Search results for: organic dyes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2568

Search results for: organic dyes

2358 Multi-Objective Exergy Optimization of an Organic Rankine Cycle with Cyclohexane as Working Fluid

Authors: Touil Djamal, Fergani Zineb

Abstract:

In this study, an Organic Rankine Cycle (ORC) with Cyclohexane working fluid is proposed for cogeneration in the cement industry. In this regard: first, a parametric study is conducted to evaluate the effects of some key parameters on the system performances. Next, single and multi-objective optimizations are performed to achieve the system optimal design. The optimization considers the exergy efficiency, the cost per exergy unit and the environmental impact of the net produced power as objective functions. Finally, exergy, exergoeconomic and exergoenvironmental analysis of the cycle is carried out at the optimum operating conditions. The results show that the turbine inlet pressure, the pinch point temperature difference and the heat transfer fluid temperature have significant effects on the performances of the ORC system.

Keywords: organic rankine cycle, multi-objective optimization, exergy, exergoeconomic, exergoenvironmental, multi-objective optimisation, organic rankine cycle, cement plant

Procedia PDF Downloads 251
2357 Synthesis of an Organic-Inorganic Salt of (C2H5NO2) 2H4SiW12O40 and Investigation of Its Anti-Viral Effect on the Tobacco Mosaic Virus (TMV)

Authors: Mahboobeh Mohadeszadeh, Majid Saghi

Abstract:

Polyoxometalates (POMs) are important inorganic compounds that have been considered specifically in recent years due to abundant attributes and applications. Those POMs that have one central tetrahedral atom called keggin. The binding Amino-acid groups to keggin structure give the antivirus effect to these compounds. A new organic-inorganic hybrid structure, with formula (Gly)2H4SiW12O40 was synthesized. Investigation on Anti-viral effect of this compound showed the (Gly)2H4SiW12O40 prevents infection of Tobacco Mosaic Virus (TMV) on the Nicotianatabacum plants.

Keywords: Polyoxometalate, Keggin, Organic-inorganic salt, TMV

Procedia PDF Downloads 267
2356 Synthesis of an Organic- Inorganic Salt of (C2H5NO2)2H4SiW12O40 and Investigation of Its Anti-Viral Effect on the Tobacco Mosaic Virus (TMV)

Authors: Mahboobeh Mohadeszadeh, Majid Saghi

Abstract:

Polyoxometalates (POMs) are important inorganic compounds that have been considered specifically in recent years due to abundant attributes and applications. Those POMs that have one central tetrahedral atom called keggin. The binding Amino-acid groups to keggin structure give the antivirus effect to these compounds. A new organic-inorganic hybrid structure, with formula (Gly)2H4SiW12O40 was synthesized. Investigation on Anti-viral effect of this compound showed the (Gly)2H4SiW12O40 prevents infection of Tobacco Mosaic Virus (TMV) on the Nicotianatabacum plants.

Keywords: polyoxometalate, keggin, organic-inorganic salt, TMV

Procedia PDF Downloads 396
2355 Experimental and Theoretical Characterization of Supramolecular Complexes between 7-(Diethylamino)Quinoline-2(1H)-One and Cucurbit[7] Uril

Authors: Kevin A. Droguett, Edwin G. Pérez, Denis Fuentealba, Margarita E. Aliaga, Angélica M. Fierro

Abstract:

Supramolecular chemistry is a field of growing interest. Moreover, studying the formation of host-guest complexes between macrocycles and dyes is highly attractive due to their potential applications. Examples of the above are drug delivery, catalytic process, and sensing, among others. There are different dyes of interest in the literature; one example is the quinolinone derivatives. Those molecules have good optical properties and chemical and thermal stability, making them suitable for developing fluorescent probes. Secondly, several macrocycles can be seen in the literature. One example is the cucurbiturils. This water-soluble macromolecule family has a hydrophobic cavity and two identical carbonyl portals. Additionally, the thermodynamic analysis of those supramolecular systems could help understand the affinity between the host and guest, their interaction, and the main stabilization energy of the complex. In this work, two 7-(diethylamino) quinoline-2 (1H)-one derivative (QD1-2) and their interaction with cucurbit[7]uril (CB[7]) were studied from an experimental and in-silico point of view. For the experimental section, the complexes showed a 1:1 stoichiometry by HRMS-ESI and isothermal titration calorimetry (ITC). The inclusion of the derivatives on the macrocycle lends to an upward shift in the fluorescence intensity, and the pKa value of QD1-2 exhibits almost no variation after the formation of the complex. The thermodynamics of the inclusion complexes was investigated using ITC; the results demonstrate a non-classical hydrophobic effect with a minimum contribution from the entropy term and a constant binding on the order of 106 for both ligands. Additionally, dynamic molecular studies were carried out during 300 ns in an explicit solvent at NTP conditions. Our finding shows that the complex remains stable during the simulation (RMSD ~1 Å), and hydrogen bonds contribute to the stabilization of the systems. Finally, thermodynamic parameters from MMPBSA calculations were obtained to generate new computational insights to compare with experimental results.

Keywords: host-guest complexes, molecular dynamics, quinolin-2(1H)-one derivatives dyes, thermodynamics

Procedia PDF Downloads 62
2354 Organic Permeation Properties of Hydrophobic Silica Membranes with Different Functional Groups

Authors: Sadao Araki, Daisuke Gondo, Satoshi Imasaka, Hideki Yamamoto

Abstract:

The separation of organic compounds from aqueous solutions is a key technology for recycling valuable organic compounds and for the treatment of wastewater. The wastewater from chemical plants often contains organic compounds such as ethyl acetate (EA), methylethyl ketone (MEK) and isopropyl alcohol (IPA). In this study, we prepared hydrophobic silica membranes by a sol-gel method. We used phenyltrimethoxysilane (PhTMS), ethyltrimethoxysilan (ETMS), Propyltrimethoxysilane (PrTMS), N-butyltrimethoxysilane (BTMS), N-Hexyltrimethoxysilane (HTMS) as silica sources to introduce each functional groups on the membrane surface. Cetyltrimethyl ammonium bromide (CTAB) was used as a molecular template to create suitable pore that enable the permeation of organic compounds. These membranes with five different functional groups were characterized by SEM, FT-IR, and permporometry. Thicknesses and pore diameters of silica layer for all membrane were about 1.0 μm and about 1 nm, respectively. In other words, functional groups had an insignificant effect on the membrane thicknesses and the formation of the pore by CTAB. We confirmed the effect of functional groups on the flux and separation factor for ethyl acetate (EA), methyl ethyl ketone, acetone and 1-butanol (1-BtOH) /water mixtures. All membranes showed a high flux for ethyl acetate compared with other compounds. In particular, the hydrophobic silica membrane prepared by using BTMS showed 0.75 kg m-2 h-1 of flux for EA. For all membranes, the fluxes of organic compounds showed the large values in the order corresponding to EA > MEK > acetone > 1-BtOH. On the other hand, carbon chain length of functional groups among ETMS, PrTMS, BTMS, PrTMS and HTMS did not have a major effect on the organic flux. Although we confirmed the relationship between organic fluxes and organic molecular diameters or fugacity of organic compounds, these factors had a low correlation with organic fluxes. It is considered that these factors affect the diffusivity. Generally, permeation through membranes is based on the diffusivity and solubility. Therefore, it is deemed that organic fluxes through these hydrophobic membranes are strongly influenced by solubility. We tried to estimate the organic fluxes by Hansen solubility parameter (HSP). HSP, which is based on the cohesion energy per molar volume and is composed of dispersion forces (δd), intermolecular dipole interactions (δp), and hydrogen-bonding interactions (δh), has recently attracted attention as a means for evaluating the resolution and aggregation behavior. Evaluation of solubility for two substances can be represented by using the Ra [(MPa)1/2] value, meaning the distance of HSPs for both of substances. A smaller Ra value means a higher solubility for each substance. On the other hand, it can be estimated that the substances with large Ra value show low solubility. We established the correlation equation, which was based on Ra, of organic flux at low concentrations of organic compounds and at 295-325 K.

Keywords: hydrophobic, membrane, Hansen solubility parameter, functional group

Procedia PDF Downloads 345
2353 Spherical Organic Particle (SOP) Emissions from Fixed-Bed Residential Coal-Burning Devices

Authors: Tafadzwa Makonese, Harold Annegarn, Patricia Forbes

Abstract:

Residential coal combustion is one of the largest sources of carbonaceous aerosols in the Highveld region of South Africa, significantly affecting the local and regional climate. In this study, we investigated single coal burning particles emitted when using different fire-ignition techniques (top-lit up-draft vs bottom-lit up-draft) and air ventilation rates (defined by the number of air holes above and below the fire grate) in selected informal braziers. Aerosol samples were collected on nucleopore filters at the SeTAR Centre Laboratory, University of Johannesburg. Individual particles (~700) were investigated using a scanning electron microscope equipped with an energy-dispersive X-ray spectroscopy (EDS). Two distinct forms of spherical organic particles (SOPs) were identified, one less oxidized than the other. The particles were further classified into "electronically" dark and bright, according to China et al. [2014]. EDS analysis showed that 70% of the dark spherical organic particles balls had higher (~60%) relative oxygen content than in the bright SOPs. We quantify the morphology of spherical organic particles and classify them into four categories: ~50% are bare single particles; ~35% particles are aggregated and form diffusion accretion chains; 10% have inclusions; and 5% are deformed due to impaction on filter material during sampling. We conclude that there are two distinct kinds of coal burning spherical organic particles and that dark SOPs are less volatile than bright SOPs. We also show that these spherical organic particles are similar in nature and characteristics to tar balls observed in biomass combustion, and that they have the potential to absorb sunlight thereby affecting the earth’s radiative budget and climate. This study provides insights on the mixing states, morphology, and possible formation mechanisms of these organic particles from residential coal combustion in informal stoves.

Keywords: spherical organic particles, residential coal combustion, fixed-bed, aerosols, morphology, stoves

Procedia PDF Downloads 441
2352 Anaerobic Digestion of Organic Wastes for Biogas Production

Authors: Ayhan Varol, Aysenur Ugurlu

Abstract:

Due to the depletion of fossil fuels and climate change, there is a rising interest in renewable energy sources. In this concept, a wide range of biomass (energy crops, animal manure, solid wastes, etc.) are used for energy production. There has been a growing interest in biomethane production from biomass. Biomethane production from organic wastes is a promising alternative for waste management by providing organic matter stabilization. Anaerobic digestion of organic material produces biogas, and organic substrate is degraded into a more stable material. Therefore, anaerobic digestion technology helps reduction of carbon emissions and produces renewable energy. The hydraulic retention time (HRT) and organic loading rate (OLR), as well as TS (VS) loadings, influences the anaerobic digestion of organic wastes significantly. The optimum range for HRT varies between 15 days to 30 days, whereas OLR differs between 0.5 to 5 g/L.d depending on the substrate type and its lipid, protein and carbohydrate contents. The organic wastes have biogas production potential through anaerobic digestion. In this study, biomethane production potential of wastes like sugar beet bagasse, agricultural residues, food wastes, olive mill pulp, and dairy manure having different characteristics was investigated in mesophilic CSTR reactor, and their performances were compared. The reactor was mixed in order to provide homogenized content at a rate of 80 rpm. The organic matter content of these wastes was between 85 to 94 % with 61% (olive pulp) to 22 % (food waste) dry matter content. The hydraulic retention time changed between 20-30 days. High biogas productions, 13.45 to 5.70 mL/day, were achieved from the wastes studied when operated at 9 to 10.5% TS loadings where OLR varied between 2.92 and 3.95 gVS/L.day. The results showed that food wastes have higher specific methane production rate and volumetric methane production potential than the other wastes studied, under the similar OLR values. The SBP was 680, 585, 540, 390 and 295 mL/g VS for food waste, agricultural residues, sugar beet bagasse, olive pulp and dairy manure respectively. The methane content of the biogas varied between 72 and 60 %. The volatile solids conversion rate for food waste was 62%.

Keywords: biogas production, organic wastes, biomethane, anaerobic digestion

Procedia PDF Downloads 252
2351 Synthesis of an Organic-Inorganic Salt of 12-Silicotungstate, (C2H5NO2)2H4SiW12O40 and Investigation of Its Anti-Viral Effect on the Tobacco Mosaic Virus

Authors: Mahboobeh Mohadeszadeh, Majid Saghi

Abstract:

Polyoxometalates (POMs) are important inorganic compounds that have been considered specifically in recent years due to abundant attributes and applications. Those POMs that have one central tetrahedral atom called keggin. The binding Amino-acid groups to keggin structure give the antivirus effect to these compounds. A new organic-inorganic hybrid structure, with formula (Gly)2H4SiW12O40, was synthesized. Investigation on the anti-viral effect of this compound showed the (Gly)2H4SiW12O40 prevents infection of Tobacco Mosaic Virus (TMV) on the Nicotianatabacum plants.

Keywords: polyoxometalate, keggin, organic-inorganic salt, TMV

Procedia PDF Downloads 261
2350 Influence of Cationic Surfactant (TTAB) on the Rate of Dipeptide (Gly-DL-Asp) Ninhydrin Reaction in Absence and Presence of Organic Solvents

Authors: Mohd. Akram, A. A. M. Saeed

Abstract:

Surfactants are widely used in our daily life either directly in household and personal care products or indirectly in the industrial processes. The kinetics of the interaction of glycyl-DL-aspartic acid (Gly-DL-Asp) with ninhydrin has been investigated spectrophotometrically in aqueous and organic-solvent media in the absence and presence of cationic surfactant of tetradecyltrimethylammonium bromide (TTAB). The study was carried out under different experimental conditions. The first and fractional order-rate were observed for [Gly-DL-Asp] and [ninhydrin], respectively. The reaction was enhanced about four-fold by TTAB micelles. The effect of organic solvents was studied at a constant concentration of TTAB and showed an increase in the absorbance as well as the rate constant for the formation of product (Ruhemann's purple). The results obtained in micellar media are treated quantitatively in terms of pseudo-phase and Piszkiewicz cooperativity models. The Arrhenius and Eyring equations are valid for the reaction over the range of temperatures used and different activation parameters (Ea, ∆H#, ∆S#, and ∆G#) have been evaluated.

Keywords: glycyl-DL-aspartic acid, ninhydrin, organic solvents, TTAB

Procedia PDF Downloads 362
2349 Hybrid Treatment Method for Decolorization of Mixed Dyes: Rhodamine-B, Brilliant Green and Congo Red

Authors: D. Naresh Yadav, K. Anand Kishore, Bhaskar Bethi, Shirish H. Sonawane, D. Bhagawan

Abstract:

The untreated industrial wastewater discharged into the environment causes the contamination of soil, water and air. Advanced treatment methods for enhanced wastewater treatment are attracting substantial interest among the currently employed unit processes in wastewater treatment. The textile industry is one of the predominant in wastewater production at current industrialized situation. The refused dyes at textile industry need to be treated in proper manner before its discharge into water bodies. In the present investigation, hybrid treatment process has been developed for the treatment of synthetic mixed dye wastewater. Photocatalysis and ceramic nanoporous membrane are mainly used for process integration to minimize the fouling and increase the flux. Commercial semiconducting powders (TiO2 and ZnO) has used as a nano photocatalyst for the degradation of mixed dye in the hybrid system. Commercial ceramic nanoporous tubular membranes have been used for the rejection of dye and suspended catalysts. Photocatalysis with catalyst has shown the average of 34% of decolorization (RB-32%, BG-34% and CR-36%), whereas ceramic nanofiltration has shown the 56% (RB-54%, BG-56% and CR-58%) of decolorization. Integration of photocatalysis and ceramic nanofiltration has shown 96% (RB-94%, BG-96% and CR-98%) of dye decolorization over 90 min of operation.

Keywords: photocatalysis, ceramic nanoporous membrane, wastewater treatment, advanced oxidation process, process integration

Procedia PDF Downloads 235
2348 Degradation of Different Organic Contaminates Using Corona Discharge Plasma

Authors: A. H. El-Shazly, A. El-Tayeb, M. F. Elkady, Mona G. E. Ibrahim, Abdelazim M. Negm

Abstract:

In this paper, corona discharge plasma reactor was used for degradation of organic pollution in aqueous solutions in batch reactor. This work examines the possibility of increasing the organic pollution removal efficiency from wastewater using non-thermal plasma. Three types of organic pollution phenol, acid blue 25 and methylene blue are presented to investigate experimentally the amount of organic pollution removal efficiency from wastewater. Measurement results for phenol degradation percentage are 71% in 35 min and 96% when its residence time is 60 min. In addition, the degradation behavior of acid blue 25 utilizing dual pin-to-plate corona discharge plasma system displays a removal efficiency of 82% in 11 min. The complete decolorization was accomplished in 35 min for concentration of acid blue 25 up to 100 ppm. Furthermore, the methylene blue degradation touched up to 85% during 35 min treatment in corona discharge plasma a batch reactor system. The decolorization ratio, conductivity, corona current and discharge energy are considered at various concentration molarity for AlCl3, CaCl2, KCl and NaCl under different molar concentration. It was observed that the attendance of salts at the same concentration level considerably diminished the rate and the extent of decolorization. The research presented that the corona system could be positively utilized in a diversity of organically contaminated at diverse concentrations. Energy consumption requirements for decolorization was considered. The consequences will be valuable for designing the plasma treatment systems appropriate for industrial wastewaters.

Keywords: wastewater treatment, corona discharge, non-thermal plasma, organic pollution

Procedia PDF Downloads 308
2347 Indigo Production in a Fed Batch Bioreactor Using Aqueous-Solvent Two Phase System

Authors: Vaishnavi Unde, Srikanth Mutnuri

Abstract:

Today dye stuff sector is one of the major chemical industries in India. Indigo is a blue coloured dye used all over the world in large quantity. The indigo dye produced and used in textile industries is synthetic having toxic effect, thus there is an increase in interest for natural dyes owing to the environmental concerns. The present study focuses on the use of a strain Pandoraea sp. isolated from garage soil, for the production of indigo in fed batch bioreactor. A comparative study between single phase and two phase production was carried out in this work. The blue colour produced during the experiments was analyzed using, TLC, UV-visible spectrophotometer and FTIR technique. The blue pigment was found to be indigo. The production of bio-indigo was done in a single phase fermentor carrying medium and substrate indole in dissolved form and was found to produce maximum of 0.041 g/L of indigo. Whereas there was an increase in production of indigo to 0.068 g/L in a two phase, water-silicone oil system. In this study the advantage of using second phase as silicone oil has enhanced the indigo production, as the second phase made the substrate available to the bacteria by increasing the surface area as well as it helped to prevent the inhibition effect of the high concentration of substrate, indole. The effect of single and two phases on the growth of bacteria was also studied.

Keywords: dyes, fed batch reactor, indole, Indigo

Procedia PDF Downloads 410
2346 Healthy Beverages Made from Grape Juice: Antioxidant, Energetic, and Isotonic Components

Authors: Yasmina Bendaali, Cristian Vaquero, Carlos Escott, Carmen González, Antonio Morata

Abstract:

Consumer tendencies to healthy eating habits and request for organic beverages led to the production of new drinks from fruit juices as a source of nutrients and bioactive compounds. Grape juice is a rich source of sugars, organic acids, and phenolic compounds, which define its beneficial effect on health and the attractive sensory profile for consumers' choices (color, taste, flavor). Thus, grape juice was used as a source of sugars, avoiding the addition of sweeteners by diluting it with mineral water to obtain the sugar concentration recommended for isotonic drinks (6% to 8%) to provide energy during physical activities. In addition, phenolic compounds of grape juice are associated with many human health benefits, mainly antioxidant activity, which helps to prevent different diseases associated with oxidative stress, including cancers and cardiovascular and neurodegenerative diseases. Furthermore, physical exercise has been shown to increase the production of free radicals and other reactive oxygen species. Thus, athletes need to improve their antioxidant defense systems to prevent oxidative damage. Different studies have demonstrated the positive effect of grape juice consumption during physical activities, which improves antioxidant activity and performance, protects against oxidative damage, and reduces inflammation. Thus, the use of grape juice to develop isotonic drinks can provide isotonic drinks with antioxidant and biological activities in addition to their principal role of rehydration and replacement of minerals and carbohydrates during physical exercises. Moreover, attractive sensory characteristics, mainly color, which is provided by anthocyanin content, have a great contribution to making the drinks more natural and help to dispense the use of synthetic dyes in addition to the health benefits which will be a novel product in the field of healthy beverages responding on the demand of consumers for new, innovative, and healthy products.

Keywords: grape juice, isotonic, antioxidants, anthocyanins, natural, sport

Procedia PDF Downloads 50
2345 Energy Recovery Potential from Food Waste and Yard Waste in New York and Montréal

Authors: T. Malmir, U. Eicker

Abstract:

Landfilling of organic waste is still the predominant waste management method in the USA and Canada. Strategic plans for waste diversion from landfills are needed to increase material recovery and energy generation from waste. In this paper, we carried out a statistical survey on waste flow in the two cities New York and Montréal and estimated the energy recovery potential for each case. Data collection and analysis of the organic waste (food waste, yard waste, etc.), paper and cardboard, metal, glass, plastic, carton, textile, electronic products and other materials were done based on the reports published by the Department of Sanitation in New York and Service de l'Environnement in Montréal. In order to calculate the gas generation potential of organic waste, Buswell equation was used in which the molar mass of the elements was calculated based on their atomic weight and the amount of organic waste in New York and Montréal. Also, the higher and lower calorific value of the organic waste (solid base) and biogas (gas base) were calculated. According to the results, only 19% (598 kt) and 45% (415 kt) of New York and Montréal waste were diverted from landfills in 2017, respectively. The biogas generation potential of the generated food waste and yard waste amounted to 631 million m3 in New York and 173 million m3 in Montréal. The higher and lower calorific value of food waste were 3482 and 2792 GWh in New York and 441 and 354 GWh in Montréal, respectively. In case of yard waste, they were 816 and 681 GWh in New York and 636 and 531 GWh in Montréal, respectively. Considering the higher calorific value, this amount would mean a contribution of around 2.5% energy in these cities.

Keywords: energy recovery, organic waste, urban energy modelling with INSEL, waste flow

Procedia PDF Downloads 107
2344 Dissolved Organic Nitrogen in Antibiotic Production Wastewater Treatment Plant Effluents

Authors: Ahmed Y. Kutbi, C. Russell. J. Baird, M. McNaughtan, Francis Wayman

Abstract:

Wastewaters from antibiotic production facilities are characterized with high concentrations of dissolved organic substances. Subsequently, it challenges wastewater treatment plant operator to achieve successful biological treatment and to meet regulatory emission levels. Of the dissolved organic substances, this research is investigating the fate of organic nitrogenous compounds (i.e., Chitin) in an antibiotic production wastewater treatment plant located in Irvine, Scotland and its impact on the WWTP removal performance. Dissolved organic nitrogen (DON) in WWTP effluents are of significance because 1) its potential to cause eutrophication in receiving waters, 2) the formation of nitrogenous disinfection by products in drinking waters and 3) limits WWTPs ability to achieve very low total nitrogen (TN) emissions limits (5 – 25 mg/l). The latter point is where the knowledge gap lays between the operator and the regulator in setting viable TN emission levels. The samples collected from Irvine site at the different stages of the treatment were analyzed for TN and DON. Results showed that the average TN in the WWTP influents and effluents are 798 and 261 mg/l respectively, in other words, the plant achieved 67 % removal of TN. DON Represented 51% of the influents TN, while the effluents accounted 26 % of the TN concentrations. Therefore, an ongoing investigation is carried out to identify DON constituents in WWTP effluent and evaluate its impact on the WWTP performance and its potential bioavailability for algae in receiving waters, which is, in this case, Irvine Bay.

Keywords: biological wastewater treatment plant, dissolved organic nitrogen, bio-availability, Irvine Bay

Procedia PDF Downloads 226
2343 Study of Exciton Binding Energy in Photovoltaic Polymers and Non-Fullerene Acceptors

Authors: Ho-Wa Li, Sai-Wing Tsang

Abstract:

The excitonic effect in organic semiconductors plays a key role in determining the electronic devices performance. Strong exciton binding energy has been regarded as the detrimental factor limiting the further improvement in organic photovoltaic cells. To the best of our knowledge, only limited reported can be found in measuring the exciton binding energy in organic photovoltaic materials. Conventional sophisticated approach using photoemission spectroscopy (UPS and IPES) would limit the wide access of the investigation. Here, we demonstrate a facile approach to study the electrical and optical quantum efficiencies of a series of conjugated photovoltaic polymer, fullerene and non-fullerene materials. Quantitative values of the exciton binding energy in those prototypical materials were obtained with concise photovoltaic device structure. And the extracted binding energies have excellent agreement with those determined by the conventional photoemission technique. More importantly, our findings can provide valuable information on the excitonic dissociation in the first excited state. Particularly, we find that the high binding energy of some non-fullerene acceptors limits the combination of polymer acceptors for efficiency exciton dissociation. The results bring insight into the engineering of excitonic effect for the development of efficient organic photovoltaic cells.

Keywords: organic photovoltaics, quantum efficiency, exciton binding energy, device physics

Procedia PDF Downloads 118
2342 Advances in Membrane Technologies for Wastewater Treatment

Authors: Deniz Sahin

Abstract:

This study provides a literature review of the special issue on wastewater treatment technologies, especially membrane technologies. Currently, wastewater is a serious and increasing worldwide problem with an adverse effect on the environment and living organisms. For this reason, many technologies have been developed to treat wastewater before discharging it to water bodies. We have been discussed membrane technologies to remove contaminants from wastewater such as heavy metals, dyes, pesticides, etc., which represent the main pollutants in wastewater. All the properties of these technologies including performance, economics, simplicity, and operability are also compared with other wastewater treatment technologies. The conventional water treatment technologies have the disadvantages of low separation efficiency, high energy consumption, and strict operating temperature. To overcome these difficulties, membrane technologies have been developed and used in wastewater treatment. Membrane technology uses a selectively permeable membrane to remove suspended and dissolved solids from water. This membrane is a very thin film of synthetic organic or inorganic materials, that can allow a very selective separation between a mixture and its components. Examples of membrane technologies include microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), electrodialysis (ED), gas separation, etc. Most of these technologies have been used extensively for the treatment of heavy metal wastewater. For instance, wastewater that contains Cu²⁺, Cd²⁺, Pb²⁺, Zn²⁺ was treated by ultrafiltration technology. It was shown that complete removal of metal ions could be achieved.

Keywords: industrial pollution, membrane technologies, metal ions, wastewater

Procedia PDF Downloads 165
2341 Effect of Organic Fertilizers on the Improvement of Soil Microbiological Functioning under Saline Conditions of Arid Regions: Impact on Carbon and Nitrogen Mineralization

Authors: Oustani Mabrouka, Halilat Md Tahar, Hannachi Slimane

Abstract:

This study was conducted on representative and contrasting soils of arid regions. It focuses on the compared influence of two organic fertilizers: poultry manure (PM) and bovine manure (BM) on improving the microbial functioning of non-saline (SS) and saline (SSS) soils, in particularly, the process of mineralization of nitrogen and carbon. The microbiological activity was estimated by respirometric test (CO2–C emissions) and the extraction of two forms of mineral nitrogen (NH4+-N and NO3--N). Thus, after 56 days of incubation under controlled conditions (28 degrees and 80 per cent of the field capacity), the two types of manures showed that the mineralization activity varies according to type of soil and the organic substrate itself. However, the highest cumulative quantities of CO2–C, NH4+–N and NO3-–N obtained at the end of incubation were recorded in non-saline (SS) soil treated with poultry manure with 1173.4, 4.26 and 8.40 mg/100 g of dry soil, respectively. The reductions in rates of release of CO2–C and of nitrification under saline conditions were 21 and 36, 78 %, respectively. The influence of organic substratum on the microbial density shows a stimulating effect on all microbial groups studied. The whole results show the usefulness of two types of manures for the improvement of the microbiological functioning of arid soils.

Keywords: Salinity, Organic matter, Microorganisms, Mineralization, Nitrogen, Carbon, Arid regions

Procedia PDF Downloads 255
2340 Exergy Analysis of Regenerative Organic Rankine Cycle Using Turbine Bleeding

Authors: Kyoung Hoon Kim

Abstract:

This work presents an exergetical performance analysis of regenerative organic Rankine cycle (ORC) using turbine bleeding based on the second law of thermodynamics for recovery of finite thermal energy. Effects of system parameters such as turbine bleeding pressure and turbine bleeding fraction are theoretically investigated on the exergy destructions (anergies) at various components of the system as well as the exergy and the second-law efficiencies. Under the conditions of the critical fraction of turbine bleeding, the simulation results show that the exergy efficiency decreases monotonically with respect to the bleeding pressure, however, the second-law efficiency has a peak with respect to the turbine bleeding pressure.

Keywords: organic Rankine cycle, ORC, regeneration, turbine bleeding, exergy, second-law efficiency

Procedia PDF Downloads 475
2339 Effect of Inorganic Fertilization on Soil N Dynamics in Agricultural Plots in Central Mexico

Authors: Karla Sanchez-Ortiz, Yunuen Tapia-Torres, John Larsen, Felipe Garcia-Oliva

Abstract:

Due to food demand production, the use of synthetic nitrogenous fertilizer has increased in agricultural soils to replace the N losses. Nevertheless, the intensive use of synthetic nitrogenous fertilizer in conventional agriculture negatively affects the soil and therefore the environment, so alternatives such as organic agriculture have been proposed for being more environmentally friendly. However, further research in soil is needed to see how agricultural management affects the dynamics of C and N. The objective of this research was to evaluate the C and N dynamics in the soil with three different agricultural management: an agricultural plot with intensive inorganic fertilization, a plot with semi-organic management and an agricultural plot with recent abandonment (2 years). For each plot, the soil C and N dynamics and the enzymatic activity of NAG and β-Glucosidase were characterized. Total C and N concentration of the plant biomass of each site was measured as well. Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) was higher in abandoned plot, as well as this plot had higher total carbon (TC) and total nitrogen (TN), besides microbial N and microbial C. While the enzymatic activity of NAG and β-Glucosidase was greater in the agricultural plot with inorganic fertilization, as well as nitrate (NO₃) was higher in fertilized plot, in comparison with the other two plots. The aboveground biomass (AB) of maize in the plot with inorganic fertilization presented higher TC and TN concentrations than the maize AB growing in the semiorganic plot, but the C:N ratio was highest in the grass AB in the abandoned plot. The C:N ration in the maize grain was greater in the semi-organic agricultural plot. These results show that the plot under intensive agricultural management favors the loss of soil organic matter and N, degrading the dynamics of soil organic compounds, promoting its fertility depletion.

Keywords: mineralization, nitrogen cycle, soil degradation, soil nutrients

Procedia PDF Downloads 156
2338 Influence of Recombination of Free and Trapped Charge Carriers on the Efficiency of Conventional and Inverted Organic Solar Cells

Authors: Hooman Mehdizadeh Rad, Jai Singh

Abstract:

Organic solar cells (OSCs) have been actively investigated in the last two decades due to their several merits such as simple fabrication process, low-cost manufacturing, and lightweight. In this paper, using the optical transfer matrix method (OTMM) and solving the drift-diffusion equations processes of recombination are studied in inverted and conventional bulk heterojunction (BHJ) OSCs. Two types of recombination processes are investigated: 1) recombination of free charge carriers using the Langevin theory and 2) of trapped charge carriers in the tail states with exponential energy distribution. These recombination processes are incorporated in simulating the current- voltage characteristics of both conventional and inverted BHJ OSCs. The results of this simulation produces a higher power conversion efficiency in the inverted structure in comparison with conventional structure, which agrees well with the experimental results.

Keywords: conventional organic solar cells, exponential tail state recombination, inverted organic solar cells, Langevin recombination

Procedia PDF Downloads 158
2337 Fabrication of Activated Carbon from Palm Trunksfor Removal of Harmful Dyes

Authors: Eman Alzahrani

Abstract:

Date palm trees are abundant and cheap natural resources in Saudi Arabia. In this study, an activated carbon was prepared from palm trunks by chemical processes. The chemical activation was performed by impregnation of the raw materials after grinding with H3PO4 solution (63%), followed by placing of the sample solution on a muffle furnace at 400ºC for 30 min, and then at 800ºC for 10 min. The morphology of the fabricated material was checked using scanning electron microscopy that showed the rough surfaces on the carbon samples. The use of fabricated activated carbon for removal of eosin dye from aqueous solutions at different contact time, initial dye concentration, pH and adsorbent doses was investigated. The experimental results show that the adsorption process attains equilibrium within 20 min. The adsorption isotherm equilibrium was studied by means of the Langmuir and Freundlich isotherms, and it was found that the data fit the Langmuir isotherm equation with maximum monolayer adsorption capacity of 126.58 mg g-1. The results indicated that the home made activated carbon prepared from palm trunks has the ability to remove eosin dye from aqueous solution and it will be a promising adsorbent for the removal of harmful dyes from waste water.

Keywords: activated carbon, date palm trunks, H3PO4 activation, adsorption, dye removal, eosin dye, isotherm

Procedia PDF Downloads 339
2336 The Importance of Storage Period on Biogas Potential of Cattle Manure

Authors: Seongwon Im, Jimin Kim, Kyeongcheol Kim, Dong-Hoon Kim

Abstract:

Cattle manure (CM) produced from farmhas been utilized to soils for increasing crop production owing to high nutrients content and effective microorganisms. Some cities with the concentrated activity of livestock industry have suffered from environmental problems, such as odorous gas emissions and soil and water pollution, caused by excessive use of compost. As an alternative option, the anaerobic digestion (AD) process can be utilized, which can reduce the volume of organic waste but also produce energy. According to Korea-Ministry of Trade, Industry, and Energy (KMTIE), the energy potential of CM via biogas production was estimated to be 0.8 million TOE per year, which is higher than that of other organic wastes. However, limited energy is recovered since useful organic matter, capable of converting to biogas, may be degraded during the long storage period (1-6 months).In this study, the effect of storage period on biogas potential of CM was investigated. Compared to fresh CM (VS 14±1 g/L, COD 205±5 g/L, TKN 7.4±0.8 g/L, NH4+-N 1.5±0.1), old CM has higher organic (35-37%) and nitrogen content (50-100%) due to the drying process during storage. After stabilization period, biogas potential of 0.09 L CH4/g VS was obtained in R1 (old CM supplement) at HRT of 150-100 d, and it was decreased further to 0.06 L CH4/g VS at HRT of 80 d. The drop of pH and organic acids accumulation were not observed during the whole operation of R1. Ammonia stripping and pretreatment of CM were found to be not effective to increase CH4 yield. On the other hand, a sudden increase of biogas potential to 0.19-0.22 L CH4/g VS was achieved in R2 after changing feedstock to fresh CM. The expected reason for the low biogas potential of old CM might be related with the composition of organic matters in CM. Easily biodegradable organic matters in the fresh CM were contained in high concentration, butthey were removed by microorganisms during storing CM in a farm, resulting low biogas yield. This study implies that fresh storage is important to make AD process applicable for CM.

Keywords: storage period, cattle manure, biogas potential, microbial analysis

Procedia PDF Downloads 142
2335 Empowering South African Female Farmers through Organic Lamb Production: A Cost Analysis Case Study

Authors: J. M. Geyser

Abstract:

Lamb is a popular meat throughout the world, particularly in Europe, the Middle East and Oceania. However, the conventional lamb industry faces challenges related to environmental sustainability, climate change, consumer health and dwindling profit margins. This has stimulated an increasing demand for organic lamb, as it is perceived to increase environmental sustainability, offer superior quality, taste, and nutritional value, which is appealing to farmers, including small-scale and female farmers, as it often commands a premium price. Despite its advantages, organic lamb production presents challenges, with a significant hurdle being the high production costs encompassing organic certification, lower stocking rates, higher mortality rates and marketing cost. These costs impact the profitability and competitiveness or organic lamb producers, particularly female and small-scale farmers, who often encounter additional obstacles, such as limited access to resources and markets. Therefore, this paper examines the cost of producing organic lambs and its impact on female farmers and raises the research question: “Is organic lamb production the saving grace for female and small-scale farmers?” Objectives include estimating and comparing production costs and profitability or organic lamb production with conventional lamb production, analyzing influencing factors, and assessing opportunities and challenges for female and small-scale farmers. The hypothesis states that organic lamb production can be a viable and beneficial option for female and small-scale farmers, provided that they can overcome high production costs and access premium markets. The study uses a mixed-method approach, combining qualitative and quantitative data. Qualitative data involves semi-structured interviews with ten female and small-scale farmers engaged in organic lamb production in South Africa. The interview covered topics such as farm characteristics, practices, cost components, mortality rates, income sources and empowerment indicators. Quantitative data used secondary published information and primary data from a female farmer. The research findings indicate that when a female farmer moves from conventional lamb production to organic lamb production, the cost in the first year of organic lamb production exceed those of conventional lamb production by over 100%. This is due to lower stocking rates and higher mortality rates in the organic system. However, costs start decreasing in the second year as stocking rates increase due to manure applications on grazing and lower mortality rates due to better worm resistance in the herd. In conclusion, this article sheds light on the economic dynamics of organic lamb production, particularly focusing on its impact on female farmers. To empower female farmers and to promote sustainable agricultural practices, it is imperative to understand the cost structures and profitability of organic lamb production.

Keywords: cost analysis, empowerment, female farmers, organic lamb production

Procedia PDF Downloads 36
2334 Review of Suitable Advanced Oxidation Processes for Degradation of Organic Compounds in Produced Water during Enhanced Oil Recovery

Authors: Smita Krishnan, Krittika Chandran, Chandra Mohan Sinnathambi

Abstract:

Produced water and its treatment and management are growing challenges in all producing regions. This water is generally considered as a nonrevenue product, but it can have significant value in enhanced oil recovery techniques if it meets the required quality standards. There is also an interest in the beneficial uses of produced water for agricultural and industrial applications. Advanced Oxidation Process is a chemical technology that has been growing recently in the wastewater treatment industry, and it is highly recommended for non-easily removal of organic compounds. The efficiency of AOPs is compound specific, therefore, the optimization of each process should be done based on different aspects.

Keywords: advanced oxidation process, photochemical processes, degradation, organic contaminants

Procedia PDF Downloads 476
2333 Organic Geochemistry of the Late Cenomanian–Early Turonian Source Rock in Central and Northern Tunisia

Authors: Belhaj Mohamed, M. Saidi, I. Bouazizi, M. Soussi, M. Ben Jrad

Abstract:

The Late Cenomanian-Early Turonian laminated, black, organic-rich limestones were described in Central Tunisia and attributed to the Bahloul Formation. It covers central and northern Tunisia, and the northern part of the Gulf of Gabes. The Bahloul Formation is considered as one of the main source rocks in Tunisia and is composed of outer-shelf to slop-laminated and dark-gray to black-colored limestones and marls. This formation had been deposited in a relatively deep-marine, calm, and anoxic environment. Rock-Eval analysis and vitrinite reflectance (Ro) measurements were performed on the basis of the organic carbon content. Several samples were chosen for molecular organic geochemistry. Saturate and aromatic hydrocarbons were analyzed by gas chromatography (GC) and GC–mass spectrometry. Geochemical data of the Bahloul Formation in northern and central Tunisia show this level to be a good potential source rock as indicated by the high content of type II organic matter. This formation exhibits high total organic carbon contents (as much as 14%), with an average value of 2% and a good to excellent petroleum potential, ranging between 2 and 50 kg of hydrocarbon/ton of rock. The extracts from the Bahloul Formation are characterized by Pr/Ph ratios ranging between 1.5 and 3, a moderate diasterane content, a C27 sterane approximately equal to C29 sterane, a high C28/C29 ratio, low gammacerane index, a C35/C34 homohopane ratio less than 1 and carbon isotope compositions between -24 and -26‰. The thermal maturity is relatively low, corresponding to the beginning of the oil window in the western area near the Algerian border, in the oil window in the eastern area (Sahel basin) and late mature in northern part.

Keywords: biomarkers, organic geochemistry, source rock, Tunisia

Procedia PDF Downloads 469
2332 Synthesis, Spectral, Thermal, Optical and Dielectric Studies of Some Organic Arylidene Derivatives

Authors: S. Sathiyamoorthi, P. Srinivasan, K. Suganya Devi

Abstract:

Arylidene derivatives are the subclass of chalcone derivatives. Chalcone derivatives are studied widely for the past decade because of its nonlinearity. To seek new organic group of crystals which suit for fabrication of optical devices, three-member organic arylidene crystals were synthesized by using Claisen–Schmidt condensation reaction. Good quality crystals were grown by slow evaporation method. Functional groups were identified by FT-IR and FT-Raman spectrum. Optical transparency and optical band gap were determined by UV-Vis-IR studies. Thermal stability and melting point were calculated using TGA and DSC. Variation of dielectric loss and dielectric constant with frequency were calculated by dielectric measurement.

Keywords: DSC and TGA studies, nonlinear optic studies, Fourier Transform Infrared Spectroscopy, UV-vis-NIR spectra

Procedia PDF Downloads 279
2331 Cenomanian-Turonian Oceanic Anoxic Event, Palynofacies and Optical Kerogen Analysis in Abu Gharadig Basin, Egypt

Authors: Mohamed Ibrahim, Suzan Kholeif

Abstract:

The Cenomanian-Turonian boundary was a ‘greenhouse’ period. The atmosphere at that time was characterized by high CO₂; in addition, there was the widespread deposition of organic-rich sediments anomalously rich in organic carbon. The sediments, palynological, total organic carbon (TOC), stable carbon and oxygen isotopes (δ¹³C, δ¹⁸O, organic) of the Cenomanian-Turonian Bahariya and basal Abu Roash formations at the southern Tethys margin were studied in two deep wells (AG5 and AG-13), Abu Gharadig Oil Field, North Western Desert, Egypt. Some of the marine (dinoflagellate cysts), as well as the terrestrial palynoflora (spores and pollen grains), reveal extinction and origination patterns that are known elsewhere, although other species may be survived across the Cenomanian-Turonian boundary. This implies control of global changes on the palynoflora, i.e., impact of Oceanic Anoxic Event OAE2 (Bonarelli Event), rather than changes in the local environmental conditions. The basal part of the Abu Roach Formation ('G' and 'F' members, late Cenomanian) shows a positive δ ¹³C excursion of the organic fraction. The TOC is generally high between 2.20 and 3.04 % in the basal Abu Roash Formation: shale of 'G' and carbonate of 'F' members, which indicates that these two members are the main Cretaceous source rocks in the Abu Gharadig Basin and have a type I-II kerogen composition. They are distinguished by an abundance of amorphous organic matter AOM and Chlorococcalean algae, mainly Pediastrum and Scenedesmus, along with subordinate dinoflagellate cysts.

Keywords: oceanic anoxic event, cenomanian-turonian, palynofacies, western desert, Egypt

Procedia PDF Downloads 97
2330 Malachite Green and Red Congo Dyes Adsorption onto Chemical Treated Sewage Sludge

Authors: Zamouche Meriem, Mehcene Ismahan, Temmine Manel, Bencheikh Lehocine Mosaab, Meniai Abdeslam Hassen

Abstract:

In this study, the adsorption of Malachite Green (MG) by chemical treated sewage sludge has been studied. The sewage sludge, collected from drying beds of the municipal wastewater treatment station of IBN ZIED, Constantine, Algeria, was treated by different acids such us HNO₃, H₂SO₄, H₃PO₄ for modifying its aptitude to removal the MG from aqueous solutions. The results obtained shows that the sewage sludge activated by sulfuric acid give the highest elimination amounts of MG (9.52 mg/L) compared by the other acids used. The effects of operation parameters have been investigated, the results obtained show that the adsorption capacity per unit of adsorbent mass decreases from 18.69 to 1.20 mg/g when the mass of the adsorbent increases from 0.25 to 4 g respectively, the optimum mass for which a maximum of elimination of the dye is equal to 0.5g. The increasing in the temperature of the solution results in a slight decrease in the adsorption capacity of the chemically treated sludge. The highest amount of dye adsorbed by CSSS (9.56 mg/g) was observed for the optimum temperature of 25°C. The chemical activated sewage sludge proved its effectiveness for the removal of the Red Congo (RC), but by comparison the adsorption of the two dyes studies, we noted that the sludge has more affinity to adsorb the (MG).

Keywords: adsorption, chemical activation, malachite green, sewage sludge

Procedia PDF Downloads 167
2329 Effect of Organic Fertilization and Intercropping of Potato (Solanum Tuberosum) With Faba Bean (Vicia Faba) on Potato’s Yield

Authors: Laila Nassiri, Aziza Irhza, Jamal Ibijbijen, Fouad Rachidi, Ghizlane Echchgadda

Abstract:

The introduction of agroecological practices in ecosystems can contribute to meeting the challenges posed by the diversion of current agricultural production systems towards efficient production methods that are more respectful of the environment, including a reasoned use of inputs and resources. Intercropping is one of these practices that requires the production of two or more crops on the same plot and during the same growing season. Organic fertilization also can contribute to increase the yield due to the potential availability of nutrients. The objective of this work is to study the effect of intercropping and organic fertilization, which are two important practices of agroecology, on potato yield. Intercropping of potato and faba bean was carried out at the Agroecology and Environment platform (ENA, Meknes). The soil is silty-clay, the climate is warm with an average temperature of 17.1°C, and the annual average rainfall of 511mm. Four treatments were tested: Potato sole crop (T1), potato + organic fertilization (T2), Potato + faba bean (T3), Potato + faba bean + organic fertilization (T4). The results showed that there is a significant effect of the treatment on the evolution of the agronomical characters studied, especially the number of leaves and the yield. The number of stems at t0 was equal to 1 in all treatments; it began to grow after 30 days from the date of sowing with a slight increase in treatments containing organic fertilization (T2-T4), then it stabilized 60 days after sowing. In terms of the mean value of the number of leaves, a significant difference was noted between the treatments, the highest value was recorded in treatment T2. The T2 treatment showed the highest average yield, followed by the control (T1). As for the yield, treatments T2 and T1 recorded the highest number of tubers. In order to evaluate two of the practices of agroecology, this work focuses on the evaluation of the effect of intercropping and organic fertilization on the growth and yield parameters of the potato. The results obtained show that agroecological practices have a significant effect on the measured parameters.

Keywords: agroecology, intercropping, organic fertilization, potato yield

Procedia PDF Downloads 55