Search results for: molecular docking and dynamics
4601 Molecular Modeling and Prediction of the Physicochemical Properties of Polyols in Aqueous Solution
Authors: Maria Fontenele, Claude-Gilles Dussap, Vincent Dumouilla, Baptiste Boit
Abstract:
Roquette Frères is a producer of plant-based ingredients that employs many processes to extract relevant molecules and often transforms them through chemical and physical processes to create desired ingredients with specific functionalities. In this context, Roquette encounters numerous multi-component complex systems in their processes, including fibers, proteins, and carbohydrates, in an aqueous environment. To develop, control, and optimize both new and old processes, Roquette aims to develop new in silico tools. Currently, Roquette uses process modelling tools which include specific thermodynamic models and is willing to develop computational methodologies such as molecular dynamics simulations to gain insights into the complex interactions in such complex media, and especially hydrogen bonding interactions. The issue at hand concerns aqueous mixtures of polyols with high dry matter content. The polyols mannitol and sorbitol molecules are diastereoisomers that have nearly identical chemical structures but very different physicochemical properties: for example, the solubility of sorbitol in water is 2.5 kg/kg of water, while mannitol has a solubility of 0.25 kg/kg of water at 25°C. Therefore, predicting liquid-solid equilibrium properties in this case requires sophisticated solution models that cannot be based solely on chemical group contributions, knowing that for mannitol and sorbitol, the chemical constitutive groups are the same. Recognizing the significance of solvation phenomena in polyols, the GePEB (Chemical Engineering, Applied Thermodynamics, and Biosystems) team at Institut Pascal has developed the COSMO-UCA model, which has the structural advantage of using quantum mechanics tools to predict formation and phase equilibrium properties. In this work, we use molecular dynamics simulations to elucidate the behavior of polyols in aqueous solution. Specifically, we employ simulations to compute essential metrics such as radial distribution functions and hydrogen bond autocorrelation functions. Our findings illuminate a fundamental contrast: sorbitol and mannitol exhibit disparate hydrogen bond lifetimes within aqueous environments. This observation serves as a cornerstone in elucidating the divergent physicochemical properties inherent to each compound, shedding light on the nuanced interplay between their molecular structures and water interactions. We also present a methodology to predict the physicochemical properties of complex solutions, taking as sole input the three-dimensional structure of the molecules in the medium. Finally, by developing knowledge models, we represent some physicochemical properties of aqueous solutions of sorbitol and mannitol.Keywords: COSMO models, hydrogen bond, molecular dynamics, thermodynamics
Procedia PDF Downloads 424600 Fractional Calculus into Structural Dynamics
Authors: Jorge Lopez
Abstract:
In this work, we introduce fractional calculus in order to study the dynamics of a damped multistory building with some symmetry. Initially we make a review of the dynamics of a free and damped multistory building. Then we introduce those concepts of fractional calculus that will be involved in our study. It has been noticed that fractional calculus provides models with less parameters than those based on classical calculus. In particular, a damped classical oscilator is more naturally described by using fractional derivatives. Accordingly, we model our multistory building as a set of coupled fractional oscillators and compare its dynamics with the results coming from traditional methods.Keywords: coupled oscillators, fractional calculus, fractional oscillator, structural dynamics
Procedia PDF Downloads 2424599 Membrane Permeability of Middle Molecules: A Computational Chemistry Approach
Authors: Sundaram Arulmozhiraja, Kanade Shimizu, Yuta Yamamoto, Satoshi Ichikawa, Maenaka Katsumi, Hiroaki Tokiwa
Abstract:
Drug discovery is shifting from small molecule based drugs targeting local active site to middle molecules (MM) targeting large, flat, and groove-shaped binding sites, for example, protein-protein interface because at least half of all targets assumed to be involved in human disease have been classified as “difficult to drug” with traditional small molecules. Hence, MMs such as peptides, natural products, glycans, nucleic acids with various high potent bioactivities become important targets for drug discovery programs in the recent years as they could be used for ‘undruggable” intracellular targets. Cell membrane permeability is one of the key properties of pharmacodynamically active MM drug compounds and so evaluating this property for the potential MMs is crucial. Computational prediction for cell membrane permeability of molecules is very challenging; however, recent advancement in the molecular dynamics simulations help to solve this issue partially. It is expected that MMs with high membrane permeability will enable drug discovery research to expand its borders towards intracellular targets. Further to understand the chemistry behind the permeability of MMs, it is necessary to investigate their conformational changes during the permeation through membrane and for that their interactions with the membrane field should be studied reliably because these interactions involve various non-bonding interactions such as hydrogen bonding, -stacking, charge-transfer, polarization dispersion, and non-classical weak hydrogen bonding. Therefore, parameters-based classical mechanics calculations are hardly sufficient to investigate these interactions rather, quantum mechanical (QM) calculations are essential. Fragment molecular orbital (FMO) method could be used for such purpose as it performs ab initio QM calculations by dividing the system into fragments. The present work is aimed to study the cell permeability of middle molecules using molecular dynamics simulations and FMO-QM calculations. For this purpose, a natural compound syringolin and its analogues were considered in this study. Molecular simulations were performed using NAMD and Gromacs programs with CHARMM force field. FMO calculations were performed using the PAICS program at the correlated Resolution-of-Identity second-order Moller Plesset (RI-MP2) level with the cc-pVDZ basis set. The simulations clearly show that while syringolin could not permeate the membrane, its selected analogues go through the medium in nano second scale. These correlates well with the existing experimental evidences that these syringolin analogues are membrane-permeable compounds. Further analyses indicate that intramolecular -stacking interactions in the syringolin analogues influenced their permeability positively. These intramolecular interactions reduce the polarity of these analogues so that they could permeate the lipophilic cell membrane. Conclusively, the cell membrane permeability of various middle molecules with potent bioactivities is efficiently studied using molecular dynamics simulations. Insight of this behavior is thoroughly investigated using FMO-QM calculations. Results obtained in the present study indicate that non-bonding intramolecular interactions such as hydrogen-bonding and -stacking along with the conformational flexibility of MMs are essential for amicable membrane permeation. These results are interesting and are nice example for this theoretical calculation approach that could be used to study the permeability of other middle molecules. This work was supported by Japan Agency for Medical Research and Development (AMED) under Grant Number 18ae0101047.Keywords: fragment molecular orbital theory, membrane permeability, middle molecules, molecular dynamics simulation
Procedia PDF Downloads 1884598 Application of Molecular Markers for Crop Improvement
Authors: Monisha Isaac
Abstract:
Use of molecular markers for selecting plants with desired traits has been started long back. Due to their heritable characteristics, they are useful for identification and characterization of specific genotypes. The study involves various types of molecular markers used to select multiple desired characters in plants, their properties, and advantages to improve crop productivity in adverse climatological conditions for the purpose of providing food security to fast-growing global population. The study shows that genetic similarities obtained from molecular markers provide more accurate information and the genetic diversity can be better estimated from the genetic relationship obtained from the dendrogram. The information obtained from markers assisted characterization is more suitable for the crops of economic importance like sugarcane.Keywords: molecular markers, crop productivity, genetic diversity, genotype
Procedia PDF Downloads 5164597 Microjetting from a Grooved Metal Surface under Decaying Shocks
Authors: Jian-Li Shao
Abstract:
Using Molecular Dynamic (MD) simulations, we simulated the microjet from the metal surface under decaying shock loading. The microjetting processes under release melting conditions are presented in detail, and some properties on the microjet mass and velocity are revealed. The phased increase of microjet mass with shock pressure is found. For all cases, the ratio of the maximal jetting velocity to the surface velocity approximately keeps a constant for liquid state. In addition, the temperature of the microjet can be always above the melting point. When introducing slow decaying profiles, the microjet mass begins to increase with the decay rate, which is dominated by the deformation of the bubble during pull-back. When the decay rate becomes fast enough, the microspall occurs as expected, meanwhile, the microjet appears to reduce because of the shock energy reduction.Keywords: microjetting, shock, metal, molecular dynamics
Procedia PDF Downloads 2064596 Evaluation of Chitin Filled Epoxy Coating for Corrosion Protection of Q235 Steel in Saline Environment
Authors: Innocent O. Arukalam, Emeka E. Oguzie
Abstract:
Interest in the development of eco-friendly anti-corrosion coatings using bio-based renewable materials is gaining momentum recently. To this effect, chitin biopolymer, which is non-toxic, biodegradable, and inherently possesses anti-microbial property, was successfully synthesized from snail shells and used as a filler in the preparation of epoxy coating. The chitin particles were characterized with contact angle goniometer, scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectrophotometer, and X-ray diffractometer (XRD). The performance of the coatings was evaluated by immersion and electrochemical impedance spectroscopy (EIS) tests. Electronic structure properties of the coating ingredients and molecular level interaction of the corrodent and coated Q235 steel were appraised by quantum chemical computations (QCC) and molecular dynamics (MD) simulation techniques, respectively. The water contact angle (WCA) measurement of chitin particles was found to be 129.3o while that of chitin particles modified with amino trimethoxy silane (ATMS) was 149.6o, suggesting it is highly hydrophobic. Immersion and EIS analyses revealed that epoxy coating containing silane-modified chitin exhibited lowest water absorption and highest barrier as well as anti-corrosion performances. The QCC showed that quantum parameters for the coating containing silane-modified chitin are optimum and therefore corresponds to high corrosion protection. The high negative value of adsorption energies (Eads) for the coating containing silane-modified chitin indicates the coating molecules interacted and adsorbed strongly on the steel surface. The observed results have shown that silane-modified epoxy-chitin coating would perform satisfactorily for surface protection of metal structures in saline environment.Keywords: chitin, EIS, epoxy coating, hydrophobic, molecular dynamics simulation, quantum chemical computation
Procedia PDF Downloads 984595 Topological Analysis of Hydrogen Bonds in Pyruvic Acid-Water Mixtures
Authors: Ferid Hammami
Abstract:
The molecular geometries of the possible conformations of pyruvic acid-water complexes (PA-(H₂O)ₙ = 1- 4) have been fully optimized at DFT/B3LYP/6-311G ++ (d, p) levels of calculation. Among several optimized molecular clusters, the most stable molecular arrangements obtained when one, two, three, and four water molecules are hydrogen-bonded to a central pyruvic acid molecule are presented in this paper. Apposite topological and geometrical parameters are considered as primary indicators of H-bond strength. Atoms in molecules (AIM) analysis shows that pyruvic acid can form a ring structure with water, and the molecular structures are stabilized by both strong O-H...O and C-H...O hydrogen bonds. In large clusters, classical O-H...O hydrogen bonds still exist between water molecules, and a cage-like structure is built around some parts of the central molecule of pyruvic acid. The electrostatic potential energy map (MEP) and the HOMO-LUMO molecular orbital (highest occupied molecular orbital-lowest unoccupied molecular orbital) analysis has been performed for all considered complexes.Keywords: pyruvic acid, PA-water complex, hydrogen bonding, DFT, AIM, MEP, HOMO-LUMO
Procedia PDF Downloads 2144594 Quadrotor in Horizontal Motion Control and Maneuverability
Authors: Ali Oveysi Sarabi
Abstract:
In this paper, controller design for the attitude and altitude dynamics of an outdoor quadrotor, which is constructed with low cost actuators and drivers, is aimed. Before designing the controller, the quadrotor is modeled mathematically in Matlab-Simulink environment. To control attitude dynamics, linear quadratic regulator (LQR) based controllers are designed, simulated and applied to the system. Two different proportional-integral-derivative action (PID) controllers are designed to control yaw and altitude dynamics. During the implementation of the designed controllers, different test setups are used. Designed controllers are implemented and tuned on the real system using xPC Target. Tests show that these basic control structures are successful to control the attitude and altitude dynamics.Keywords: helicopter balance, flight dynamics, autonomous landing, control robotics
Procedia PDF Downloads 5094593 On the Other Side of Shining Mercury: In Silico Prediction of Cold Stabilizing Mutations in Serine Endopeptidase from Bacillus lentus
Authors: Debamitra Chakravorty, Pratap K. Parida
Abstract:
Cold-adapted proteases enhance wash performance in low-temperature laundry resulting in a reduction in energy consumption and wear of textiles and are also used in the dehairing process in leather industries. Unfortunately, the possible drawbacks of using cold-adapted proteases are their instability at higher temperatures. Therefore, proteases with broad temperature stability are required. Unfortunately, wild-type cold-adapted proteases exhibit instability at higher temperatures and thus have low shelf lives. Therefore, attempts to engineer cold-adapted proteases by protein engineering were made previously by directed evolution and random mutagenesis. The lacuna is the time, capital, and labour involved to obtain these variants are very demanding and challenging. Therefore, rational engineering for cold stability without compromising an enzyme's optimum pH and temperature for activity is the current requirement. In this work, mutations were rationally designed with the aid of high throughput computational methodology of network analysis, evolutionary conservation scores, and molecular dynamics simulations for Savinase from Bacillus lentus with the intention of rendering the mutants cold stable without affecting their temperature and pH optimum for activity. Further, an attempt was made to incorporate a mutation in the most stable mutant rationally obtained by this method to introduce oxidative stability in the mutant. Such enzymes are desired in detergents with bleaching agents. In silico analysis by performing 300 ns molecular dynamics simulations at 5 different temperatures revealed that these three mutants were found to be better in cold stability compared to the wild type Savinase from Bacillus lentus. Conclusively, this work shows that cold adaptation without losing optimum temperature and pH stability and additionally stability from oxidative damage can be rationally designed by in silico enzyme engineering. The key findings of this work were first, the in silico data of H5 (cold stable savinase) used as a control in this work, corroborated with its reported wet lab temperature stability data. Secondly, three cold stable mutants of Savinase from Bacillus lentus were rationally identified. Lastly, a mutation which will stabilize savinase against oxidative damage was additionally identified.Keywords: cold stability, molecular dynamics simulations, protein engineering, rational design
Procedia PDF Downloads 1404592 Effect of Iron Contents on Rheological Properties of Syndiotactic Polypropylene/iron Composites
Authors: Naveed Ahmad, Farooq Ahmad, Abdul Aal
Abstract:
The effect of iron contents on the rheological behavior of sPP/iron composites in the melt phase was investigated using a series of syndiotactic polypropylene/iron (sPP/iron) composite samples. Using the Advanced Rheometric Expansion System, studies with small amplitude oscillatory shear were conducted (ARES). It was discovered that the plateau modulus rose along with the iron loading. Also it was found that both entanglement molecular weight and packing length decrease with increase in iron loading.. This finding demonstrates how iron content in polymer/iron composites affects chain parameters and dimensions, which in turn affects the entire chain dynamics.Keywords: plateau modulus, packing lenght, polymer/iron composites, rheology, entanglement molecular weight
Procedia PDF Downloads 1614591 Characterization on Molecular Weight of Polyamic Acids Using GPC Coupled with Multiple Detectors
Authors: Mei Hong, Wei Liu, Xuemin Dai, Yanxiong Pan, Xiangling Ji
Abstract:
Polyamic acid (PAA) is the precursor of polyimide (PI) prepared by a two-step method, its molecular weight and molecular weight distribution not only play an important role during the preparation and processing, but also influence the final performance of PI. However, precise characterization on molecular weight of PAA is still a challenge because of the existence of very complicated interactions in the solution system, including the electrostatic interaction, hydrogen bond interaction, dipole-dipole interaction, etc. Thus, it is necessary to establisha suitable strategy which can completely suppress these complex effects and get reasonable data on molecular weight. Herein, the gel permeation chromatography (GPC) coupled with differential refractive index (RI) and multi-angle laser light scattering (MALLS) detectors were applied to measure the molecular weight of (6FDA-DMB) PAA using different mobile phases, LiBr/DMF, LiBr/H3PO4/THF/DMF, LiBr/HAc/THF/DMF, and LiBr/HAc/DMF, respectively. It was found that combination of LiBr with HAc can shield the above-mentioned complex interactions and is more conducive to the separation of PAA than only addition of LiBr in DMF. LiBr/HAc/DMF was employed for the first time as a mild mobile phase to effectively separate PAA and determine its molecular weight. After a series of conditional experiments, 0.02M LiBr/0.2M HAc/DMF was fixed as an optimized mobile phase to measure the relative and absolute molecular weights of (6FDA-DMB) PAA prepared, and the obtained Mw from GPC-MALLS and GPC-RI were 35,300 g/mol and 125,000 g/mol, respectively. Particularly, such a mobile phase is also applicable to other PAA samples with different structures, and the final results on molecular weight are also reproducible.Keywords: Polyamic acids, Polyelectrolyte effects, Gel permeation chromatography, Mobile phase, Molecular weight
Procedia PDF Downloads 544590 Synthesis, Molecular Modeling and Study of 2-Substituted-4-(Benzo[D][1,3]Dioxol-5-Yl)-6-Phenylpyridazin-3(2H)-One Derivatives as Potential Analgesic and Anti-Inflammatory Agents
Authors: Jyoti Singh, Ranju Bansal
Abstract:
Fighting pain and inflammation is a common problem faced by physicians while dealing with a wide variety of diseases. Since ancient time nonsteroidal anti-inflammatory agents (NSAIDs) and opioids have been the cornerstone of treatment therapy, however, the usefulness of both these classes is limited due to severe side effects. NSAIDs, which are mainly used to treat mild to moderate inflammatory pain, induce gastric irritation and nephrotoxicity whereas opioids show an array of adverse reactions such as respiratory depression, sedation, and constipation. Moreover, repeated administration of these drugs induces tolerance to the analgesic effects and physical dependence. Further discovery of selective COX-2 inhibitors (coxibs) suggested safety without any ulcerogenic side effects; however, long-term use of these drugs resulted in kidney and hepatic toxicity along with an increased risk of secondary cardiovascular effects. The basic approaches towards inflammation and pain treatment are constantly changing, and researchers are continuously trying to develop safer and effective anti-inflammatory drug candidates for the treatment of different inflammatory conditions such as osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, psoriasis and multiple sclerosis. Synthetic 3(2H)-pyridazinones constitute an important scaffold for drug discovery. Structure-activity relationship studies on pyridazinones have shown that attachment of a lactam at N-2 of the pyridazinone ring through a methylene spacer results in significantly increased anti-inflammatory and analgesic properties of the derivatives. Further introduction of the heterocyclic ring at lactam nitrogen results in improvement of biological activities. Keeping in mind these SAR studies, a new series of compounds were synthesized as shown in scheme 1 and investigated for anti-inflammatory, analgesic, anti-platelet activities and docking studies. The structures of newly synthesized compounds have been established by various spectroscopic techniques. All the synthesized pyridazinone derivatives exhibited potent anti-inflammatory and analgesic activity. Homoveratryl substituted derivative was found to possess highest anti-inflammatory and analgesic activity displaying 73.60 % inhibition of edema at 40 mg/kg with no ulcerogenic activity when compared to standard drugs indomethacin. Moreover, 2-substituted-4-benzo[d][1,3]dioxole-6-phenylpyridazin-3(2H)-ones derivatives did not produce significant changes in bleeding time and emerged as safe agents. Molecular docking studies also illustrated good binding interactions at the active site of the cyclooxygenase-2 (hCox-2) enzyme.Keywords: anti-inflammatory, analgesic, pyridazin-3(2H)-one, selective COX-2 inhibitors
Procedia PDF Downloads 2004589 Molecular Modeling of 17-Picolyl and 17-Picolinylidene Androstane Derivatives with Anticancer Activity
Authors: Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Lidija Jevrić, Evgenija Djurendić, Jovana Ajduković
Abstract:
In the present study, the molecular modeling of a series of 24 17-picolyl and 17-picolinylidene androstane derivatives whit significant anticancer activity was carried out. Modelling of studied compounds was performed by CS ChemBioDraw Ultra v12.0 program for drawing 2D molecular structures and CS ChemBio3D Ultra v12.0 for 3D molecular modelling. The obtained 3D structures were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. Full geometry optimization was done by the Austin Model 1 (AM1) until the root mean square (RMS) gradient reached a value smaller than 0.0001 kcal/Åmol using Molecular Orbital Package (MOPAC) program. The obtained physicochemical, lipophilicity and topological descriptors were used for analysis of molecular similarities and dissimilarities applying suitable chemometric methods (principal component analysis and cluster analysis). These results are the part of the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina and CMST COST Action CM1306.Keywords: androstane derivatives, anticancer activity, chemometrics, molecular descriptors
Procedia PDF Downloads 3614588 Ab Initio Approach to Generate a Binary Bulk Metallic Glass Foam
Authors: Jonathan Galvan-Colin, Ariel Valladares, Renela Valladares, Alexander Valladares
Abstract:
Both porous materials and bulk metallic glasses have been studied due to their potential applications and their exceptional physical and chemical properties. However, each material presents certain drawbacks which have been thought to be overcome by generating bulk metallic glass foams (BMGF). Although some experimental reports have been performed on multicomponent BMGF, still no ab initio works have been published, as far as we know. We present an approach based on the expanding lattice (EL) method to generate binary amorphous nanoporous Cu64Zr36. Starting from two different configurations: a 108-atom crystalline cubic supercell (cCu64Zr36) and a 108-atom amorphous supercell (aCu64Zr36), both with an initial density of 8.06 g/cm3, we applied EL method to halve the density and to get 50% of porosity. After the lattice expansion the supercells were subject to ab initio molecular dynamics for 500 steps at constant room temperature. Then, the samples were geometry-optimized and characterized with the pair and radial distribution functions, bond-angle distributions and a coordination number analysis. We found that pores appeared along specific spatial directions different from one to another and that they differed in size and form as well, which we think is related to the initial structure. Due to the lack of experimental counterparts our results should be considered predictive and further studies are needed in order to handle a larger number of atoms and its implication on pore topology.Keywords: ab initio molecular dynamics, bulk mettalic glass, porous alloy
Procedia PDF Downloads 2634587 Shock-Induced Densification in Glass Materials: A Non-Equilibrium Molecular Dynamics Study
Authors: Richard Renou, Laurent Soulard
Abstract:
Lasers are widely used in glass material processing, from waveguide fabrication to channel drilling. The gradual damage of glass optics under UV lasers is also an important issue to be addressed. Glass materials (including metallic glasses) can undergo a permanent densification under laser-induced shock loading. Despite increased interest on interactions between laser and glass materials, little is known about the structural mechanisms involved under shock loading. For example, the densification process in silica glasses occurs between 8 GPa and 30 GPa. Above 30 GPa, the glass material returns to the original density after relaxation. Investigating these unusual mechanisms in silica glass will provide an overall better understanding in glass behaviour. Non-Equilibrium Molecular Dynamics simulations (NEMD) were carried out in order to gain insight on the silica glass microscopic structure under shock loading. The shock was generated by the use of a piston impacting the glass material at high velocity (from 100m/s up to 2km/s). Periodic boundary conditions were used in the directions perpendicular to the shock propagation to model an infinite system. One-dimensional shock propagations were therefore studied. Simulations were performed with the STAMP code developed by the CEA. A very specific structure is observed in a silica glass. Oxygen atoms around Silicon atoms are organized in tetrahedrons. Those tetrahedrons are linked and tend to form rings inside the structure. A significant amount of empty cavities is also observed in glass materials. In order to understand how a shock loading is impacting the overall structure, the tetrahedrons, the rings and the cavities were thoroughly analysed. An elastic behaviour was observed when the shock pressure is below 8 GPa. This is consistent with the Hugoniot Elastic Limit (HEL) of 8.8 GPa estimated experimentally for silica glasses. Behind the shock front, the ring structure and the cavity distribution are impacted. The ring volume is smaller, and most cavities disappear with increasing shock pressure. However, the tetrahedral structure is not affected. The elasticity of the glass structure is therefore related to a ring shrinking and a cavity closing. Above the HEL, the shock pressure is high enough to impact the tetrahedral structure. An increasing number of hexahedrons and octahedrons are formed with the pressure. The large rings break to form smaller ones. The cavities are however not impacted as most cavities are already closed under an elastic shock. After the material relaxation, a significant amount of hexahedrons and octahedrons is still observed, and most of the cavities remain closed. The overall ring distribution after relaxation is similar to the equilibrium distribution. The densification process is therefore related to two structural mechanisms: a change in the coordination of silicon atoms and a cavity closing. To sum up, non-equilibrium molecular dynamics were carried out to investigate silica behaviour under shock loading. Analysing the structure lead to interesting conclusions upon the elastic and the densification mechanisms in glass materials. This work will be completed with a detailed study of the mechanism occurring above 30 GPa, where no sign of densification is observed after the material relaxation.Keywords: densification, molecular dynamics simulations, shock loading, silica glass
Procedia PDF Downloads 2224586 Water Diffusivity in Amorphous Epoxy Resins: An Autonomous Basin Climbing-Based Simulation Method
Authors: Betim Bahtiri, B. Arash, R. Rolfes
Abstract:
Epoxy-based materials are frequently exposed to high-humidity environments in many engineering applications. As a result, their material properties would be degraded by water absorption. A full characterization of the material properties under hygrothermal conditions requires time- and cost-consuming experimental tests. To gain insights into the physics of diffusion mechanisms, atomistic simulations have been shown to be effective tools. Concerning the diffusion of water in polymers, spatial trajectories of water molecules are obtained from molecular dynamics (MD) simulations allowing the interpretation of diffusion pathways at the nanoscale in a polymer network. Conventional MD simulations of water diffusion in amorphous polymers lead to discrepancies at low temperatures due to the short timescales of the simulations. In the proposed model, this issue is solved by using a combined scheme of autonomous basin climbing (ABC) with kinetic Monte Carlo and reactive MD simulations to investigate the diffusivity of water molecules in epoxy resins across a wide range of temperatures. It is shown that the proposed simulation framework estimates kinetic properties of water diffusion in epoxy resins that are consistent with experimental observations and provide a predictive tool for investigating the diffusion of small molecules in other amorphous polymers.Keywords: epoxy resins, water diffusion, autonomous basin climbing, kinetic Monte Carlo, reactive molecular dynamics
Procedia PDF Downloads 674585 Green Electrochemical Nitration of Bioactive Compounds: Biological Evaluation with Molecular Modelling
Authors: Sara Torabi, Sadegh Khazalpour, Mahdi Jamshidi
Abstract:
Nitro aromatic compounds are valuable materials because of their applications in the preparation of chemical intermediates for the synthesis of dyes, plastics, perfumes, energetic materials, and pharmaceuticals. Chemical and electrochemical procedures are reported for nitration of aromatic compounds. Flavonoid derivatives are present in many vegetables and fruits and are constituent of many common pharmaceuticals and dietary supplements. Electrochemistry provides very versatile means for the electrosynthesis, mechanistic and kinetic studies. To the best of our knowledge, and despite the importance of these compounds in numerous scientific fields, there are no reports on the electrochemical nitration of Quercetin derivatives. Herein, we describe a green electrochemical synthesis of a nitro compound. In this work, electrochemical oxidation of Quercetin has been studied in the presence of nitrite ion as a nucleophile in acetate buffer solution (c = 0.2 M, pH = 6.0), by means of cyclic voltammetry and controlled-potential coulometry. The results indicate the participation of produced o-benzoquinones in Michael reaction with nitrite ion (in the divided cell) to form the corresponding nitro diol (EC mechanism). The purity of product and characterization was done using ¹H NMR, ¹³C NMR, FTIR spectroscopic techniques. The presented strategies use a water/ethanol mixture as solvent. Ethanol as cosolvent was also used in the previous studies because of its low cost, safety, easy availability, recyclability, bioproductability, and biodegradability. These strategies represent a one-pot and facile process for the synthesis of nitro compound in high yield and purity under green conditions.Keywords: electrochemical synthesis, green chemistry, cyclic voltammetry, molecular docking
Procedia PDF Downloads 1444584 A First-Principles Molecular Dynamics Study on Li+ Solvation Structures in THF/MTHF Containing Electrolytes for Lithium Metal Batteries.
Authors: Chiu-Neng Su, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
In lithium-ion batteries (LIBs) the solid–electrolyte interphase (SEI) layer, which forms on the anode surface, plays a crucial role in stabilizing battery performance. Over the past two decades, efforts to enhance LIB electrolytes have primarily focused on refining the quality of SEI components. Despite these endeavors, several observed phenomena remain inadequately improved the SEI layer. Consequently, there has been a significant surge in research interest regarding the behavior of electrolyte solvation structures to elucidate improvements in battery performance. Thus, in this study, we aimed to explore the solvation structures of LiPF₆ in a mixture of organic solvents, tetrahydrofuran (THF) and 2-methyl-tetrahydrofuran (MTHF) using ab-initio molecular dynamics (AIMD) simulations. Our work investigated the solvation structure of electrolytes with different salt concentrations: low-concentration electrolyte (1.0M LiPF6 in 1:1v/v mixture of THF and MTHF), and high-concentration electrolyte (2.0M LiPF₆ in 1:1v/v mixture of THF and MTHF) and compared them with that of conventional electrolyte (1.0M LiPF₆ in 1:1v/v mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC)). Furthermore, the reduction stability of Li+ solvation structures in these electrolyte systems are investigated. It is found that the first solvation shell of Li+ primary consists of THF. We also analyzed the molecular orbital energy levels to understand the reducing stability of these solvents. Compared with the solvation sheath of commercial electrolyte, the THF/MTHF-containing electrolytes have a higher lowest unoccupied molecular orbital (LUMO) energy level, resulting in improved reduction and interface stability. It has been shown that Li-Al alloy can significantly improve cycle life and promote the formation of a dense SEI layer. Therefore, this study aims to construct the solvation structures obtained from calculations of the pure electrolyte system on the surface of Al-Li alloy. Additionally, AIMD simulations will be conducted to investigate chemical reactions at the interface. This investigation aims to elucidate the composition of the SEI layer formed. Furthermore, Bader charges are used to determine the origin and flow of electrons, thereby revealing the sequence of reduction reactions for generating SEI layers.Keywords: lithium, aluminum, alloy, battery, solvation structure
Procedia PDF Downloads 224583 Quasistationary States and Mean Field Model
Authors: Sergio Curilef, Boris Atenas
Abstract:
Systems with long-range interactions are very common in nature. They are observed from the atomic scale to the astronomical scale and exhibit anomalies, such as inequivalence of ensembles, negative heat capacity, ergodicity breaking, nonequilibrium phase transitions, quasistationary states, and anomalous diffusion. These anomalies are exacerbated when special initial conditions are imposed; in particular, we use the so-called water bag initial conditions that stand for a uniform distribution. Several theoretical and practical implications are discussed here. A potential energy inspired by dipole-dipole interactions is proposed to build the dipole-type Hamiltonian mean-field model. As expected, the dynamics is novel and general to the behavior of systems with long-range interactions, which is obtained through molecular dynamics technique. Two plateaus sequentially emerge before arriving at equilibrium, which are corresponding to two different quasistationary states. The first plateau is a type of quasistationary state the lifetime of which depends on a power law of N and the second plateau seems to be a true quasistationary state as reported in the literature. The general behavior of the model according to its dynamics and thermodynamics is described. Using numerical simulation we characterize the mean kinetic energy, caloric curve, and the diffusion law through the mean square of displacement. The present challenge is to characterize the distributions in phase space. Certainly, the equilibrium state is well characterized by the Gaussian distribution, but quasistationary states in general depart from any Gaussian function.Keywords: dipole-type interactions, dynamics and thermodynamics, mean field model, quasistationary states
Procedia PDF Downloads 2114582 The Role of Piceatannol in Counteracting Glyceraldehyde-3-Phosphate Dehydrogenase Aggregation and Nuclear Translocation
Authors: Joanna Gerszon, Aleksandra Rodacka
Abstract:
In the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, protein and peptide aggregation processes play a vital role in contributing to the formation of intracellular and extracellular protein deposits. One of the major components of these deposits is the oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Therefore, the purpose of this research was to answer the question whether piceatannol, a stilbene derivative, counteracts and/or slows down oxidative stress-induced GAPDH aggregation. The study also aimed to determine if this natural occurring compound prevents unfavorable nuclear translocation of GAPDH in hippocampal cells. The isothermal titration calorimetry (ITC) analysis indicated that one molecule of GAPDH can bind up to 8 molecules of piceatannol (7.3 ± 0.9). As a consequence of piceatannol binding to the enzyme, the loss of activity was observed. Parallel with GAPDH inactivation the changes in zeta potential, and loss of free thiol groups were noted. Nevertheless, the ligand-protein binding does not influence the secondary structure of the GAPDH. Precise molecular docking analysis of the interactions inside the active center allowed to presume that these effects are due to piceatannol ability to assemble a covalent binding with nucleophilic cysteine residue (Cys149) which is directly involved in the catalytic reaction. Molecular docking also showed that simultaneously 11 molecules of ligand can be bound to dehydrogenase. Taking into consideration obtained data, the influence of piceatannol on level of GAPDH aggregation induced by excessive oxidative stress was examined. The applied methods (thioflavin-T binding-dependent fluorescence as well as microscopy methods - transmission electron microscopy, Congo Red staining) revealed that piceatannol significantly diminishes level of GAPDH aggregation. Finally, studies involving cellular model (Western blot analyses of nuclear and cytosolic fractions and confocal microscopy) indicated that piceatannol-GAPDH binding prevents GAPDH from nuclear translocation induced by excessive oxidative stress in hippocampal cells. In consequence, it counteracts cell apoptosis. These studies demonstrate that by binding with GAPDH, piceatannol blocks cysteine residue and counteracts its oxidative modifications, that induce oligomerization and GAPDH aggregation as well as it prevents hippocampal cells from apoptosis by retaining GAPDH in the cytoplasm. All these findings provide a new insight into the role of piceatannol interaction with GAPDH and present a potential therapeutic strategy for some neurological disorders related to GAPDH aggregation. This work was supported by the by National Science Centre, Poland (grant number 2017/25/N/NZ1/02849).Keywords: glyceraldehyde-3-phosphate dehydrogenase, neurodegenerative disease, neuroprotection, piceatannol, protein aggregation
Procedia PDF Downloads 1674581 Anonymous Gel-Fluid Transition of Solid Supported Lipids
Authors: Asma Poursoroush
Abstract:
Solid-supported lipid bilayers are often used as a simple model for studies of biological membranes. The presence of a solid substrate that interacts attractively with lipid head-groups is expected to affect the phase behavior of the supported bilayer. Molecular dynamics simulations of a coarse-grained model are thus performed to investigate the phase behavior of supported one-component lipid bilayer membranes. Our results show that the attraction of the lipid head groups to the substrate leads to a phase behavior that is different from that of a free standing lipid bilayer. In particular, we found that the phase behaviors of the two leaflets are decoupled in the presence of a substrate. The proximal leaflet undergoes a clear gel-to-fluid phase transition at a temperature lower than that of a free standing bilayer, and that decreases with increasing strength of the substrate-lipid attraction. The distal leaflet, however, undergoes a change from a homogeneous liquid phase at high temperatures to a heterogeneous state consisting of small liquid and gel domains, with the average size of the gel domains that increases with decreasing temperature. While the chain order parameter of the proximal leaflet clearly shows a gel-fluid phase transition, the chain order parameter of the distal leaflet does not exhibit a clear phase transition. The decoupling in the phase behavior of the two leaflets is due to a non-symmteric lipid distribution in the two leaflets resulting from the presence of the substrate.Keywords: membrane, substrate, molecular dynamics, simulation
Procedia PDF Downloads 1954580 Nonlocal Beam Models for Free Vibration Analysis of Double-Walled Carbon Nanotubes with Various End Supports
Authors: Babak Safaei, Ahmad Ghanbari, Arash Rahmani
Abstract:
In the present study, the free vibration characteristics of double-walled carbon nanotubes (DWCNTs) are investigated. The small-scale effects are taken into account using the Eringen’s nonlocal elasticity theory. The nonlocal elasticity equations are implemented into the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT) to analyze the free vibrations of DWCNTs in which each wall of the nanotubes is considered as individual beam with van der Waals interaction forces. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations of each nonlocal beam model along with four commonly used boundary conditions. Then molecular dynamics (MD) simulation is performed for a series of armchair and zigzag DWCNTs with different aspect ratios and boundary conditions, the results of which are matched with those of nonlocal beam models to extract the appropriate values of the nonlocal parameter corresponding to each type of chirality, nonlocal beam model and boundary condition. It is found that the present nonlocal beam models with their proposed correct values of nonlocal parameter have good capability to predict the vibrational behavior of DWCNTs, especially for higher aspect ratios.Keywords: double-walled carbon nanotubes, nonlocal continuum elasticity, free vibrations, molecular dynamics simulation, generalized differential quadrature method
Procedia PDF Downloads 2944579 Synergistic Effect of Eugenol Acetate with Betalactam Antibiotic on Betalactamase and Its Bioinformatics Analysis
Authors: Vinod Nair, C. Sadasivan
Abstract:
Beta-lactam antibiotics are the most frequently prescribed medications in modern medicine. The antibiotic resistance by the production of enzyme beta-lactamase is an important mechanism seen in microorganisms. Resistance to beta-lactams mediated by beta-lactamases can be overcome successfully with the use of beta-lactamase inhibitors. New generations of the antibiotics contain mostly synthetic compounds, and many side effects have been reported for them. Combinations of beta-lactam and beta-lactamase inhibitors have become one of the most successful antimicrobial strategies in the current scenario of bacterial infections. Plant-based drugs are very cheap and having lesser adverse effect than synthetic compounds. The synergistic effect of eugenol acetate with beta-lactams restores the activity of beta-lactams, allowing their continued clinical use. It is reported here the enhanced inhibitory effect of phytochemical, eugenol acetate, isolated from the plant Syzygium aromaticum with beta-lactams on beta-lactamase. The compound was found to have synergistic effect with the antibiotic amoxicillin against antibiotic-resistant strain of S.aureus. The enzyme was purified from the organism and incubated with the compound. The assay showed that the compound could inhibit the enzymatic activity of beta-lactamase. Modeling and molecular docking studies indicated that the compound can fit into the active site of beta-lactamase and can mask the important residue for hydrolysis of beta-lactams. The synergistic effects of eugenol acetate with beta-lactam antibiotics may justify, the use of these plant compounds for the preparation of β-lactamase inhibitors against β-lactam resistant S.aureus.Keywords: betalactamase, eugenol acetate, synergistic effect, molecular modeling
Procedia PDF Downloads 2494578 Molecular Dynamics Simulations on Richtmyer-Meshkov Instability of Li-H2 Interface at Ultra High-Speed Shock Loads
Authors: Weirong Wang, Shenghong Huang, Xisheng Luo, Zhenyu Li
Abstract:
Material mixing process and related dynamic issues at extreme compressing conditions have gained more and more concerns in last ten years because of the engineering appealings in inertial confinement fusion (ICF) and hypervelocity aircraft developments. However, there lacks models and methods that can handle fully coupled turbulent material mixing and complex fluid evolution under conditions of high energy density regime up to now. In aspects of macro hydrodynamics, three numerical methods such as direct numerical simulation (DNS), large eddy simulation (LES) and Reynolds-averaged Navier–Stokes equations (RANS) has obtained relative acceptable consensus under the conditions of low energy density regime. However, under the conditions of high energy density regime, they can not be applied directly due to occurrence of dissociation, ionization, dramatic change of equation of state, thermodynamic properties etc., which may make the governing equations invalid in some coupled situations. However, in view of micro/meso scale regime, the methods based on Molecular Dynamics (MD) as well as Monte Carlo (MC) model are proved to be promising and effective ways to investigate such issues. In this study, both classical MD and first-principle based electron force field MD (eFF-MD) methods are applied to investigate Richtmyer-Meshkov Instability of metal Lithium and gas Hydrogen (Li-H2) interface mixing at different shock loading speed ranging from 3 km/s to 30 km/s. It is found that: 1) Classical MD method based on predefined potential functions has some limits in application to extreme conditions, since it cannot simulate the ionization process and its potential functions are not suitable to all conditions, while the eFF-MD method can correctly simulate the ionization process due to its ‘ab initio’ feature; 2) Due to computational cost, the eFF-MD results are also influenced by simulation domain dimensions, boundary conditions and relaxation time choices, etc., in computations. Series of tests have been conducted to determine the optimized parameters. 3) Ionization induced by strong shock compression has important effects on Li-H2 interface evolutions of RMI, indicating a new micromechanism of RMI under conditions of high energy density regime.Keywords: first-principle, ionization, molecular dynamics, material mixture, Richtmyer-Meshkov instability
Procedia PDF Downloads 2254577 In-silico Antimicrobial Activity of Bioactive Compounds of Ricinus communis against DNA Gyrase of Staphylococcus aureus as Molecular Target
Authors: S. Rajeswari
Abstract:
Medicinal Plant extracts and their bioactive compounds have been used for antimicrobial activities and have significant remedial properties. In the recent years, a wide range of investigations have been carried out throughout the world to confirm antimicrobial properties of different medicinally important plants. A number of plants showed efficient antimicrobial activities, which were comparable to that of synthetic standard drugs or antimicrobial agents. The large family Euphorbiaceae contains nearly about 300 genera and 7,500 speciesand one among is Ricinus communis or castor plant which has high traditional and medicinal value for disease free healthy life. Traditionally the plant is used as laxative, purgative, fertilizer and fungicide etc. whereas the plant possess beneficial effects such as anti-oxidant, antihistamine, antinociceptive, antiasthmatic, antiulcer, immunomodulatory anti diabetic, hepatoprotective, anti inflammatory, antimicrobial, and many other medicinal properties. This activity of the plant possess due to the important phytochemical constituents like flavonoids, saponins, glycosides, alkaloids and steroids. The presents study includes the phytochemical properties of Ricinus communis and to prediction of the anti-microbial activity of Ricinus communis using DNA gyrase of Staphylococcus aureus as molecular target. Docking results of varies chemicals compounds of Ricinus communis against DNA gyrase of Staphylococcus aureus by maestro 9.8 of Schrodinger show that the phytochemicals are effective against the target protein DNA gyrase. our studies suggest that the phytochemical from Ricinus communis such has INDICAN (G.Score 4.98) and SUPLOPIN-2(G.Score 5.74) can be used as lead molecule against Staphylococcus infections.Keywords: euphorbiaceae, antimicrobial activity, Ricinus communis, Staphylococcus aureus
Procedia PDF Downloads 4794576 Molecular Dynamics Study of Ferrocene in Low and Room Temperatures
Authors: Feng Wang, Vladislav Vasilyev
Abstract:
Ferrocene (Fe(C5H5)2, i.e., di-cyclopentadienyle iron (FeCp2) or Fc) is a unique example of ‘wrong but seminal’ in chemistry history. It has significant applications in a number of areas such as homogeneous catalysis, polymer chemistry, molecular sensing, and nonlinear optical materials. However, the ‘molecular carousel’ has been a ‘notoriously difficult example’ and subject to long debate for its conformation and properties. Ferrocene is a dynamic molecule. As a result, understanding of the dynamical properties of ferrocene is very important to understand the conformational properties of Fc. In the present study, molecular dynamic (MD) simulations are performed. In the simulation, we use 5 geometrical parameters to define the overall conformation of Fc and all the rest is a thermal noise. The five parameters are defined as: three parameters d---the distance between two Cp planes, α and δ to define the relative positions of the Cp planes, in which α is the angle of the Cp tilt and δ the angle the two Cp plane rotation like a carousel. Two parameters to position the Fe atom between two Cps, i.e., d1 for Fe-Cp1 and d2 for Fe-Cp2 distances. Our preliminary MD simulation discovered the five parameters behave differently. Distances of Fe to the Cp planes show that they are independent, practically identical without correlation. The relative position of two Cp rings, α, indicates that the two Cp planes are most likely not in a parallel position, rather, they tilt in a small angle α≠ 0°. The mean plane dihedral angle δ ≠ 0°. Moreover, δ is neither 0° nor 36°, indicating under those conditions, Fc is neither in a perfect eclipsed structure nor a perfect staggered structure. The simulations show that when the temperature is above 80K, the conformers are virtually in free rotations, A very interesting result from the MD simulation is the five C-Fe bond distances from the same Cp ring. They are surprisingly not identical but in three groups of 2, 2 and 1. We describe the pentagon formed by five carbon atoms as ‘turtle swimming’ for the motion of the Cp rings of Fc as shown in their dynamical animation video. The Fe- C(1) and Fe-C(2) which are identical as ‘the turtle back legs’, Fe-C(3) and Fe-C(4) which are also identical as turtle front paws’, and Fe-C(5) ---’the turtle head’. Such as ‘turtle swimming’ analog may be able to explain the single substituted derivatives of Fc. Again, the mean Fe-C distance obtained from MD simulation is larger than the quantum mechanically calculated Fe-C distances for eclipsed and staggered Fc, with larger deviation with respect to the eclipsed Fc than the staggered Fc. The same trend is obtained for the five Fe-C-H angles from same Cp ring of Fc. The simulated mean IR spectrum at 7K shows split spectral peaks at approximately 470 cm-1 and 488 cm-1, in excellent agreement with quantum mechanically calculated gas phase IR spectrum for eclipsed Fc. As the temperature increases over 80K, the clearly splitting IR spectrum become a very board single peak. Preliminary MD results will be presented.Keywords: ferrocene conformation, molecular dynamics simulation, conformer orientation, eclipsed and staggered ferrocene
Procedia PDF Downloads 2184575 Analysis of Some Produced Inhibitors for Corrosion of J55 Steel in NaCl Solution Saturated with CO₂
Authors: Ambrish Singh
Abstract:
The corrosion inhibition performance of pyran (AP) and benzimidazole (BI) derivatives on J55 steel in 3.5% NaCl solution saturated with CO₂ was investigated by electrochemical, weight loss, surface characterization, and theoretical studies. The electrochemical studies included electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), electrochemical frequency modulation (EFM), and electrochemical frequency modulation trend (EFMT). Surface characterization was done using contact angle, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. DFT and molecular dynamics (MD) studies were done using Gaussian and Materials Studio softwares. All the studies suggested the good inhibition by the synthesized inhibitors on J55 steel in 3.5% NaCl solution saturated with CO₂ due to the formation of a protective film on the surface. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface.Keywords: corrosion, inhibitor, EFM, AFM, DFT, MD
Procedia PDF Downloads 1054574 Computing Some Topological Descriptors of Single-Walled Carbon Nanotubes
Authors: Amir Bahrami
Abstract:
In the fields of chemical graph theory, molecular topology, and mathematical chemistry, a topological index or a descriptor index also known as a connectivity index is a type of a molecular descriptor that is calculated based on the molecular graph of a chemical compound. Topological indices are numerical parameters of a graph which characterize its topology and are usually graph invariant. Topological indices are used for example in the development of quantitative structure-activity relationships (QSARs) in which the biological activity or other properties of molecules are correlated with their chemical structure. In this paper some descriptor index (descriptor index) of single-walled carbon nanotubes, is determined.Keywords: chemical graph theory, molecular topology, molecular descriptor, single-walled carbon nanotubes
Procedia PDF Downloads 3384573 Synthesis, Computational Studies, Antioxidant and Anti-Inflammatory Bio-Evaluation of 2,5-Disubstituted- 1,3,4-Oxadiazole Derivatives
Authors: Sibghat Mansoor Rana, Muhammad Islam, Hamid Saeed, Hummera Rafique, Muhammad Majid, Muhammad Tahir Aqeel, Fariha Imtiaz, Zaman Ashraf
Abstract:
The 1,3,4-oxadiazole derivatives Ox-6a-f have been synthesized by incorporating flur- biprofen moiety with the aim to explore the potential of target molecules to decrease the oxidative stress. The title compounds Ox-6a-f were prepared by simple reactions in which a flurbiprofen –COOH group was esterified with methanol in an acid-catalyzed medium, which was then reacted with hydrazine to afford the corresponding hydrazide. The acid hydrazide was then cyclized into 1,3,4-oxadiazole-2-thiol by reacting with CS2 in the presence of KOH. The title compounds Ox-6a-f were synthesized by the reaction of an –SH group with various alkyl/aryl chlorides, which involves an S-alkylation reaction. The structures of the synthesized Ox-6a-f derivatives were ascer- tained by spectroscopic data. The in silico molecular docking was performed against target proteins cyclooxygenase-2 COX-2 (PDBID 5KIR) and cyclooxygenase-1 COX-1 (PDBID 6Y3C) to determine the binding affinity of the synthesized compounds with these structures. It has been inferred that most of the synthesized compounds bind well with an active binding site of 5KIR compared to 6Y3C, and especially compound Ox-6f showed excellent binding affinity (7.70 kcal/mol) among all synthesized compounds Ox-6a-f. The molecular dynamic (MD) simulation has also been performed to check the stability of docking complexes of ligands with COX-2 by determining their root mean square deviation and root mean square fluctuation. Little fluctuation was observed in case of Ox-6f, which forms the most stable complex with COX-2. The comprehensive antioxidant potential of the synthesized compounds has been evaluated by determining their free radical scavenging activity, including DPPH, OH, nitric oxide (NO), and iron chelation assay. The derivative Ox-6f showed promising results with 80.23% radical scavenging potential at a dose of 100 μg/mL while ascorbic acid exhibited 87.72% inhibition at the same dose. The anti-inflammatory activity of the final products has also been performed, and inflammatory markers were assayed, such as a thiobarbituric acid-reducing substance, nitric oxide, interleukin-6 (IL-6), and COX-2. The derivatives Ox-6d and Ox-6f displayed higher anti-inflammatory activity, exhibiting 70.56% and 74.16% activity, respectively. The results were compared with standard ibuprofen, which showed 84.31% activity at the same dose, 200 μg/mL. The anti-inflammatory potential has been performed by following the carrageen-induced hind paw edema model, and results showed that derivative Ox-6f exhibited 79.83% reduction in edema volume compared to standard ibuprofen, which reduced 84.31% edema volume. As dry lab and wet lab results confirm each other, it has been deduced that derivative Ox-6f may serve as the lead structure to design potent compounds to address oxidative stress.Keywords: synthetic chemistry, pharmaceutical chemistry, oxadiazole derivatives, anti-inflammatory, anti-cancer compounds
Procedia PDF Downloads 154572 Insights Into Serotonin-Receptor Binding and Stability via Molecular Dynamics Simulations: Key Residues for Electrostatic Interactions and Signal Transduction
Authors: Arunima Verma, Padmabati Mondal
Abstract:
Serotonin-receptor binding plays a key role in several neurological and biological processes, including mood, sleep, hunger, cognition, learning, and memory. In this article, we performed molecular dynamics simulation to examine the key residues that play an essential role in the binding of serotonin to the G-protein-coupled 5-HT₁ᴮ receptor (5-HT₁ᴮ R) via electrostatic interactions. An end-point free energy calculation method (MM-PBSA) determines the stability of the 5-HT1B R due to serotonin binding. The single-point mutation of the polar or charged amino acid residues (Asp129, Thr134) on the binding sites and the calculation of binding free energy validate the importance of these residues in the stability of the serotonin-receptor complex. Principal component analysis indicates the serotonin-bound 5-HT1BR is more stabilized than the apo-receptor in terms of dynamical changes. The difference dynamic cross-correlations map shows the correlation between the transmembrane and mini-Go, which indicates signal transduction happening between mini-Go and the receptor. Allosteric communication reveals the key nodes for signal transduction in 5-HT1BR. These results provide useful insights into the signal transduction pathways and mutagenesis study to regulate the functionality of the complex. The developed protocols can be applied to study local non-covalent interactions and long-range allosteric communications in any protein-ligand system for computer-aided drug design.Keywords: allostery, CADD, MD simulations, MM-PBSA
Procedia PDF Downloads 87