Search results for: network structure
11752 NSBS: Design of a Network Storage Backup System
Authors: Xinyan Zhang, Zhipeng Tan, Shan Fan
Abstract:
The first layer of defense against data loss is the backup data. This paper implements an agent-based network backup system used the backup, server-storage and server-backup agent these tripartite construction, and we realize the snapshot and hierarchical index in the NSBS. It realizes the control command and data flow separation, balances the system load, thereby improving the efficiency of the system backup and recovery. The test results show the agent-based network backup system can effectively improve the task-based concurrency, reasonably allocate network bandwidth, the system backup performance loss costs smaller and improves data recovery efficiency by 20%.Keywords: agent, network backup system, three architecture model, NSBS
Procedia PDF Downloads 45911751 Detecting Geographically Dispersed Overlay Communities Using Community Networks
Authors: Madhushi Bandara, Dharshana Kasthurirathna, Danaja Maldeniya, Mahendra Piraveenan
Abstract:
Community detection is an extremely useful technique in understanding the structure and function of a social network. Louvain algorithm, which is based on Newman-Girman modularity optimization technique, is extensively used as a computationally efficient method extract the communities in social networks. It has been suggested that the nodes that are in close geographical proximity have a higher tendency of forming communities. Variants of the Newman-Girman modularity measure such as dist-modularity try to normalize the effect of geographical proximity to extract geographically dispersed communities, at the expense of losing the information about the geographically proximate communities. In this work, we propose a method to extract geographically dispersed communities while preserving the information about the geographically proximate communities, by analyzing the ‘community network’, where the centroids of communities would be considered as network nodes. We suggest that the inter-community link strengths, which are normalized over the community sizes, may be used to identify and extract the ‘overlay communities’. The overlay communities would have relatively higher link strengths, despite being relatively apart in their spatial distribution. We apply this method to the Gowalla online social network, which contains the geographical signatures of its users, and identify the overlay communities within it.Keywords: social networks, community detection, modularity optimization, geographically dispersed communities
Procedia PDF Downloads 23511750 Intelligent Grading System of Apple Using Neural Network Arbitration
Authors: Ebenezer Obaloluwa Olaniyi
Abstract:
In this paper, an intelligent system has been designed to grade apple based on either its defective or healthy for production in food processing. This paper is segmented into two different phase. In the first phase, the image processing techniques were employed to extract the necessary features required in the apple. These techniques include grayscale conversion, segmentation where a threshold value is chosen to separate the foreground of the images from the background. Then edge detection was also employed to bring out the features in the images. These extracted features were then fed into the neural network in the second phase of the paper. The second phase is a classification phase where neural network employed to classify the defective apple from the healthy apple. In this phase, the network was trained with back propagation and tested with feed forward network. The recognition rate obtained from our system shows that our system is more accurate and faster as compared with previous work.Keywords: image processing, neural network, apple, intelligent system
Procedia PDF Downloads 39811749 Suggestion for Malware Detection Agent Considering Network Environment
Authors: Ji-Hoon Hong, Dong-Hee Kim, Nam-Uk Kim, Tai-Myoung Chung
Abstract:
Smartphone users are increasing rapidly. Accordingly, many companies are running BYOD (Bring Your Own Device: Policies to bring private-smartphones to the company) policy to increase work efficiency. However, smartphones are always under the threat of malware, thus the company network that is connected smartphone is exposed to serious risks. Most smartphone malware detection techniques are to perform an independent detection (perform the detection of a single target application). In this paper, we analyzed a variety of intrusion detection techniques. Based on the results of analysis propose an agent using the network IDS.Keywords: android malware detection, software-defined network, interaction environment, android malware detection, software-defined network, interaction environment
Procedia PDF Downloads 43311748 Reliability Improvement of Power System Networks Using Adaptive Genetic Algorithm
Authors: Alireza Alesaadi
Abstract:
Reliability analysis is a powerful method for determining the weak points of the electrical networks. In designing of electrical network, it is tried to design the most reliable network with minimal system shutting down, but it is usually associated with increasing the cost. In this paper, using adaptive genetic algorithm, a method was presented that provides the most reliable system with a certain economical cost. Finally, the proposed method is applied to a sample network and results will be analyzed.Keywords: reliability, adaptive genetic algorithm, electrical network, communication engineering
Procedia PDF Downloads 50811747 Leveraging the Power of Dual Spatial-Temporal Data Scheme for Traffic Prediction
Authors: Yang Zhou, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao
Abstract:
Traffic prediction is a fundamental problem in urban environment, facilitating the smart management of various businesses, such as taxi dispatching, bike relocation, and stampede alert. Most earlier methods rely on identifying the intrinsic spatial-temporal correlation to forecast. However, the complex nature of this problem entails a more sophisticated solution that can simultaneously capture the mutual influence of both adjacent and far-flung areas, with the information of time-dimension also incorporated seamlessly. To tackle this difficulty, we propose a new multi-phase architecture, DSTDS (Dual Spatial-Temporal Data Scheme for traffic prediction), that aims to reveal the underlying relationship that determines future traffic trend. First, a graph-based neural network with an attention mechanism is devised to obtain the static features of the road network. Then, a multi-granularity recurrent neural network is built in conjunction with the knowledge from a grid-based model. Subsequently, the preceding output is fed into a spatial-temporal super-resolution module. With this 3-phase structure, we carry out extensive experiments on several real-world datasets to demonstrate the effectiveness of our approach, which surpasses several state-of-the-art methods.Keywords: traffic prediction, spatial-temporal, recurrent neural network, dual data scheme
Procedia PDF Downloads 11711746 GIS-Based Topographical Network for Minimum “Exertion” Routing
Authors: Katherine Carl Payne, Moshe Dror
Abstract:
The problem of minimum cost routing has been extensively explored in a variety of contexts. While there is a prevalence of routing applications based on least distance, time, and related attributes, exertion-based routing has remained relatively unexplored. In particular, the network structures traditionally used to construct minimum cost paths are not suited to representing exertion or finding paths of least exertion based on road gradient. In this paper, we introduce a topographical network or “topograph” that enables minimum cost routing based on the exertion metric on each arc in a given road network as it is related to changes in road gradient. We describe an algorithm for topograph construction and present the implementation of the topograph on a road network of the state of California with ~22 million nodes.Keywords: topograph, RPE, routing, GIS
Procedia PDF Downloads 54611745 Design an Intelligent Fire Detection System Based on Neural Network and Particle Swarm Optimization
Authors: Majid Arvan, Peyman Beygi, Sina Rokhsati
Abstract:
In-time detection of fire in buildings is of great importance. Employing intelligent methods in data processing in fire detection systems leads to a significant reduction of fire damage at lowest cost. In this paper, the raw data obtained from the fire detection sensor networks in buildings is processed by using intelligent methods based on neural networks and the likelihood of fire happening is predicted. In order to enhance the quality of system, the noise in the sensor data is reduced by analyzing wavelets and applying SVD technique. Meanwhile, the proposed neural network is trained using particle swarm optimization (PSO). In the simulation work, the data is collected from sensor network inside the room and applied to the proposed network. Then the outputs are compared with conventional MLP network. The simulation results represent the superiority of the proposed method over the conventional one.Keywords: intelligent fire detection, neural network, particle swarm optimization, fire sensor network
Procedia PDF Downloads 38011744 Network Word Discovery Framework Based on Sentence Semantic Vector Similarity
Authors: Ganfeng Yu, Yuefeng Ma, Shanliang Yang
Abstract:
The word discovery is a key problem in text information retrieval technology. Methods in new word discovery tend to be closely related to words because they generally obtain new word results by analyzing words. With the popularity of social networks, individual netizens and online self-media have generated various network texts for the convenience of online life, including network words that are far from standard Chinese expression. How detect network words is one of the important goals in the field of text information retrieval today. In this paper, we integrate the word embedding model and clustering methods to propose a network word discovery framework based on sentence semantic similarity (S³-NWD) to detect network words effectively from the corpus. This framework constructs sentence semantic vectors through a distributed representation model, uses the similarity of sentence semantic vectors to determine the semantic relationship between sentences, and finally realizes network word discovery by the meaning of semantic replacement between sentences. The experiment verifies that the framework not only completes the rapid discovery of network words but also realizes the standard word meaning of the discovery of network words, which reflects the effectiveness of our work.Keywords: text information retrieval, natural language processing, new word discovery, information extraction
Procedia PDF Downloads 9511743 Static and Dynamic Analysis on a Buddhism Goddess Guanyin in Shuangyashan
Authors: Gong Kangming, Zhao Caiqi
Abstract:
High-rise special-shaped structure, such as main frame structure of the statues, is one of the structure forms in irregular structure widely used. Due to the complex shape of the statue structure, with a large aspect ratio, its wind load value and the overall mechanical properties are very different from the high-rise buildings with the general rules. The paper taking a certain 48 meters high main frame structure of the statue located in Shuangyashan City, Heilongjiang Province, static and dynamic properties are analyzed by the finite element software. Through static and dynamic analysis, it got a number of useful conclusions that have a certain reference value for the analysis and design of the future similar structure.Keywords: a Buddhism goddess Guanyin body, wind load, dynamic analysis, bolster, node design
Procedia PDF Downloads 46711742 Optimization of Reliability and Communicability of a Random Two-Dimensional Point Patterns Using Delaunay Triangulation
Authors: Sopheak Sorn, Kwok Yip Szeto
Abstract:
Reliability is one of the important measures of how well the system meets its design objective, and mathematically is the probability that a complex system will perform satisfactorily. When the system is described by a network of N components (nodes) and their L connection (links), the reliability of the system becomes a network design problem that is an NP-hard combinatorial optimization problem. In this paper, we address the network design problem for a random point set’s pattern in two dimensions. We make use of a Voronoi construction with each cell containing exactly one point in the point pattern and compute the reliability of the Voronoi’s dual, i.e. the Delaunay graph. We further investigate the communicability of the Delaunay network. We find that there is a positive correlation and a negative correlation between the homogeneity of a Delaunay's degree distribution with its reliability and its communicability respectively. Based on the correlations, we alter the communicability and the reliability by performing random edge flips, which preserve the number of links and nodes in the network but can increase the communicability in a Delaunay network at the cost of its reliability. This transformation is later used to optimize a Delaunay network with the optimum geometric mean between communicability and reliability. We also discuss the importance of the edge flips in the evolution of real soap froth in two dimensions.Keywords: Communicability, Delaunay triangulation, Edge Flip, Reliability, Two dimensional network, Voronio
Procedia PDF Downloads 41911741 A New Method to Reduce 5G Application Layer Payload Size
Authors: Gui Yang Wu, Bo Wang, Xin Wang
Abstract:
Nowadays, 5G service-based interface architecture uses text-based payload like JSON to transfer business data between network functions, which has obvious advantages as internet services but causes unnecessarily larger traffic. In this paper, a new 5G application payload size reduction method is presented to provides the mechanism to negotiate about new capability between network functions when network communication starts up and how 5G application data are reduced according to negotiated information with peer network function. Without losing the advantages of 5G text-based payload, this method demonstrates an excellent result on application payload size reduction and does not increase the usage quota of computing resource. Implementation of this method does not impact any standards or specifications and not change any encoding or decoding functionality too. In a real 5G network, this method will contribute to network efficiency and eventually save considerable computing resources.Keywords: 5G, JSON, payload size, service-based interface
Procedia PDF Downloads 18011740 Thermal Network Model for a Large Scale AC Induction Motor
Authors: Sushil Kumar, M. Dakshina Murty
Abstract:
Thermal network modelling has proven to be important tool for thermal analysis of electrical machine. This article investigates numerical thermal network model and experimental performance of a large-scale AC motor. Experimental temperatures were measured using RTD in the stator which have been compared with the numerical data. Thermal network modelling fairly predicts the temperature of various components inside the large-scale AC motor. Results of stator winding temperature is compared with experimental results which are in close agreement with accuracy of 6-10%. This method of predicting hot spots within AC motors can be readily used by the motor designers for estimating the thermal hot spots of the machine.Keywords: AC motor, thermal network, heat transfer, modelling
Procedia PDF Downloads 32611739 Students’ Online Forum Activities and Social Network Analysis in an E-Learning Environment
Authors: P. L. Cheng, I. N. Umar
Abstract:
Online discussion forum is a popular e-learning technique that allows participants to interact and construct knowledge. This study aims to examine the levels of participation, categories of participants and the structure of their interactions in a forum. A convenience sampling of one course coordinator and 23 graduate students was selected in this study. The forums’ log file and the Social Network Analysis software were used in this study. The analysis reveals 610 activities (including viewing forum’s topic, viewing discussion thread, posting a new thread, replying to other participants’ post, updating an existing thread and deleting a post) performed by them in this forum, with an average of 3.83 threads posted. Also, this forum consists of five at-risk participants, six bridging participants, four isolated participants and five leaders of information. In addition, the network density value is 0.15 and there exist five reciprocal interactions in this forum. The closeness value varied between 28 and 68 while the eigen vector centrality value varied between 0.008 and 0.39. The finding indicates that the participants tend to listen more rather than express their opinions in the forum. It was also revealed that those who actively provide supports in the discussion forum were not the same people who received the most responses from their peers. This study found that cliques do not exist in the forum and the participants are not selective to whom they response to, rather, it was based on the content of the posts made by their peers. Based upon the findings, further analysis with different method and population, larger sample size and a longer time frame are recommended.Keywords: e-learning, learning management system, online forum, social network analysis
Procedia PDF Downloads 39011738 A Two-Step Framework for Unsupervised Speaker Segmentation Using BIC and Artificial Neural Network
Authors: Ahmad Alwosheel, Ahmed Alqaraawi
Abstract:
This work proposes a new speaker segmentation approach for two speakers. It is an online approach that does not require a prior information about speaker models. It has two phases, a conventional approach such as unsupervised BIC-based is utilized in the first phase to detect speaker changes and train a Neural Network, while in the second phase, the output trained parameters from the Neural Network are used to predict next incoming audio stream. Using this approach, a comparable accuracy to similar BIC-based approaches is achieved with a significant improvement in terms of computation time.Keywords: artificial neural network, diarization, speaker indexing, speaker segmentation
Procedia PDF Downloads 50211737 GRCNN: Graph Recognition Convolutional Neural Network for Synthesizing Programs from Flow Charts
Authors: Lin Cheng, Zijiang Yang
Abstract:
Program synthesis is the task to automatically generate programs based on user specification. In this paper, we present a framework that synthesizes programs from flow charts that serve as accurate and intuitive specification. In order doing so, we propose a deep neural network called GRCNN that recognizes graph structure from its image. GRCNN is trained end-to-end, which can predict edge and node information of the flow chart simultaneously. Experiments show that the accuracy rate to synthesize a program is 66.4%, and the accuracy rates to recognize edge and node are 94.1% and 67.9%, respectively. On average, it takes about 60 milliseconds to synthesize a program.Keywords: program synthesis, flow chart, specification, graph recognition, CNN
Procedia PDF Downloads 11911736 Improved Dynamic Bayesian Networks Applied to Arabic On Line Characters Recognition
Authors: Redouane Tlemsani, Abdelkader Benyettou
Abstract:
Work is in on line Arabic character recognition and the principal motivation is to study the Arab manuscript with on line technology. This system is a Markovian system, which one can see as like a Dynamic Bayesian Network (DBN). One of the major interests of these systems resides in the complete models training (topology and parameters) starting from training data. Our approach is based on the dynamic Bayesian Networks formalism. The DBNs theory is a Bayesians networks generalization to the dynamic processes. Among our objective, amounts finding better parameters, which represent the links (dependences) between dynamic network variables. In applications in pattern recognition, one will carry out the fixing of the structure, which obliges us to admit some strong assumptions (for example independence between some variables). Our application will relate to the Arabic isolated characters on line recognition using our laboratory database: NOUN. A neural tester proposed for DBN external optimization. The DBN scores and DBN mixed are respectively 70.24% and 62.50%, which lets predict their further development; other approaches taking account time were considered and implemented until obtaining a significant recognition rate 94.79%.Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition, computer vision
Procedia PDF Downloads 42811735 Identification of Soft Faults in Branched Wire Networks by Distributed Reflectometry and Multi-Objective Genetic Algorithm
Authors: Soumaya Sallem, Marc Olivas
Abstract:
This contribution presents a method for detecting, locating, and characterizing soft faults in a complex wired network. The proposed method is based on multi-carrier reflectometry MCTDR (Multi-Carrier Time Domain Reflectometry) combined with a multi-objective genetic algorithm. In order to ensure complete network coverage and eliminate diagnosis ambiguities, the MCTDR test signal is injected at several points on the network, and the data is merged between different reflectometers (sensors) distributed on the network. An adapted multi-objective genetic algorithm is used to merge data in order to obtain more accurate faults location and characterization. The proposed method performances are evaluated from numerical and experimental results.Keywords: wired network, reflectometry, network distributed diagnosis, multi-objective genetic algorithm
Procedia PDF Downloads 19411734 Modification of Four Layer through the Thickness Woven Structure for Improved Impact Resistance
Authors: Muhammad Liaqat, Hafiz Abdul Samad, Syed Talha Ali Hamdani, Yasir Nawab
Abstract:
In the current research, the four layers, orthogonal through the thickness, 2D woven, 3D fabric structure was modified to improve the impact resistance of 3D fabric reinforced composites. This was achieved by imparting the auxeticity into four layers through the thickness woven structure. A comparison was made between the standard and modified four layers through the thickness woven structure in terms of auxeticity, penetration and impact resistance. It was found that the modified structure showed auxeticity in both warp and weft direction. It was also found that the penetration resistance of modified sample was less as compared to the standard structure, but impact resistance was improved up to 6.7% of modified four layers through the thickness woven structure.Keywords: 2D woven, 3D fabrics, auxetic, impact resistance, orthogonal through the thickness
Procedia PDF Downloads 33711733 Implementation and Demonstration of Software-Defined Traffic Grooming
Authors: Lei Guo, Xu Zhang, Weigang Hou
Abstract:
Since the traditional network is closed and it has no architecture to create applications, it has been unable to evolve with changing demands under the rapid innovation in services. Additionally, due to the lack of the whole network profile, the quality of service cannot be well guaranteed in the traditional network. The Software Defined Network (SDN) utilizes global resources to support on-demand applications/services via open, standardized and programmable interfaces. In this paper, we implement the traffic grooming application under a real SDN environment, and the corresponding analysis is made. In our SDN: 1) we use OpenFlow protocol to control the entire network by using software applications running on the network operating system; 2) several virtual switches are combined into the data forwarding plane through Open vSwitch; 3) An OpenFlow controller, NOX, is involved as a logically centralized control plane that dynamically configures the data forwarding plane; 4) The traffic grooming based on SDN is demonstrated through dynamically modifying the idle time of flow entries. The experimental results demonstrate that the SDN-based traffic grooming effectively reduces the end-to-end delay, and the improvement ratio arrives to 99%.Keywords: NOX, OpenFlow, Software Defined Network (SDN), traffic grooming
Procedia PDF Downloads 25111732 Impact of Network Workload between Virtualization Solutions on a Testbed Environment for Cybersecurity Learning
Authors: Kevin Fernagut, Olivier Flauzac, Erick M. G. Robledo, Florent Nolot
Abstract:
The adoption of modern lightweight virtualization often comes with new threats and network vulnerabilities. This paper seeks to assess this with a different approach studying the behavior of a testbed built with tools such as Kernel-Based Virtual Machine (KVM), Linux Containers (LXC) and Docker, by performing stress tests within a platform where students experiment simultaneously with cyber-attacks, and thus observe the impact on the campus network and also find the best solution for cyber-security learning. Interesting outcomes can be found in the literature comparing these technologies. It is, however, difficult to find results of the effects on the global network where experiments are carried out. Our work shows that other physical hosts and the faculty network were impacted while performing these trials. The problems found are discussed, as well as security solutions and the adoption of new network policies.Keywords: containerization, containers, cybersecurity, cyberattacks, isolation, performance, virtualization, virtual machines
Procedia PDF Downloads 14911731 Reliable Multicast Communication in Next Generation Networks
Authors: Muazzam Ali Khan Khattak
Abstract:
Next Generation Network is combination of different networks having different technologies. Due to mobile nature of nodes the movement of nodes occurs from one network to another network. Multicasting in such networks is still a hot issue of research because the user in today's world wants reliable communication wherever it lies. Due to heterogeneity of NGN it is very difficult to handle reliable multicast communication. In this paper we proposed an improved scheme for reliable multicast communication in next generation networks. Because multicast communication is very important to deliver same data packets to multiple receivers and minimize the network traffic. This new scheme will make the multicast communication in NGN more reliable and efficient.Keywords: next generation networks, route request, IPT, NACK, ARQ, DTN
Procedia PDF Downloads 50311730 Towards Security in Virtualization of SDN
Authors: Wanqing You, Kai Qian, Xi He, Ying Qian
Abstract:
In this paper, the potential security issues brought by the virtualization of a Software Defined Networks (SDN) would be analyzed. The virtualization of SDN is achieved by FlowVisor (FV). With FV, a physical network is divided into multiple isolated logical networks while the underlying resources are still shared by different slices (isolated logical networks). However, along with the benefits brought by network virtualization, it also presents some issues regarding security. By examining security issues existing in an OpenFlow network, which uses FlowVisor to slice it into multiple virtual networks, we hope we can get some significant results and also can get further discussions among the security of SDN virtualization.Keywords: SDN, network, virtualization, security
Procedia PDF Downloads 42811729 Prediction of Extreme Precipitation in East Asia Using Complex Network
Authors: Feng Guolin, Gong Zhiqiang
Abstract:
In order to study the spatial structure and dynamical mechanism of extreme precipitation in East Asia, a corresponding climate network is constructed by employing the method of event synchronization. It is found that the area of East Asian summer extreme precipitation can be separated into two regions: one with high area weighted connectivity receiving heavy precipitation mostly during the active phase of the East Asian Summer Monsoon (EASM), and another one with low area weighted connectivity receiving heavy precipitation during both the active and the retreat phase of the EASM. Besides,a way for the prediction of extreme precipitation is also developed by constructing a directed climate networks. The simulation accuracy in East Asia is 58% with a 0-day lead, and the prediction accuracy is 21% and average 12% with a 1-day and an n-day (2≤n≤10) lead, respectively. Compare to the normal EASM year, the prediction accuracy is lower in a weak year and higher in a strong year, which is relevant to the differences in correlations and extreme precipitation rates in different EASM situations. Recognizing and identifying these effects is good for understanding and predicting extreme precipitation in East Asia.Keywords: synchronization, climate network, prediction, rainfall
Procedia PDF Downloads 44211728 A Review of Literature for Online Social Network Business Continuance Intention and the Hypotheses Thereof
Authors: Akwesi Assensoh-Kodua
Abstract:
Online Social Networks (OSN) has come and gone, yet the explosion of business activities on such platforms continuous to surge high, giving advantage to the bold entrepreneurs. It is therefore a practical requirement that practitioners and researchers understand the key determinants of costumers’ online social network business activities and continuance intention. An exploratory literature research to examine OSN continuous intention of business participants on OSN revealed that the practice of doing business on social network has come to stay and the following factors are the likely drivers for this new business model: perceived trust, perceived ease of use, confirmation, habit, social norm, perceived behavioural control, expected benefit, and satisfaction are the most probable factors that can lead to online social network (OSN) continuance intention.Keywords: online social network, continuance intention, business continuance
Procedia PDF Downloads 49311727 Privacy Preservation Concerns and Information Disclosure on Social Networks: An Ongoing Research
Authors: Aria Teimourzadeh, Marc Favier, Samaneh Kakavand
Abstract:
The emergence of social networks has revolutionized the exchange of information. Every behavior on these platforms contributes to the generation of data known as social network data that are processed, stored and published by the social network service providers. Hence, it is vital to investigate the role of these platforms in user data by considering the privacy measures, especially when we observe the increased number of individuals and organizations engaging with the current virtual platforms without being aware that the data related to their positioning, connections and behavior is uncovered and used by third parties. Performing analytics on social network datasets may result in the disclosure of confidential information about the individuals or organizations which are the members of these virtual environments. Analyzing separate datasets can reveal private information about relationships, interests and more, especially when the datasets are analyzed jointly. Intentional breaches of privacy is the result of such analysis. Addressing these privacy concerns requires an understanding of the nature of data being accumulated and relevant data privacy regulations, as well as motivations for disclosure of personal information on social network platforms. Some significant points about how user's online information is controlled by the influence of social factors and to what extent the users are concerned about future use of their personal information by the organizations, are highlighted in this paper. Firstly, this research presents a short literature review about the structure of a network and concept of privacy in Online Social Networks. Secondly, the factors of user behavior related to privacy protection and self-disclosure on these virtual communities are presented. In other words, we seek to demonstrates the impact of identified variables on user information disclosure that could be taken into account to explain the privacy preservation of individuals on social networking platforms. Thirdly, a few research directions are discussed to address this topic for new researchers.Keywords: information disclosure, privacy measures, privacy preservation, social network analysis, user experience
Procedia PDF Downloads 28111726 Optimizing Network Latency with Fast Path Assignment for Incoming Flows
Abstract:
Various flows in the network require to go through different types of middlebox. The improper placement of network middlebox and path assignment for flows could greatly increase the network latency and also decrease the performance of network. Minimizing the total end to end latency of all the ows requires to assign path for the incoming flows. In this paper, the flow path assignment problem in regard to the placement of various kinds of middlebox is studied. The flow path assignment problem is formulated to a linear programming problem, which is very time consuming. On the other hand, a naive greedy algorithm is studied. Which is very fast but causes much more latency than the linear programming algorithm. At last, the paper presents a heuristic algorithm named FPA, which takes bottleneck link information and estimated bandwidth occupancy into consideration, and achieves near optimal latency in much less time. Evaluation results validate the effectiveness of the proposed algorithm.Keywords: flow path, latency, middlebox, network
Procedia PDF Downloads 20711725 Design of Local Interconnect Network Controller for Automotive Applications
Authors: Jong-Bae Lee, Seongsoo Lee
Abstract:
Local interconnect network (LIN) is a communication protocol that combines sensors, actuators, and processors to a functional module in automotive applications. In this paper, a LIN ver. 2.2A controller was designed in Verilog hardware description language (Verilog HDL) and implemented in field-programmable gate array (FPGA). Its operation was verified by making full-scale LIN network with the presented FPGA-implemented LIN controller, commercial LIN transceivers, and commercial processors. When described in Verilog HDL and synthesized in 0.18 μm technology, its gate size was about 2,300 gates.Keywords: local interconnect network, controller, transceiver, processor
Procedia PDF Downloads 28811724 Mechanism for Network Security via Routing Protocols Estimated with Network Simulator 2 (NS-2)
Authors: Rashid Mahmood, Muhammad Sufyan, Nasir Ahmed
Abstract:
The MANETs have lessened transportation and decentralized network. There are numerous basis of routing protocols. We derived the MANETs protocol into three major categories like Reactive, Proactive and hybrid. In these protocols, we discussed only some protocols like Distance Sequenced Distance Vector (DSDV), Ad hoc on Demand Distance Vector (AODV) and Dynamic Source Routing (DSR). The AODV and DSR are both reactive type of protocols. On the other hand, DSDV is proactive type protocol here. We compare these routing protocols for network security estimated by network simulator (NS-2). In this dissertation some parameters discussed such as simulation time, packet size, number of node, packet delivery fraction, push time and speed etc. We will construct all these parameters on routing protocols under suitable conditions for network security measures.Keywords: DSDV, AODV, DSR NS-2, PDF, push time
Procedia PDF Downloads 43311723 Aging Time Effect of 58s Microstructure
Authors: Nattawipa Pakasri
Abstract:
58S (60SiO2-36CaO-4P2O5), three-dimensionally ordered macroporous bioactive glasses (3DOM-BGs) were synthesized by the sol-gel method using dual templating methods. non-ionic surfactant Brij56 used as templates component produced mesoporous and the spherical PMMA colloidal crystals as one template component yielded either three-dimensionally ordered microporous products or shaped bioactive glass nanoparticles. The bioactive glass with aging step for 12 h at room temperature, no structure transformation occurred and the 3DOM structure was produced (Figure a) due to no shrinkage process between the aging step. After 48 h time of o 3DOM structure remained and, nanocube with ∼120 nm edge lengths and nanosphere particle with ∼50 nm was obtained (Figure c, d). PMMA packing templates have octahedral and tetrahedral holes to make 2 final shapes of 3DOM-BGs which is rounded and cubic, respectively. The ageing time change from 12h, 24h and 48h affected to the thickness of interconnecting macropores network. The wall thickness was gradually decrease after increase aging time.Keywords: three-dimensionally ordered macroporous bioactive glasses, sol-gel method, PMMA, bioactive glass
Procedia PDF Downloads 115