity and indoor surface temperatures of three classrooms with different envelopes were carried out in the Avondale College during the winter months in 2013. According to the field study data, this study is to compare and evaluate winter thermal performance and indoor thermal conditions of school buildings with different envelopes.

Keywords: building envelope, building mass effect, building thermal comfort, building thermal performance, school building

Procedia PDF Downloads 387
3539 Thermal Fatigue Behavior of Austenitic Stainless Steels

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

Continually increasing working temperature and growing need for greater efficiency and reliability of automotive exhaust require systematic investigation into the thermal fatigue properties especially of high temperature stainless steels. In this study, thermal fatigue properties of 300 series austenitic stainless steels have been evaluated in the temperature ranges of 200-800°C and 200-900°C. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. Load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property.

Keywords: austenitic stainless steel, automotive exhaust, thermal fatigue, microstructure, load relaxation

Procedia PDF Downloads 345
3538 Total Thermal Resistance of Graphene-Oxide-Substrate Stack: Role of Interfacial Thermal Resistance in Heat Flow of 2D Material Based Devices

Authors: Roisul H. Galib, Prabhakar R. Bandaru

Abstract:

In 2D material based device, an interface between 2D materials and substrates often limits the heat flow through the device. In this paper, we quantify the total thermal resistance of a graphene-based device by series resistance model and show that the thermal resistance at the interface of graphene and substrate contributes to more than 50% of the total resistance. Weak Van der Waals interactions at the interface and dissimilar phonon vibrational modes create this thermal resistance, allowing less heat to flow across the interface. We compare our results with commonly used materials and interfaces, demonstrating the role of the interface as a potential application for heat guide or block in a 2D material-based device.

Keywords: 2D material, graphene, thermal conductivity, thermal conductance, thermal resistance

Procedia PDF Downloads 112
3537 Differentiating Morphological Patterns of the Common Benthic Anglerfishes from the Indian Waters

Authors: M. P. Rajeeshkumar, K. V. Aneesh Kumar, J. L. Otero-Ferrer, A. Lombarte, M. Hashim, N. Saravanane, V. N.Sanjeevan, V. M. Tuset

Abstract:

The anglerfishes are widely distributed from shallow to deep-water habitats and are highly diverse in morphology, behaviour, and niche occupancy patterns. To understand this interspecific variability and degree of niche overlap, we performed a functional analysis of five species inhabiting Indian waters where diversity of deep-sea anglerfishes is very high. The sensory capacities (otolith shape and eye size) were also studied to improve the understanding of coexistence of species. The analyses of fish body and otolith shape clustered species in two morphotypes related to phylogenetic lineages: i) Malthopsis lutea, Lophiodes lugubri and Halieutea coccinea were characterized by a dorso-ventrally flattened body with high swimming ability and relative small otoliths, and ii) Chaunax spp. were distinguished by their higher body depth, lower swimming efficiency, and relative big otoliths. The sensory organs did not show a pattern linked to depth distribution of species. However, the larger eye size in M. lutea suggested a nocturnal feeding activity, whereas Chaunax spp. had a large mouth and deeper body in response to different ecological niches. Therefore, the present study supports the hypothesis of spatial and temporal segregation of anglerfishes in the Indian waters, which can be explained from a functional approach and understanding from sensory capabilities.

Keywords: functional traits, otoliths, niche overlap, fishes, Indian waters

Procedia PDF Downloads 98
3536 Study of Hydrothermal Behavior of Thermal Insulating Materials Based on Natural Fibers

Authors: J. Zach, J. Hroudova, J. Brozovsky

Abstract:

Thermal insulation materials based on natural fibers represent a very promising area of materials based on natural easy renewable row sources. These materials may be in terms of the properties of most competing synthetic insulations, but show somewhat higher moisture sensitivity and thermal insulation properties are strongly influenced by the density and orientation of fibers. The paper described the problem of hygrothermal behavior of thermal insulation materials based on natural plant and animal fibers. This is especially the dependence of the thermal properties of these materials on the type of fiber, bulk density, temperature, moisture and the fiber orientation.

Keywords: thermal insulating materials, hemp fibers, sheep wool fibers, thermal conductivity, moisture

Procedia PDF Downloads 353
3535 Thermal Network Model for a Large Scale AC Induction Motor

Authors: Sushil Kumar, M. Dakshina Murty

Abstract:

Thermal network modelling has proven to be important tool for thermal analysis of electrical machine. This article investigates numerical thermal network model and experimental performance of a large-scale AC motor. Experimental temperatures were measured using RTD in the stator which have been compared with the numerical data. Thermal network modelling fairly predicts the temperature of various components inside the large-scale AC motor. Results of stator winding temperature is compared with experimental results which are in close agreement with accuracy of 6-10%. This method of predicting hot spots within AC motors can be readily used by the motor designers for estimating the thermal hot spots of the machine.

Keywords: AC motor, thermal network, heat transfer, modelling

Procedia PDF Downloads 293
3534 An Overview of Thermal Storage Techniques for Solar Thermal Applications

Authors: Talha Shafiq

Abstract:

The traditional electricity operation in solar thermal plants is designed to operate on a single path initiating at power plant and executes at the consumer. Due to lack of energy storage facilities during this operation, a decrease in the efficiency is often observed with the power plant performance. This paper reviews the significance of energy storage in supply design and elaborates various methods that can be adopted in this regard which are equally cost effective and environmental friendly. Moreover, various parameters in thermal storage technique are also critically analyzed to clarify the pros and cons in this facility. Discussing the different thermal storage system, their technical and economical evaluation has also been reviewed.

Keywords: thermal energy storage, sensible heat storage, latent heat storage, thermochemical heat storage

Procedia PDF Downloads 531
3533 Analysis of Thermal Damping in Si Based Torsional Micromirrors

Authors: R. Resmi, M. R. Baiju

Abstract:

The thermal damping of a dynamic vibrating micromirror is an important factor affecting the design of MEMS based actuator systems. In the development process of new micromirror systems, assessing the extent of energy loss due to thermal damping accurately and predicting the performance of the system is very essential. In this paper, the depth of the thermal penetration layer at different eigenfrequencies and the temperature variation distributions surrounding a vibrating micromirror is analyzed. The thermal penetration depth corresponds to the thermal boundary layer in which energy is lost which is a measure of the thermal damping is found out. The energy is mainly dissipated in the thermal boundary layer and thickness of the layer is an important parameter. The detailed thermoacoustics is used to model the air domain surrounding the micromirror. The thickness of the boundary layer, temperature variations and thermal power dissipation are analyzed for a Si based torsional mode micromirror. It is found that thermal penetration depth decreases with eigenfrequency and hence operating the micromirror at higher frequencies is essential for reducing thermal damping. The temperature variations and thermal power dissipations at different eigenfrequencies are also analyzed. Both frequency-response and eigenfrequency analyses are done using COMSOL Multiphysics software.

Keywords: Eigen frequency analysis, micromirrors, thermal damping, thermoacoustic interactions

Procedia PDF Downloads 332
3532 Investigation on the Thermal Properties of Magnesium Oxychloride Cement Prepared with Glass Powder

Authors: Rim Zgueb, Noureddine Yacoubi

Abstract:

The objective of this study was to investigate the thermal property of magnesium oxychloride cement (MOC) using glass powder as a substitute. Glass powder by proportion 0%, 5%, 10%, 15% and 20% of cement’s weight was added to specimens. At the end of a drying time of 28 days, thermal properties, compressive strength and bulk density of samples were determined. Thermal property is measured by Photothermal Deflection Technique by comparing the experimental of normalized amplitude and the phase curves of the photothermal signal to the corresponding theoretical ones. The findings indicate that incorporation of glass powder decreases the thermal properties of MOC.

Keywords: magnesium oxychloride cement (MOC), phototharmal deflection technique, thermal properties, Ddensity

Procedia PDF Downloads 316
3531 Synthesis and Characterization of Ferromagnetic Ni-Cu Alloys for Thermal Rectification Applications

Authors: Josue Javier Martinez Flores, Jaime Alvarez Quintana

Abstract:

A thermal rectifier consists of a device which can load a different heat flow which depends on the direction of that flow. That device is a thermal diode. It is well known that heat transfer in solids basically depends on the electrical, magnetic and crystalline nature of materials via electrons, magnons and phonons as thermal energy carriers respectively. In the present research, we have synthesized polycrystalline Ni-Cu alloys and identified the Curie temperatures; and we have observed that by way of secondary phase transitions, it is possible manipulate the heat conduction in solid state thermal diodes via transition temperature. In this sense, we have succeeded in developing solid state thermal diodes with a control gate through the Curie temperature via the activation and deactivation of magnons in Ni-Cu ferromagnetic alloys at room temperature. Results show thermal diodes with thermal rectification factors up to 1.5. Besides, the performance of the electrical rectifiers can be controlled by way of alloy Cu content; hence, lower Cu content alloys present enhanced thermal rectifications factors than higher ones.

Keywords: thermal rectification, Curie temperature, ferromagnetic alloys, magnons

Procedia PDF Downloads 215
3530 Development of Water-Based Thermal Insulation Paints Using Silica Aerogel

Authors: Lu Yanru, Handojo Djati Utomo, Yin Xi Jiang, Li Xiaodong

Abstract:

Insulation plays a key role in the sustainable building due to the contribution of energy consumption reduction. Without sufficient insulation, a great amount of the energy used to heat or cool a building will be lost to the outdoors. In this study, we developed a highly efficient thermal insulation paint with the incorporation of silica aerogel. Silica aerogel, with a low thermal conductivity of 0.01 W/mK, has been successfully prepared from the solid waste from the incineration plants. It has been added into water-based paints to increase its thermal insulation properties. To investigate the thermal insulation performance of silica aerogel additive, the paint samples were mixed with silica aerogel at different sizes and with various portions. The thermal conductivity, water resistance, thermal stability and adhesion strength of the samples were tested and evaluated. The thermal diffusivity measurements proved that adding silica aerogel additive could improve the thermal insulation properties of the paint significantly. Up to 5 ˚C reductions were observed after applying paints with silica aerogel additive compare to the one without it. The results showed that the developed thermal insulation paints have great potential for an application in green and sustainable building.

Keywords: silica aerogel, thermal insulation, water-based paints, water resistant

Procedia PDF Downloads 138
3529 Effects of Aging on Thermal Properties of Some Improved Varieties of Cassava (Manihot Esculenta) Roots

Authors: K. O. Oriola, A. O. Raji, O. E. Akintola, O. T. Ismail

Abstract:

Thermal properties of roots of three improved cassava varieties (TME419, TMS 30572, and TMS 0326) were determined on samples harvested at 12, 15 and 18 Months After Planting (MAP) conditioned to moisture contents of 50, 55, 60, 65, 70% (wb). Thermal conductivity at 12, 15 and 18 MAP ranged 0.4770 W/m.K to 0.6052W/m.K; 0.4804 W/m.K to 0.5530 W/m.K and 0.3764 to 0.6102 W/m.K respectively, thermal diffusivity from 1.588 to 2.426 x 10-7m2/s; 1.290 to 2.010 x 10-7m2/s and 0.1692 to 4.464 x 10-7m2/s and specific heat capacity from 2.3626 to 3.8991 kJ/kg.K; 1.8110 to 3.9703 kJ/kgK and 1.7311 to 3.8830 kJ/kg.K respectively within the range of moisture content studied across the varieties. None of the samples over the ages studied showed similar or definite trend in variation with others across the moisture content. However, second order polynomial models fitted all the data. Age on the other hand had a significant effect on the three thermal properties studied for TME 419 but not on thermal conductivity of TMS30572 and specific heat capacity of TMS 0326. Information obtained will provide better insight into thermal processing of cassava roots into stable products.

Keywords: thermal conductivity, thermal diffusivity, specific heat capacity, moisture content, tuber age

Procedia PDF Downloads 480
3528 Indoor Thermal Comfort in Educational Buildings in the State of Kuwait

Authors: Sana El-Azzeh, Farraj Al-Ajmi, Abdulrahman Al-Aqqad, Mohamed Salem

Abstract:

Thermal comfort is defined according to ANSI/ASHRAE Standard 55 as a condition of mind that expresses satisfaction with the thermal environment and is assessed by subjective evaluation. Sustaining this standard of thermal comfort for occupants of buildings or other enclosures is one of the important goals of HVAC design engineers. This paper presents a study of thermal comfort and adaptive behaviors of occupants who occupies two locations at the campus of the Australian College of Kuwait. A longitudinal survey and field measurement were conducted to measure thermal comfort, adaptive behaviors, and indoor environment qualities. The study revealed that female occupants in the selected locations felt warmer than males and needed more air velocity and lower temperature.

Keywords: indoor thermal comfort, educational facility, gender analysis, dry desert climate

Procedia PDF Downloads 125