Search results for: multi-functional structural antenna
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4590

Search results for: multi-functional structural antenna

4380 Electromagnetic Energy Harvesting by Using a Rectenna with a Metamaterial Lens

Authors: Ursula D. C. Resende, Fabiano S. Bicalho, Sandro T. M. Gonçalves

Abstract:

The growing demand for cheap and clean energy sources have been motivated by the study and development of distinct technologies and devices able to provide different amounts of energy. In order to supply energy for small loads, the energy from the electromagnetic spectrum can be harvested. This possibility is particularly interesting because this kind of energy is constantly available in the environment and the number of radiofrequency sources is permanently increasing, due to advances in telecommunications services. A rectenna, which is a combination of an antenna and a rectifier circuit, is an equipment that can efficiently perform the electromagnetic energy harvesting. However, since the amount of electromagnetic energy available in the environment is very small, limited values of power can be harvested by the rectenna. Therefore, several technical strategies have been investigated in order to increase this amount of power. In this work, a metamaterial electromagnetic lens is used to improve the electromagnetic energy harvesting. The rectenna investigated was designed and optimized to charge a Li-Ion battery using the electromagnetic energy from an internet Wi-Fi commercial router model TL-WR841HP operating in 2.45 GHz with maximal output power equal to 18 dBm. The rectenna consists of a high directive antenna, a double voltage rectifier circuit and a metamaterial lens. The printed antenna, constituted of two rectangular radiator elements, was projected and optimized by using the Computer Simulation Software (CST) in order to obtain high directivities and values of S11 parameter below -10 dB in 2.45 GHz. The antenna was printed over a double-sided copper fiberglass substrate, FR4, with characterized relative electric permittivity εr = 4.3 and tangent of losses δ = 0.01. The rectifier circuit, which incorporates a circuit for impedance matching and uses the Schottky diode HSMS-2852, was projected and optimized by using Advanced Design Software (ADS) and built over the same FR4 substrate. The metamaterial cell is composed of two Square Split Ring Resonator (S-SRR) and a thin wire in order to operate with negative values of εr and relative magnetic permeability in 2.45 GHz. In order to evaluate the performance of the purposed rectenna two experimental charging tests were performed, one without and other with the metamaterial lens. The result obtained demonstrate that the electromagnetic lens was able to significantly increase the levels of electric current delivered to the battery, approximately 44%.

Keywords: electromagnetic energy harvesting, electromagnetic lens, metamaterial, rectenna

Procedia PDF Downloads 131
4379 Low Profile Wide-Band Broad Side RMSA Suitable for On-Board Applications

Authors: Qaisar Fraz, H. M. Jafar, Mojeeb Bin Ihsan

Abstract:

This paper presents simulation and experimen-tal results for wide band U-shaped side slots loaded linearly polarized rectangular microstrip antenna with broad side radiation characteristics suitable for onboard applications. The structure has been evolved in rugged and compact form to make it suitable for on-board applications. In addition to U-shaped central slot, pair of parallel narrow slots has been embedded close to non-radiating edges. The size and shape of these side slots have been optimized to improve the matching at upper frequency of the band. The impedance bandwidth of 34.8% as compared to 2-5% bandwidth of conventional microstrip antenna has been achieved. The frequency ratio of the two well-matched operating sections is found to be f2 / f1=1.33. The experimental results are in good agreement with the numerical results.

Keywords: low profile antennas, u-slot antennas, broad band antennas, broad-side radiation pattern, high gain antennas

Procedia PDF Downloads 361
4378 Multifunctional Nanofiber Based Aerogels: Bridging Electrospinning with Aerogel Fabrication

Authors: Tahira Pirzada, Zahra Ashrafi, Saad Khan

Abstract:

We present a facile and sustainable solid templating approach to fabricate highly porous, flexible and superhydrophobic aerogels of composite nanofibers of cellulose diacetate and silica which are produced through sol gel electrospinning. Scanning electron microscopy, contact angle measurement, and attenuated total reflection-Fourier transform infrared spectrometry are used to understand the structural features of the resultant aerogels while thermogravimetric analysis and differential scanning calorimetry demonstrate their thermal stability. These aerogels exhibit a self-supportive three-dimensional network abundant in large secondary pores surrounded by primary pores resulting in a highly porous structure. Thermal crosslinking of the aerogels has further stabilized their structure and flexibility without compromising on the porosity. Ease of processing, thermal stability, high porosity and oleophilic nature of these aerogels make them promising candidate for a wide variety of applications including acoustic and thermal insulation and oil and water separation.

Keywords: hybrid aerogels, sol-gel electrospinning, oil-water separation, nanofibers

Procedia PDF Downloads 147
4377 Pattern Synthesis of Nonuniform Linear Arrays Including Mutual Coupling Effects Based on Gaussian Process Regression and Genetic Algorithm

Authors: Ming Su, Ziqiang Mu

Abstract:

This paper proposes a synthesis method for nonuniform linear antenna arrays that combine Gaussian process regression (GPR) and genetic algorithm (GA). In this method, the GPR model can be used to calculate the array radiation pattern in the presence of mutual coupling effects, and then the GA is used to optimize the excitations and locations of the elements so as to generate the desired radiation pattern. In this paper, taking a 9-element nonuniform linear array as an example and the desired radiation pattern corresponding to a Chebyshev distribution as the optimization objective, optimize the excitations and locations of the elements. Finally, the optimization results are verified by electromagnetic simulation software CST, which shows that the method is effective.

Keywords: nonuniform linear antenna arrays, GPR, GA, mutual coupling effects, active element pattern

Procedia PDF Downloads 98
4376 Developing Pavement Structural Deterioration Curves

Authors: Gregory Kelly, Gary Chai, Sittampalam Manoharan, Deborah Delaney

Abstract:

A Structural Number (SN) can be calculated for a road pavement from the properties and thicknesses of the surface, base course, sub-base, and subgrade. Historically, the cost of collecting structural data has been very high. Data were initially collected using Benkelman Beams and now by Falling Weight Deflectometer (FWD). The structural strength of pavements weakens over time due to environmental and traffic loading factors, but due to a lack of data, no structural deterioration curve for pavements has been implemented in a Pavement Management System (PMS). International Roughness Index (IRI) is a measure of the road longitudinal profile and has been used as a proxy for a pavement’s structural integrity. This paper offers two conceptual methods to develop Pavement Structural Deterioration Curves (PSDC). Firstly, structural data are grouped in sets by design Equivalent Standard Axles (ESA). An ‘Initial’ SN (ISN), Intermediate SN’s (SNI) and a Terminal SN (TSN), are used to develop the curves. Using FWD data, the ISN is the SN after the pavement is rehabilitated (Financial Accounting ‘Modern Equivalent’). Intermediate SNIs, are SNs other than the ISN and TSN. The TSN was defined as the SN of the pavement when it was approved for pavement rehabilitation. The second method is to use Traffic Speed Deflectometer data (TSD). The road network already divided into road blocks, is grouped by traffic loading. For each traffic loading group, road blocks that have had a recent pavement rehabilitation, are used to calculate the ISN and those planned for pavement rehabilitation to calculate the TSN. The remaining SNs are used to complete the age-based or if available, historical traffic loading-based SNI’s.

Keywords: conceptual, pavement structural number, pavement structural deterioration curve, pavement management system

Procedia PDF Downloads 528
4375 Creative Thinking in Structural Design of Historic Constructions

Authors: Avraham Mosseri

Abstract:

The architectural conservation process of the built heritage is a very complex process dealing with the integration of professional knowledge from many fields like history, sociology, economy, engineering, etc. One of the most important fields is the structural field, which has a great influence on the final architectural and aesthetic solution of the built heritage. In many cases, the ability to protect and save the heritage values of the historical buildings is an outcome of the structural creativity and conceptual design of the conservation engineers. This creativity is especially important when dealing with structural engineering of historic construction, where there are a lot of constraints and contradictions between different aspects like aesthetics, artistic values, culture, authenticity, structural performance, etc. But in spite of the importance of this creativity in conservation engineering, many research efforts are mainly devoted to the structural analysis of historic construction, which of course is very important and vital. But, in general, more attention can be paid to the creative process in the conceptual stage. In this situation there is a need, in parallel to analysis research, to devote more resources in order to improve the creative and conceptual theories in relation to conservation engineering. This paper focuses on the creativity aspects in the structural design process in the conservation of historic buildings as part of conservation theories.

Keywords: conservation, creativity, historic constructions, structural design

Procedia PDF Downloads 222
4374 Delineation of Green Infrastructure Buffer Areas with a Simulated Annealing: Consideration of Ecosystem Services Trade-Offs in the Objective Function

Authors: Andres Manuel Garcia Lamparte, Rocio Losada Iglesias, Marcos BoullóN Magan, David Miranda Barros

Abstract:

The biodiversity strategy of the European Union for 2030, mentions climate change as one of the key factors for biodiversity loss and considers green infrastructure as one of the solutions to this problem. In this line, the European Commission has developed a green infrastructure strategy which commits members states to consider green infrastructure in their territorial planning. This green infrastructure is aimed at granting the provision of a wide number of ecosystem services to support biodiversity and human well-being by countering the effects of climate change. Yet, there are not too many tools available to delimit green infrastructure. The available ones consider the potential of the territory to provide ecosystem services. However, these methods usually aggregate several maps of ecosystem services potential without considering possible trade-offs. This can lead to excluding areas with a high potential for providing ecosystem services which have many trade-offs with other ecosystem services. In order to tackle this problem, a methodology is proposed to consider ecosystem services trade-offs in the objective function of a simulated annealing algorithm aimed at delimiting green infrastructure multifunctional buffer areas. To this end, the provision potential maps of the regulating ecosystem services considered to delimit the multifunctional buffer areas are clustered in groups, so that ecosystem services that create trade-offs are excluded in each group. The normalized provision potential maps of the ecosystem services in each group are added to obtain a potential map per group which is normalized again. Then the potential maps for each group are combined in a raster map that shows the highest provision potential value in each cell. The combined map is then used in the objective function of the simulated annealing algorithm. The algorithm is run both using the proposed methodology and considering the ecosystem services individually. The results are analyzed with spatial statistics and landscape metrics to check the number of ecosystem services that the delimited areas produce, as well as their regularity and compactness. It has been observed that the proposed methodology increases the number of ecosystem services produced by delimited areas, improving their multifunctionality and increasing their effectiveness in preventing climate change impacts.

Keywords: ecosystem services trade-offs, green infrastructure delineation, multifunctional buffer areas, climate change

Procedia PDF Downloads 155
4373 Nitric Oxide: Role in Immunity and Therapeutics

Authors: Anusha Bhardwaj, Shekhar Shinde

Abstract:

Nitric oxide (NO•) has been documented in research papers as one of the most versatile player in the therapeutics. It is identified as a biological multifunctional messenger molecule which is synthesized by the action of nitric oxide synthase (NOS) enzyme from L-arginine. The protective and the toxic effect in conjunction form the complete picture of the biological function of nitric oxide in humans. The dual nature is because of various factors such as concentration of NO, the isoform of NOS involved, type of cells in which it is synthesized, reaction partners like proteins, reactive oxygen intermediates, prosthetic groups, thiols etc., availability of the substrate L-arginine, intracellular environment in which NO is produced and generation of guanosine 3, 5’- cyclic monophosphate (cGMP). Activation of NOS through infection or trauma leads to one or more systemic effects including enhanced immune activity against invading pathogens, vaso/bronchodilatation in the cardiovascular and respiratory systems and altered neurotransmission which can be protective or toxic. Hence, NO affects the balance between healthy signaling and neurodegeneration in the brain. In lungs, it has beneficial effects on the function of airways as a bronchodilator and acts as the neurotransmitter of bronchodilator nerves. Whereas, on the other hand, NO may have deleterious effects by amplifying the asthmatic inflammatory response and also act as a vasodilator in the airways by increasing plasma exudation. But NOS Inhibitors and NO donors hamper the signalling pathway and hence a therapeutic application of NO is compromised.

Keywords: nitric oxide, multifunctional, dual nature, therapeutic applications

Procedia PDF Downloads 485
4372 Investigation of Existing Guidelines for Four-Legged Angular Telecommunication Tower

Authors: Sankara Ganesh Dhoopam, Phaneendra Aduri

Abstract:

Lattice towers are light weight structures which are primarily governed by the effects of wind loading. Ensuring a precise assessment of wind loads on the tower structure, antennas, and associated equipment is vital for the safety and efficiency of tower design. Earlier, the Indian standards are not available for design of telecom towers. Instead, the industry conventionally relied on the general building wind loading standard for calculating loads on tower components and the transmission line tower design standard for designing the angular members of the towers. Subsequently, the Bureau of Indian Standards (BIS) revised these standards and angular member design standard. While the transmission line towers are designed using the above standard, a full-scale model test will be done to prove the design. Telecom angular towers are also designed using the same with overload factor/factor of safety without full scale tower model testing. General construction in steel design code is available with limit state design approach and is applicable to the design of general structures involving angles and tubes but not used for angle member design of towers. Recently, in response to the evolving industry needs, the Bureau of Indian Standards (BIS) introduced a new standard titled “Isolated Towers, Masts, and Poles using structural steel -Code of practice” for the design of telecom towers. This study focuses on a 40m four legged angular tower to compare loading calculations and member designs between old and new standards. Additionally, a comparative analysis aligning with the new code provisions with international loading and design standards with a specific focus on American standards has been carried out. This paper elaborates code-based provisions used for load and member design calculations, including the influence of "ka" area averaging factor introduced in new wind load case.

Keywords: telecom, angular tower, PLS tower, GSM antenna, microwave antenna, IS 875(Part-3):2015, IS 802(Part-1/sec-2):2016, IS 800:2007, IS 17740:2022, ANSI/TIA-222G, ANSI/TIA-222H.

Procedia PDF Downloads 60
4371 Seismic Performance Evaluation of the Composite Structural System with Separated Gravity and Lateral Resistant Systems

Authors: Zi-Ang Li, Mu-Xuan Tao

Abstract:

During the process of the industrialization of steel structure housing, a composite structural system with separated gravity and lateral resistant systems has been applied in engineering practices, which consists of composite frame with hinged beam-column joints, steel brace and RC shear wall. As an attempt in steel structural system area, seismic performance evaluation of the separated composite structure is important for further application in steel housing. This paper focuses on the seismic performance comparison of the separated composite structural system and traditional steel frame-shear wall system under the same inter-story drift ratio (IDR) provision limit. The same architectural layout of a high-rise building is designed as two different structural systems at the same IDR level, and finite element analysis using pushover method is carried out. Static pushover analysis implies that the separated structural system exhibits different lateral deformation mode and failure mechanism with traditional steel frame-shear wall system. Different indexes are adopted and discussed in seismic performance evaluation, including IDR, safe factor (SF), shear wall damage, etc. The performance under maximum considered earthquake (MCE) demand spectrum shows that the shear wall damage of two structural systems are similar; the separated composite structural system exhibits less plastic hinges; and the SF index value of the separated composite structural system is higher than the steel frame shear wall structural system.

Keywords: finite element analysis, new composite structural system, seismic performance evaluation, static pushover analysis

Procedia PDF Downloads 123
4370 Proposal of a Rectenna Built by Using Paper as a Dielectric Substrate for Electromagnetic Energy Harvesting

Authors: Ursula D. C. Resende, Yan G. Santos, Lucas M. de O. Andrade

Abstract:

The recent and fast development of the internet, wireless, telecommunication technologies and low-power electronic devices has led to an expressive amount of electromagnetic energy available in the environment and the smart applications technology expansion. These applications have been used in the Internet of Things devices, 4G and 5G solutions. The main feature of this technology is the use of the wireless sensor. Although these sensors are low-power loads, their use imposes huge challenges in terms of an efficient and reliable way for power supply in order to avoid the traditional battery. The radio frequency based energy harvesting technology is especially suitable to wireless power sensors by using a rectenna since it can be completely integrated into the distributed hosting sensors structure, reducing its cost, maintenance and environmental impact. The rectenna is an equipment composed of an antenna and a rectifier circuit. The antenna function is to collect as much radio frequency radiation as possible and transfer it to the rectifier, which is a nonlinear circuit, that converts the very low input radio frequency energy into direct current voltage. In this work, a set of rectennas, mounted on a paper substrate, which can be used for the inner coating of buildings and simultaneously harvest electromagnetic energy from the environment, is proposed. Each proposed individual rectenna is composed of a 2.45 GHz patch antenna and a voltage doubler rectifier circuit, built in the same paper substrate. The antenna contains a rectangular radiator element and a microstrip transmission line that was projected and optimized by using the Computer Simulation Software (CST) in order to obtain values of S11 parameter below -10 dB in 2.45 GHz. In order to increase the amount of harvested power, eight individual rectennas, incorporating metamaterial cells, were connected in parallel forming a system, denominated Electromagnetic Wall (EW). In order to evaluate the EW performance, it was positioned at a variable distance from the internet router, and a 27 kΩ resistive load was fed. The results obtained showed that if more than one rectenna is associated in parallel, enough power level can be achieved in order to feed very low consumption sensors. The 0.12 m2 EW proposed in this work was able to harvest 0.6 mW from the environment. It also observed that the use of metamaterial structures provide an expressive growth in the amount of electromagnetic energy harvested, which was increased from 0. 2mW to 0.6 mW.

Keywords: electromagnetic energy harvesting, metamaterial, rectenna, rectifier circuit

Procedia PDF Downloads 147
4369 Experimental Investigation on Residual Stresses in Welded Medium-Walled I-shaped Sections Fabricated from Q460GJ Structural Steel Plates

Authors: Qian Zhu, Shidong Nie, Bo Yang, Gang Xiong, Guoxin Dai

Abstract:

GJ steel is a new type of high-performance structural steel which has been increasingly adopted in practical engineering. Q460GJ structural steel has a nominal yield strength of 460 MPa, which does not decrease significantly with the increase of steel plate thickness like normal structural steel. Thus, Q460GJ structural steel is normally used in medium-walled welded sections. However, research works on the residual stress in GJ steel members are few though it is one of the vital factors that can affect the member and structural behavior. This article aims to investigate the residual stresses in welded I-shaped sections fabricated from Q460GJ structural steel plates by experimental tests. A total of four full scale welded medium-walled I-shaped sections were tested by sectioning method. Both circular curve correction method and straightening measurement method were adopted in this study to obtain the final magnitude and distribution of the longitudinal residual stresses. In addition, this paper also explores the interaction between flanges and webs. And based on the statistical evaluation of the experimental data, a multilayer residual stress model is proposed.

Keywords: Q460GJ structural steel, residual stresses, sectioning method, welded medium-walled I-shaped sections

Procedia PDF Downloads 302
4368 Identifying the Structural Components of Old Buildings from Floor Plans

Authors: Shi-Yu Xu

Abstract:

The top three risk factors that have contributed to building collapses during past earthquake events in Taiwan are: "irregular floor plans or elevations," "insufficient columns in single-bay buildings," and the "weak-story problem." Fortunately, these unsound structural characteristics can be directly identified from the floor plans. However, due to the vast number of old buildings, conducting manual inspections to identify these compromised structural features in all existing structures would be time-consuming and prone to human errors. This study aims to develop an algorithm that utilizes artificial intelligence techniques to automatically pinpoint the structural components within a building's floor plans. The obtained spatial information will be utilized to construct a digital structural model of the building. This information, particularly regarding the distribution of columns in the floor plan, can then be used to conduct preliminary seismic assessments of the building. The study employs various image processing and pattern recognition techniques to enhance detection efficiency and accuracy. The study enables a large-scale evaluation of structural vulnerability for numerous old buildings, providing ample time to arrange for structural retrofitting in those buildings that are at risk of significant damage or collapse during earthquakes.

Keywords: structural vulnerability detection, object recognition, seismic capacity assessment, old buildings, artificial intelligence

Procedia PDF Downloads 73
4367 Passive Seismic Energy Dissipation Mechanisms for Smart Green Structural System (SGSS)

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

The design philosophy of building structure has been changing over time. The reason behind this is an increase in human interest regarding the improvements in building materials and technology that will affect how we live, the aim to speed up construction period, and the environmental effect which includes earthquakes and other natural disasters. One technique which takes into account the above case is using a prefabricable structural system, in which each and every structural element is designed and prefabricated and assembled on a site so that the construction speed is increased and the environmental impact is also enhanced. This system has immense advantages such as reduced construction cost, reusability, recyclability, faster construction period and less enviromental effect. In this study, some of the developed and evaluated structural elements of building structures are presented.

Keywords: eccentrically braced frame, natural disaster, prefabricable structural system, removable link, SGSS

Procedia PDF Downloads 417
4366 Carbon Sequestering and Structural Capabilities of Eucalyptus Cloeziana

Authors: Holly Sandberg, Christina McCoy, Khaled Mansy

Abstract:

Eucalyptus Cloeziana, commonly known as Gympie Messmate, is a fast-growing hardwood native to Australia. Its quick growth makes it advantageous for carbon sequestering, while its strength class lends itself to structural applications. Market research shows that the demand for timber is growing, especially mass timber. An environmental product declaration, or EPD, for eucalyptus Cloeziana in the Australian market has been evaluated and compared to the EPD’s of steel and Douglas fir of the same region. An EPD follows a product throughout its life cycle, stating values for global warming potential, ozone depletion potential, acidification potential, eutrophication potential, photochemical ozone creation potential, and abiotic depletion potential. This paper highlights the market potential, as well as the environmental benefits and challenges to using Gympie Messmate as a structural building material. In addition, a case study is performed to compare steel, Douglas fir, and eucalyptus in terms of embodied carbon and structural weight within a single structural bay. Comparisons among the three materials highlight both the differences in structural capabilities as well as environmental impact.

Keywords: eucalyptus, timber, construction, structural, material

Procedia PDF Downloads 169
4365 Self-Sensing Concrete Nanocomposites for Smart Structures

Authors: A. D'Alessandro, F. Ubertini, A. L. Materazzi

Abstract:

In the field of civil engineering, Structural Health Monitoring is a topic of growing interest. Effective monitoring instruments permit the control of the working conditions of structures and infrastructures, through the identification of behavioral anomalies due to incipient damages, especially in areas of high environmental hazards as earthquakes. While traditional sensors can be applied only in a limited number of points, providing a partial information for a structural diagnosis, novel transducers may allow a diffuse sensing. Thanks to the new tools and materials provided by nanotechnology, new types of multifunctional sensors are developing in the scientific panorama. In particular, cement-matrix composite materials capable of diagnosing their own state of strain and tension, could be originated by the addition of specific conductive nanofillers. Because of the nature of the material they are made of, these new cementitious nano-modified transducers can be inserted within the concrete elements, transforming the same structures in sets of widespread sensors. This paper is aimed at presenting the results of a research about a new self-sensing nanocomposite and about the implementation of smart sensors for Structural Health Monitoring. The developed nanocomposite has been obtained by inserting multi walled carbon nanotubes within a cementitious matrix. The insertion of such conductive carbon nanofillers provides the base material with piezoresistive characteristics and peculiar sensitivity to mechanical modifications. The self-sensing ability is achieved by correlating the variation of the external stress or strain with the variation of some electrical properties, such as the electrical resistance or conductivity. Through the measurement of such electrical characteristics, the performance and the working conditions of an element or a structure can be monitored. Among conductive carbon nanofillers, carbon nanotubes seem to be particularly promising for the realization of self-sensing cement-matrix materials. Some issues related to the nanofiller dispersion or to the influence of the nano-inclusions amount in the cement matrix need to be carefully investigated: the strain sensitivity of the resulting sensors is influenced by such factors. This work analyzes the dispersion of the carbon nanofillers, the physical properties of the fresh dough, the electrical properties of the hardened composites and the sensing properties of the realized sensors. The experimental campaign focuses specifically on their dynamic characterization and their applicability to the monitoring of full-scale elements. The results of the electromechanical tests with both slow varying and dynamic loads show that the developed nanocomposite sensors can be effectively used for the health monitoring of structures.

Keywords: carbon nanotubes, self-sensing nanocomposites, smart cement-matrix sensors, structural health monitoring

Procedia PDF Downloads 217
4364 Design and Analysis of Universal Multifunctional Leaf Spring Main Landing Gear for Light Aircraft

Authors: Meiyuan Zheng, Jingwu He, Yuexi Xiong

Abstract:

A universal multi-function leaf spring main landing gear was designed for light aircraft. The main landing gear combined with the leaf spring, skidding, and wheels enables it to have a good takeoff and landing performance on various grounds such as the hard, snow, grass and sand grounds. Firstly, the characteristics of different landing sites were studied in this paper in order to analyze the load of the main landing gear on different types of grounds. Based on this analysis, the structural design optimization along with the strength and stiffness characteristics of the main landing gear has been done, which enables it to have good takeoff and landing performance on different types of grounds given the relevant regulations and standards. Additionally, the impact of the skidding on the aircraft during the flight was also taken into consideration. Finally, a universal multi-function leaf spring type of the main landing gear suitable for light aircraft has been developed.

Keywords: landing gear, multi-function, leaf spring, skidding

Procedia PDF Downloads 249
4363 Performance Degradation for the GLR Test-Statistics for Spatial Signal Detection

Authors: Olesya Bolkhovskaya, Alexander Maltsev

Abstract:

Antenna arrays are widely used in modern radio systems in sonar and communications. The solving of the detection problems of a useful signal on the background of noise is based on the GLRT method. There is a large number of problem which depends on the known a priori information. In this work, in contrast to the majority of already solved problems, it is used only difference spatial properties of the signal and noise for detection. We are analyzing the influence of the degree of non-coherence of signal and noise unhomogeneity on the performance characteristics of different GLRT statistics. The description of the signal and noise is carried out by means of the spatial covariance matrices C in the cases of different number of known information. The partially coherent signal is simulated as a plane wave with a random angle of incidence of the wave concerning a normal. Background noise is simulated as random process with uniform distribution function in each element. The results of investigation of degradation of performance characteristics for different cases are represented in this work.

Keywords: GLRT, Neumann-Pearson’s criterion, Test-statistics, degradation, spatial processing, multielement antenna array

Procedia PDF Downloads 374
4362 MIMO Radar-Based System for Structural Health Monitoring and Geophysical Applications

Authors: Davide D’Aria, Paolo Falcone, Luigi Maggi, Aldo Cero, Giovanni Amoroso

Abstract:

The paper presents a methodology for real-time structural health monitoring and geophysical applications. The key elements of the system are a high performance MIMO RADAR sensor, an optical camera and a dedicated set of software algorithms encompassing interferometry, tomography and photogrammetry. The MIMO Radar sensor proposed in this work, provides an extremely high sensitivity to displacements making the system able to react to tiny deformations (up to tens of microns) with a time scale which spans from milliseconds to hours. The MIMO feature of the system makes the system capable of providing a set of two-dimensional images of the observed scene, each mapped on the azimuth-range directions with noticeably resolution in both the dimensions and with an outstanding repetition rate. The back-scattered energy, which is distributed in the 3D space, is projected on a 2D plane, where each pixel has as coordinates the Line-Of-Sight distance and the cross-range azimuthal angle. At the same time, the high performing processing unit allows to sense the observed scene with remarkable refresh periods (up to milliseconds), thus opening the way for combined static and dynamic structural health monitoring. Thanks to the smart TX/RX antenna array layout, the MIMO data can be processed through a tomographic approach to reconstruct the three-dimensional map of the observed scene. This 3D point cloud is then accurately mapped on a 2D digital optical image through photogrammetric techniques, allowing for easy and straightforward interpretations of the measurements. Once the three-dimensional image is reconstructed, a 'repeat-pass' interferometric approach is exploited to provide the user of the system with high frequency three-dimensional motion/vibration estimation of each point of the reconstructed image. At this stage, the methodology leverages consolidated atmospheric correction algorithms to provide reliable displacement and vibration measurements.

Keywords: interferometry, MIMO RADAR, SAR, tomography

Procedia PDF Downloads 180
4361 Applied Methods for Lightweighting Structural Systems

Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi

Abstract:

With gravity load reduction in the structural and non-structural components, the lightweight construction will be achieved as well as the improvement of efficiency and functional specifications. The advantages of lightweight construction can be examined in two levels. The first is the mass reduction of load bearing structure which results in increasing internal useful space and the other one is the mass reduction of building which decreases the effects of seismic load as a result. In order to achieve this goal, the essential building materials specifications and also optimum load bearing geometry of structural systems and elements have to be considered, so lightweight materials selection particularly with lightweight aggregate for building components will be the first step of lightweight construction. In the next step, in addition to selecting the prominent samples of Iran's traditional architecture, the process of these works improvement is analyzed through the viewpoints of structural efficiency and lightweighting and also the practical methods of lightweight construction have been extracted. The optimum design of load bearing geometry of structural system has to be considered not only in the structural system elements, but also in their composition and the selection of dimensions, proportions, forms and optimum orientations, can lead to get a maximum materials efficiency for loads and stresses bearing.

Keywords: gravity load, lightweighting structural system, load bearing geometry, seismic behavior

Procedia PDF Downloads 501
4360 Multifunctional Polydopamine-Silver-Polydopamine Nanofilm With Applications in Digital Microfluidics and SERS

Authors: Yilei Xue, Yat-Hing Ham, Wenting Qiu, Wan Chan, Stefan Nagl

Abstract:

Polydopamine (PDA) is a popular material in biological and medical applications due to its excellent biocompatibility, outstanding physicochemical properties, and facile fabrication. In this project, a new sandwich-structured PDA and silver (Ag) hybrid material named PDA-Ag-PDA was synthesized and characterized layer-by-layer, where silver nanoparticles (Ag NPs) are wrapped in PDA coatings, using SEM, AFM, 3D surface metrology, and contact angle meter. The silver loading capacity is positively proportional to the roughness value of the initial PDA film. This designed film was subsequently integrated within a digital microfluidic (DMF) platform coupling with an oxygen sensor layer for on-chip antibacterial assay. The concentration of E. coli was quantified on DMF by real-time monitoring oxygen consumption during E. coli growth with the optical oxygen sensor layer. The PDA-Ag-PDA coating shows an 99.9% reduction in E. coli population under non-nutritive condition with 1-hour treatment and has a strong growth inhibition of E. coliin nutrient LB broth as well. Furthermore, PDA-Ag-PDA film maintaining a low cytotoxicity effect to human cells. After treating with PDA-Ag-PDA film for 24 hours, 82% HEK 293 and 86% HeLa cells were viable. The SERS enhancement factor of PDA-Ag-PDA is estimated to be 1.9 × 104 using Rhodamine 6G (R6G). Multifunctional PDA-Ag-PDA coating provides an alternative platform to conjugate biomolecules and perform biological applications on DMF, in particular, for the adhesive protein and cell study.

Keywords: polydopamine, silver nanoparticles, digital microfluidic, optical sensor, antimicrobial assay, SERS

Procedia PDF Downloads 83
4359 3D Electromagnetic Mapping of the Signal Strength in Long Term Evolution Technology in the Livestock Department of ESPOCH

Authors: Cinthia Campoverde, Mateo Benavidez, Victor Arias, Milton Torres

Abstract:

This article focuses on the 3D electromagnetic mapping of the intensity of the signal received by a mobile antenna within the open areas of the Department of Livestock of the Escuela Superior Politecnica de Chimborazo (ESPOCH), located in the city of Riobamba, Ecuador. The transmitting antenna belongs to the mobile telephone company ”TUENTI”, and is analyzed in the 2 GHz bands, operating at a frequency of 1940 MHz, using Long Term Evolution (LTE). Power signal strength data in the area were measured empirically using the ”Network Cell Info” application. A total of 170 samples were collected, distributed in 19 concentric circles around the base station. 3 campaigns were carried out at the same time, with similar traffic, and average values were obtained at each point, which varies between -65.33 dBm to -101.67 dBm. Also, the two virtualization software used are Sketchup and Unreal. Finally, the virtualized environment was visualized through virtual reality using Oculus 3D glasses, where the power levels are displayed according to a range of powers.

Keywords: reception power, LTE technology, virtualization, virtual reality, power levels

Procedia PDF Downloads 77
4358 Performance Evaluation of Refinement Method for Wideband Two-Beams Formation

Authors: C. Bunsanit

Abstract:

This paper presents the refinement method for two beams formation of wideband smart antenna. The refinement method for weighting coefficients is based on Fully Spatial Signal Processing by taking Inverse Discrete Fourier Transform (IDFT), and its simulation results are presented using MATLAB. The radiation pattern is created by multiplying the incoming signal with real weights and then summing them together. These real weighting coefficients are computed by IDFT method; however, the range of weight values is relatively wide. Therefore, for reducing this range, the refinement method is used. The radiation pattern concerns with five input parameters to control. These parameters are maximum weighting coefficient, wideband signal, direction of mainbeam, beamwidth, and maximum of minor lobe level. Comparison of the obtained simulation results between using refinement method and taking only IDFT shows that the refinement method works well for wideband two beams formation.

Keywords: fully spatial signal processing, beam forming, refinement method, smart antenna, weighting coefficient, wideband

Procedia PDF Downloads 218
4357 A Biomimetic Structural Form: Developing a Paradigm to Attain Vital Sustainability in Tall Architecture

Authors: Osama Al-Sehail

Abstract:

This paper argues for sustainability as a necessity in the evolution of tall architecture. It provides a different mode for dealing with sustainability in tall architecture, taking into consideration the speciality of its typology. To this end, the article develops a Biomimetic Structural Form as a paradigm to attain Vital Sustainability. A Biomimetic Structural Form, which is derived from the amalgamation of biomimicry as an approach for sustainability defining nature as source of knowledge and inspiration in solving humans’ problems and a Structural Form as a catalyst for evolving tall architecture, is a dynamic paradigm emerging from a conceptualizing and morphological process. A Biomimetic Structural Form is a flow system whose different forces and functions tend to be “better”, more "fit", to “survive”, and to be efficient. Through geometry and function—the two aspects of knowledge extracted from nature—the attributes of the Biomimetic Structural Form are formulated. Vital Sustainability is the survival level of sustainability in natural systems through which a system enhances the performance of its internal working and its interaction with the external environment. A Biomimetic Structural Form, in this context, is a medium for evolving tall architecture to emulate natural models in their ways of coexistence with the environment. As an integral part of this article, the sustainable super tall building 3Ts is discussed as a case study of applying Biomimetic Structural Form.   

Keywords: biomimicry, design in nature, high-rise buildings, sustainability, structural form, tall architecture, vital sustainability

Procedia PDF Downloads 299
4356 DOA Estimation Using Golden Section Search

Authors: Niharika Verma, Sandeep Santosh

Abstract:

DOA technique is a localization technique used in the communication field. Various algorithms have been developed for direction of arrival estimation like MUSIC, ROOT MUSIC, etc. These algorithms depend on various parameters like antenna array elements, number of snapshots and various others. Basically the MUSIC spectrum is evaluated and peaks obtained are considered as the angle of arrivals. The angles evaluated using this process depends on the scanning interval chosen. The accuracy of the results obtained depends on the coarseness of the interval chosen. In this paper, golden section search is applied to the MUSIC algorithm and therefore, more accurate results are achieved. Initially the coarse DOA estimations is done using the MUSIC algorithm in the range -90 to 90 degree at the interval of 10 degree. After the peaks obtained then fine DOA estimation is done using golden section search. Also, the partitioning method is applied to estimate the number of signals incident on the antenna array. Dependency of the algorithm on the number of snapshots is also being explained. Hence, the accurate results are being determined using this algorithm.

Keywords: Direction of Arrival (DOA), golden section search, MUSIC, number of snapshots

Procedia PDF Downloads 435
4355 Weight Regulation Mechanism on Bridges

Authors: S. Siddharth, Saravana Kumar

Abstract:

All Metros across the world tend to have a large number of bridges and there have been concerns about the safety of these bridges. As the traffic in most cities in India is heterogeneous, Trucks and Heavy vehicles traverse on our roads on an everyday basis this will lead to structural damage on the long run. All bridges are designed with a maximum Load limit and this limit is seldom checked. We have hence come up with an idea to check the load of all the vehicles entering the bridge and block the bridge with barricades if the vehicle surpasses the maximum load , this is done to catch hold of the perpetrators. By doing this we can avoid further structural damage and also provide an effective way to enforce the law. If our solution is put in place structural damage and accidents would be reduced to a great deal and it would also make the law enforcement job easier.

Keywords: heterogeneous, structural, load, law, heavy, vehicles

Procedia PDF Downloads 434
4354 Harnessing Nigeria's Forestry Potential for Structural Applications: Structural Reliability of Nigerian Grown Opepe Timber

Authors: J. I. Aguwa, S. Sadiku, M. Abdullahi

Abstract:

This study examined the structural reliability of the Nigerian grown Opepe timber as bridge beam material. The strength of a particular specie of timber depends so much on some factors such as soil and environment in which it is grown. The steps involved are collection of the Opepe timber samples, seasoning/preparation of the test specimens, determination of the strength properties/statistical analysis, development of a computer programme in FORTRAN language and finally structural reliability analysis using FORM 5 software. The result revealed that the Nigerian grown Opepe is a reliable and durable structural bridge beam material for span of 5000mm, depth of 400mm, breadth of 250mm and end bearing length of 150mm. The probabilities of failure in bending parallel to the grain, compression perpendicular to the grain, shear parallel to the grain and deflection are 1.61 x 10-7, 1.43 x 10-8, 1.93 x 10-4 and 1.51 x 10-15 respectively. The paper recommends establishment of Opepe plantation in various Local Government Areas in Nigeria for structural applications such as in bridges, railway sleepers, generation of income to the nation as well as creating employment for the numerous unemployed youths.

Keywords: bending and deflection, bridge beam, compression, Nigerian Opepe, shear, structural reliability

Procedia PDF Downloads 450
4353 Non-Chronological Approach in Crane Girder and Composite Steel Beam Installation: Case Study

Authors: Govindaraj Ramanathan

Abstract:

The time delay and the structural stability are major issues in big size projects due to several factors. Improper planning and poor coordination lead to delay in construction, which sometimes result in reworking or rebuilding. This definitely increases the cost and time of project. This situation stresses the structural engineers to plan out of the limits of contemporary technology utilizing non-chronological approach with creative ideas. One of the strategies to solve this issue is through structural integrity solutions in a cost-effective way. We have faced several problems in a project worth 470 million USD, and one such issue is crane girder installation with composite steel beams. We have applied structural integrity approach with the proper and revised planning schedule to solve the problem efficiently with minimal expenses.

Keywords: construction management, delay, non-chronological approach, composite beam, structural integrity

Procedia PDF Downloads 229
4352 The Structural Pattern: An Event-Related Potential Study on Tang Poetry

Authors: ShuHui Yang, ChingChing Lu

Abstract:

Measuring event-related potentials (ERPs) has been fundamental to our understanding of how people process language. One specific ERP component, a P600, has been hypothesized to be associated with syntactic reanalysis processes. We, however, propose that the P600 is not restricted to reanalysis processes, but is the index of the structural pattern processing. To investigate the structural pattern processing, we utilized the effects of stimulus degradation in structural priming. To put it another way, there was no P600 effect if the structure of the prime was the same with the structure of the target. Otherwise, there would be a P600 effect if the structure were different between the prime and the target. In the experiment, twenty-two participants were presented with four sentences of Tang poetry. All of the first two sentences, being prime, were conducted with SVO+VP. The last two sentences, being the target, were divided into three types. Type one of the targets was SVO+VP. Type two of the targets was SVO+VPVP. Type three of the targets was VP+VP. The result showed that both of the targets, SVO+VPVP and VP+VP, elicited positive-going brainwave, a P600 effect, at 600~900ms time window. Furthermore, the P600 component was lager for the target’ VP+VP’ than the target’ SVO+VPVP’. That meant the more dissimilar the structure was, the lager the P600 effect we got. These results indicate that P600 was the index of the structure processing, and it would affect the P600 effect intensity with the degrees of structural heterogeneity.

Keywords: ERPs, P600, structural pattern, structural priming, Tang poetry

Procedia PDF Downloads 125
4351 Progressive Structural Capacity Loss Assessment

Authors: M. Zain, Thaung H. Aung, Naveed Anwar

Abstract:

During the service life, a structure may experience extreme loading conditions. The current study proposes a new methodology that covers the effect of uncertainty involved in gravity loadings on key structural elements of new and complex structures by emphasizing on a very realistic assumption that allows the 'Performance-Based Assessment' to be executed on the structure against the gravity loadings. The methodology does not require the complete removal of an element, instead, it permits the incremental reduction in the capacity of key structural elements and preserves the same stiffness of the member in each case of capacity loss. To demonstrate the application of the proposed methodology, a 13 story complex structure is selected that comprises of a diverse structural configuration. The results ensure the structural integrity against the applied gravity loadings, as well as the effectiveness of the proposed methodology.

Keywords: force-deformation relationship, gravity loading, incremental capacity reduction, multi-linear plastic link element, SAP2000, stiffness

Procedia PDF Downloads 439