Search results for: metabolic network
5248 Reliability Improvement of Power System Networks Using Adaptive Genetic Algorithm
Authors: Alireza Alesaadi
Abstract:
Reliability analysis is a powerful method for determining the weak points of the electrical networks. In designing of electrical network, it is tried to design the most reliable network with minimal system shutting down, but it is usually associated with increasing the cost. In this paper, using adaptive genetic algorithm, a method was presented that provides the most reliable system with a certain economical cost. Finally, the proposed method is applied to a sample network and results will be analyzed.Keywords: reliability, adaptive genetic algorithm, electrical network, communication engineering
Procedia PDF Downloads 5075247 GIS-Based Topographical Network for Minimum “Exertion” Routing
Authors: Katherine Carl Payne, Moshe Dror
Abstract:
The problem of minimum cost routing has been extensively explored in a variety of contexts. While there is a prevalence of routing applications based on least distance, time, and related attributes, exertion-based routing has remained relatively unexplored. In particular, the network structures traditionally used to construct minimum cost paths are not suited to representing exertion or finding paths of least exertion based on road gradient. In this paper, we introduce a topographical network or “topograph” that enables minimum cost routing based on the exertion metric on each arc in a given road network as it is related to changes in road gradient. We describe an algorithm for topograph construction and present the implementation of the topograph on a road network of the state of California with ~22 million nodes.Keywords: topograph, RPE, routing, GIS
Procedia PDF Downloads 5445246 Design an Intelligent Fire Detection System Based on Neural Network and Particle Swarm Optimization
Authors: Majid Arvan, Peyman Beygi, Sina Rokhsati
Abstract:
In-time detection of fire in buildings is of great importance. Employing intelligent methods in data processing in fire detection systems leads to a significant reduction of fire damage at lowest cost. In this paper, the raw data obtained from the fire detection sensor networks in buildings is processed by using intelligent methods based on neural networks and the likelihood of fire happening is predicted. In order to enhance the quality of system, the noise in the sensor data is reduced by analyzing wavelets and applying SVD technique. Meanwhile, the proposed neural network is trained using particle swarm optimization (PSO). In the simulation work, the data is collected from sensor network inside the room and applied to the proposed network. Then the outputs are compared with conventional MLP network. The simulation results represent the superiority of the proposed method over the conventional one.Keywords: intelligent fire detection, neural network, particle swarm optimization, fire sensor network
Procedia PDF Downloads 3795245 Network Word Discovery Framework Based on Sentence Semantic Vector Similarity
Authors: Ganfeng Yu, Yuefeng Ma, Shanliang Yang
Abstract:
The word discovery is a key problem in text information retrieval technology. Methods in new word discovery tend to be closely related to words because they generally obtain new word results by analyzing words. With the popularity of social networks, individual netizens and online self-media have generated various network texts for the convenience of online life, including network words that are far from standard Chinese expression. How detect network words is one of the important goals in the field of text information retrieval today. In this paper, we integrate the word embedding model and clustering methods to propose a network word discovery framework based on sentence semantic similarity (S³-NWD) to detect network words effectively from the corpus. This framework constructs sentence semantic vectors through a distributed representation model, uses the similarity of sentence semantic vectors to determine the semantic relationship between sentences, and finally realizes network word discovery by the meaning of semantic replacement between sentences. The experiment verifies that the framework not only completes the rapid discovery of network words but also realizes the standard word meaning of the discovery of network words, which reflects the effectiveness of our work.Keywords: text information retrieval, natural language processing, new word discovery, information extraction
Procedia PDF Downloads 915244 Modification of the Risk for Incident Cancer with Changes in the Metabolic Syndrome Status: A Prospective Cohort Study in Taiwan
Authors: Yung-Feng Yen, Yun-Ju Lai
Abstract:
Background: Metabolic syndrome (MetS) is reversible; however, the effect of changes in MetS status on the risk of incident cancer has not been extensively studied. We aimed to investigate the effects of changes in MetS status on incident cancer risk. Methods: This prospective, longitudinal study used data from Taiwan’s MJ cohort of 157,915 adults recruited from 2002–2016 who had repeated MetS measurements 5.2 (±3.5) years apart and were followed up for the new onset of cancer over 8.2 (±4.5) years. A new diagnosis of incident cancer in study individuals was confirmed by their pathohistological reports. The participants’ MetS status included MetS-free (n=119,331), MetS-developed (n=14,272), MetS-recovered (n=7,914), and MetS-persistent (n=16,398). We used the Fine-Gray sub-distribution method, with death as the competing risk, to determine the association between MetS changes and the risk of incident cancer. Results: During the follow-up period, 7,486 individuals had new development of cancer. Compared with the MetS-free group, MetS-persistent individuals had a significantly higher risk of incident cancer (adjusted hazard ratio [aHR], 1.10; 95% confidence interval [CI], 1.03-1.18). Considering the effect of dynamic changes in MetS status on the risk of specific cancer types, MetS persistence was significantly associated with a higher risk of incident colon and rectum, kidney, pancreas, uterus, and thyroid cancer. The risk of kidney, uterus, and thyroid cancer in MetS-recovered individuals was higher than in those who remained MetS but lower than MetS-persistent individuals. Conclusions: Persistent MetS is associated with a higher risk of incident cancer, and recovery from MetS may reduce the risk. The findings of our study suggest that it is imperative for individuals with pre-existing MetS to seek treatment for this condition to reduce the cancer risk.Keywords: metabolic syndrome change, cancer, risk factor, cohort study
Procedia PDF Downloads 775243 Effect Of Selected Food And Nutrition Environments On Prevalence Of Cardio-Metabolic Risk Factors With Emphasis On Worksite Environment In Urban Delhi
Authors: Deepa Shokeen, Bani Tamber Aeri
Abstract:
Food choice is a complex process influenced by the interplay of multiple factors, including physical, socio-cultural and economic factors comprising macro or micro level food environments. While a clear understanding of the relationship between what we eat and the environmental context in which these food choices are made is still needed; it has however now been shown that food environments do play a significant role in the obesity epidemic and increasing cardio-metabolic risk factors. Evidence in other countries indicates that the food environment may strongly influence the prevalence of obesity and cardio-metabolic risk factors among young adults. Although in the Indian context, data does indicate the associations between sedentary lifestyle, stress, faulty diets but very little evidence supports the role of food environment in influencing cardio-metabolic health among employed adults. Thus, this research is required to establish how different environments affect different individuals as individuals interact with the environment on a number of levels. Methodology: The objective of the present study is to assess the effect of selected food and nutrition environments with emphasis on worksite environment and to analyse its impact on the food choices and dietary behaviour of the employees (25-45 years of age) of the organizations under study. In the proposed study an attempt will be made to randomly select various worksite environments from Delhi and NCR. The study will be conducted in two phases. In phase I, Information will be obtained on their socio-demographic profile and various factors influencing their food choices including most commonly consumed foods and most frequently visited eating outlets in and around the work place. Data will also be gathered on anthropometry (height, weight, waist circumference), biochemical parameters (lipid profile and fasting glucose), blood pressure and dietary intake. Based on the findings of phase I, a list of the most frequently visited eating outlets in and around the workplace will be prepared in Phase II. These outlets will then be subjected to nutrition environment assessment survey (NEMS). On the basis of the information gathered from phase I and phase II, influence of selected food and nutrition environments on food choice, dietary behaviour and prevalence of cardio-metabolic risk factors among employed adults will be assessed. Expected outcomes: The proposed study will try to ascertain the impact of selected food and nutrition environments on food choice and dietary intake of the working adults as it is important to learn how these food environments influence the eating perceptions and health behavior of the adults. In addition to this, anthropometry blood pressure and biochemical assessment of the subjects will be done to assess the prevalence of cardio-metabolic risk factors. If the findings indicate that the work environment, where most of these young adults spend their productive hours of the day, influence their health, than perhaps steps maybe needed to make these environments more conducive to health.Keywords: food and nutrition environment, cardio-metabolic risk factors, India, worksite environment
Procedia PDF Downloads 2795242 Optimization of Reliability and Communicability of a Random Two-Dimensional Point Patterns Using Delaunay Triangulation
Authors: Sopheak Sorn, Kwok Yip Szeto
Abstract:
Reliability is one of the important measures of how well the system meets its design objective, and mathematically is the probability that a complex system will perform satisfactorily. When the system is described by a network of N components (nodes) and their L connection (links), the reliability of the system becomes a network design problem that is an NP-hard combinatorial optimization problem. In this paper, we address the network design problem for a random point set’s pattern in two dimensions. We make use of a Voronoi construction with each cell containing exactly one point in the point pattern and compute the reliability of the Voronoi’s dual, i.e. the Delaunay graph. We further investigate the communicability of the Delaunay network. We find that there is a positive correlation and a negative correlation between the homogeneity of a Delaunay's degree distribution with its reliability and its communicability respectively. Based on the correlations, we alter the communicability and the reliability by performing random edge flips, which preserve the number of links and nodes in the network but can increase the communicability in a Delaunay network at the cost of its reliability. This transformation is later used to optimize a Delaunay network with the optimum geometric mean between communicability and reliability. We also discuss the importance of the edge flips in the evolution of real soap froth in two dimensions.Keywords: Communicability, Delaunay triangulation, Edge Flip, Reliability, Two dimensional network, Voronio
Procedia PDF Downloads 4185241 A New Method to Reduce 5G Application Layer Payload Size
Authors: Gui Yang Wu, Bo Wang, Xin Wang
Abstract:
Nowadays, 5G service-based interface architecture uses text-based payload like JSON to transfer business data between network functions, which has obvious advantages as internet services but causes unnecessarily larger traffic. In this paper, a new 5G application payload size reduction method is presented to provides the mechanism to negotiate about new capability between network functions when network communication starts up and how 5G application data are reduced according to negotiated information with peer network function. Without losing the advantages of 5G text-based payload, this method demonstrates an excellent result on application payload size reduction and does not increase the usage quota of computing resource. Implementation of this method does not impact any standards or specifications and not change any encoding or decoding functionality too. In a real 5G network, this method will contribute to network efficiency and eventually save considerable computing resources.Keywords: 5G, JSON, payload size, service-based interface
Procedia PDF Downloads 1795240 Thermal Network Model for a Large Scale AC Induction Motor
Authors: Sushil Kumar, M. Dakshina Murty
Abstract:
Thermal network modelling has proven to be important tool for thermal analysis of electrical machine. This article investigates numerical thermal network model and experimental performance of a large-scale AC motor. Experimental temperatures were measured using RTD in the stator which have been compared with the numerical data. Thermal network modelling fairly predicts the temperature of various components inside the large-scale AC motor. Results of stator winding temperature is compared with experimental results which are in close agreement with accuracy of 6-10%. This method of predicting hot spots within AC motors can be readily used by the motor designers for estimating the thermal hot spots of the machine.Keywords: AC motor, thermal network, heat transfer, modelling
Procedia PDF Downloads 3245239 A Two-Step Framework for Unsupervised Speaker Segmentation Using BIC and Artificial Neural Network
Authors: Ahmad Alwosheel, Ahmed Alqaraawi
Abstract:
This work proposes a new speaker segmentation approach for two speakers. It is an online approach that does not require a prior information about speaker models. It has two phases, a conventional approach such as unsupervised BIC-based is utilized in the first phase to detect speaker changes and train a Neural Network, while in the second phase, the output trained parameters from the Neural Network are used to predict next incoming audio stream. Using this approach, a comparable accuracy to similar BIC-based approaches is achieved with a significant improvement in terms of computation time.Keywords: artificial neural network, diarization, speaker indexing, speaker segmentation
Procedia PDF Downloads 4995238 Targeting Methionine Metabolism In Gastric Cancer; Promising To Improve Chemosensetivity With Non-hetrogeneity
Authors: Nigatu Tadesse, Li Juan, Liuhong Ming
Abstract:
Gastric cancer (GC) is the fifth most common and fourth deadly cancer in the world with limited treatment options at late advanced stage in which surgical therapy is not recommended with chemotherapy remain as the mainstay of treatment. However, the occurrence of chemoresistance as well as intera-tumoral and inter-tumoral heterogeneity of response to targeted and immunotherapy underlined a clear unmet treatment need in gastroenterology. Several molecular and cellular alterations ascribed for chemo resistance in GC including cancer stem cells (CSC) and tumor microenvironment (TME) remodeling. Cancer cells including CSC bears higher metabolic demand and major changes in TME involves alterations of gut microbiota interacting with nutrients metabolism. Metabolic upregulation in lipids, carbohydrates, amino acids, fatty acids biosynthesis pathways identified as a common hall mark in GC. Metabolic addiction to methionine metabolism occurs in many cancer cells to promote the biosynthesis of S-Adenosylmethionine (SAM), a universal methyl donor molecule for high rate of transmethylation in GC and promote cell proliferation. Targeting methionine metabolism found to promotes chemo-sensitivity with treatment non-heterogeneity. Methionine restriction (MR) promoted the arrest of cell cycle at S/G2 phase and enhanced downregulation of GC cells resistance to apoptosis (including ferroptosis), which suggests the potential of synergy with chemotherapies acting at S-phase of the cell cycle as well as inducing cell apoptosis. Accumulated evidences showed both the biogenesis as well as intracellular metabolism of exogenous methionine could be safe and effective target for therapy either alone or in combination with chemotherapies. This review article provides an over view of the upregulation in methionine biosynthesis pathway and the molecular signaling through the PI3K/Akt/mTOR-c-MYC axis to promote metabolic reprograming through activating the expression of L-type aminoacid-1 (LAT1) transporter and overexpression of Methionine adenosyltransferase 2A(MAT2A) for intercellular metabolic conversion of exogenous methionine to SAM in GC, and the potential of targeting with novel therapeutic agents such as methioninase (METase), Methionine adenosyltransferase 2A (MAT2A), c-MYC, methyl like transferase 16 (METTL16) inhibitors that are currently under clinical trial development stages and future perspectives.Keywords: gastric cancer, methionine metabolism, pi3k/akt/mtorc1-c-myc axis, gut microbiota, MAT2A, c-MYC, METTL16, methioninase
Procedia PDF Downloads 465237 Identification of Soft Faults in Branched Wire Networks by Distributed Reflectometry and Multi-Objective Genetic Algorithm
Authors: Soumaya Sallem, Marc Olivas
Abstract:
This contribution presents a method for detecting, locating, and characterizing soft faults in a complex wired network. The proposed method is based on multi-carrier reflectometry MCTDR (Multi-Carrier Time Domain Reflectometry) combined with a multi-objective genetic algorithm. In order to ensure complete network coverage and eliminate diagnosis ambiguities, the MCTDR test signal is injected at several points on the network, and the data is merged between different reflectometers (sensors) distributed on the network. An adapted multi-objective genetic algorithm is used to merge data in order to obtain more accurate faults location and characterization. The proposed method performances are evaluated from numerical and experimental results.Keywords: wired network, reflectometry, network distributed diagnosis, multi-objective genetic algorithm
Procedia PDF Downloads 1935236 Implementation and Demonstration of Software-Defined Traffic Grooming
Authors: Lei Guo, Xu Zhang, Weigang Hou
Abstract:
Since the traditional network is closed and it has no architecture to create applications, it has been unable to evolve with changing demands under the rapid innovation in services. Additionally, due to the lack of the whole network profile, the quality of service cannot be well guaranteed in the traditional network. The Software Defined Network (SDN) utilizes global resources to support on-demand applications/services via open, standardized and programmable interfaces. In this paper, we implement the traffic grooming application under a real SDN environment, and the corresponding analysis is made. In our SDN: 1) we use OpenFlow protocol to control the entire network by using software applications running on the network operating system; 2) several virtual switches are combined into the data forwarding plane through Open vSwitch; 3) An OpenFlow controller, NOX, is involved as a logically centralized control plane that dynamically configures the data forwarding plane; 4) The traffic grooming based on SDN is demonstrated through dynamically modifying the idle time of flow entries. The experimental results demonstrate that the SDN-based traffic grooming effectively reduces the end-to-end delay, and the improvement ratio arrives to 99%.Keywords: NOX, OpenFlow, Software Defined Network (SDN), traffic grooming
Procedia PDF Downloads 2505235 Impact of Network Workload between Virtualization Solutions on a Testbed Environment for Cybersecurity Learning
Authors: Kevin Fernagut, Olivier Flauzac, Erick M. G. Robledo, Florent Nolot
Abstract:
The adoption of modern lightweight virtualization often comes with new threats and network vulnerabilities. This paper seeks to assess this with a different approach studying the behavior of a testbed built with tools such as Kernel-Based Virtual Machine (KVM), Linux Containers (LXC) and Docker, by performing stress tests within a platform where students experiment simultaneously with cyber-attacks, and thus observe the impact on the campus network and also find the best solution for cyber-security learning. Interesting outcomes can be found in the literature comparing these technologies. It is, however, difficult to find results of the effects on the global network where experiments are carried out. Our work shows that other physical hosts and the faculty network were impacted while performing these trials. The problems found are discussed, as well as security solutions and the adoption of new network policies.Keywords: containerization, containers, cybersecurity, cyberattacks, isolation, performance, virtualization, virtual machines
Procedia PDF Downloads 1475234 Reliable Multicast Communication in Next Generation Networks
Authors: Muazzam Ali Khan Khattak
Abstract:
Next Generation Network is combination of different networks having different technologies. Due to mobile nature of nodes the movement of nodes occurs from one network to another network. Multicasting in such networks is still a hot issue of research because the user in today's world wants reliable communication wherever it lies. Due to heterogeneity of NGN it is very difficult to handle reliable multicast communication. In this paper we proposed an improved scheme for reliable multicast communication in next generation networks. Because multicast communication is very important to deliver same data packets to multiple receivers and minimize the network traffic. This new scheme will make the multicast communication in NGN more reliable and efficient.Keywords: next generation networks, route request, IPT, NACK, ARQ, DTN
Procedia PDF Downloads 5015233 Towards Security in Virtualization of SDN
Authors: Wanqing You, Kai Qian, Xi He, Ying Qian
Abstract:
In this paper, the potential security issues brought by the virtualization of a Software Defined Networks (SDN) would be analyzed. The virtualization of SDN is achieved by FlowVisor (FV). With FV, a physical network is divided into multiple isolated logical networks while the underlying resources are still shared by different slices (isolated logical networks). However, along with the benefits brought by network virtualization, it also presents some issues regarding security. By examining security issues existing in an OpenFlow network, which uses FlowVisor to slice it into multiple virtual networks, we hope we can get some significant results and also can get further discussions among the security of SDN virtualization.Keywords: SDN, network, virtualization, security
Procedia PDF Downloads 4275232 A Review of Literature for Online Social Network Business Continuance Intention and the Hypotheses Thereof
Authors: Akwesi Assensoh-Kodua
Abstract:
Online Social Networks (OSN) has come and gone, yet the explosion of business activities on such platforms continuous to surge high, giving advantage to the bold entrepreneurs. It is therefore a practical requirement that practitioners and researchers understand the key determinants of costumers’ online social network business activities and continuance intention. An exploratory literature research to examine OSN continuous intention of business participants on OSN revealed that the practice of doing business on social network has come to stay and the following factors are the likely drivers for this new business model: perceived trust, perceived ease of use, confirmation, habit, social norm, perceived behavioural control, expected benefit, and satisfaction are the most probable factors that can lead to online social network (OSN) continuance intention.Keywords: online social network, continuance intention, business continuance
Procedia PDF Downloads 4935231 Identification of Some Factors Influencing Serum Uric Acid Concentration in Individuals With Metabolic Syndrome
Authors: Munkhtuul G., Bolortsetseg Z., Lutzul M., Sugar N., Nyamdorj D., Nomundari B., Zesemdorj O., Erdenebayar N., Lkhagvasuren T. S., Munkhbayarlakh S., Bayasgalan T. Uurtuya S. H.
Abstract:
Background: Elevated serum uric acid (SUA) levels are observed in metabolic and cardiovascular conditions as an early predictor of metabolic syndrome (MS). Hyperuricemia, characterised by high uric acid levels in serum, increases the risk of developing MS by 1.6 times. Being overweight and obese significantly contributes to developing MS and cardiovascular disorders. In Mongolia, the prevalence of overweight and obesity is reaching 48.8% among individuals aged 15 to 49 years, indicating a potential surge in the incidence of MS, cardiovascular disorders, diabetes mellitus, and gout.Objective: This study aimed to determine the SUA levels in men diagnosed with MS and investigate the factors influencing these levels.Methods: A total of 119 men aged 30-60, who underwent preventive examinations and resided in Ulaanbaatar city, were included in the study. The criteria established by the International Diabetes Federation (IDF), American Heart Association (AHA), and the National Heart, Lung, and Blood Institute (NHLBI) were employed to define metabolic syndrome. Hyperuricemia was defined as SUA levels ≥7 mg/dL. Dietary intake was evaluated through the 24-hour recall method.Results: The study revealed that the prevalence of MS among the participants was 42.9% (n=51), with hyperuricemia observed in 16.8% (n=20) of the individuals. Among men diagnosed with MS, 21.3% (n=10) exhibited hyperuricemia. The mean SUA levels were as follows: 4.7±0.8 mg/dL in the healthy group, 5.9±1.1 mg/dL in men without MS but presenting central obesity, and 6.2±1.3 mg/dL in men with MS. After adjusting for age and body mass index (BMI), a positive correlation was observed between SUA levels and triglycerides (β=0.93) as well as lipid accumulation product (LAP) (β=0.92) in men with MS. In the central obesity group, SUA levels exhibited a positive correlation with triglycerides (β=0.91), visceral adiposity index (VAI) (β=0.73), LAP (β=0.92), and cardiometabolic index (CMI) (β=0.69). The risk of hyperuricemia increased by 3.29 times with elevated triglycerides and 3.53 times with an increased LAP.Conclusion: The findings indicate that abdominal fat accumulation, as indicated by elevated triglyceride levels and LAP, is associated with increased SUA levels in men with MS. However, no significant relationship was observed between SUA levels and dietary intake.Keywords: central obesity, obesity, triglycerides, hyperuricemia
Procedia PDF Downloads 615230 Optimizing Network Latency with Fast Path Assignment for Incoming Flows
Abstract:
Various flows in the network require to go through different types of middlebox. The improper placement of network middlebox and path assignment for flows could greatly increase the network latency and also decrease the performance of network. Minimizing the total end to end latency of all the ows requires to assign path for the incoming flows. In this paper, the flow path assignment problem in regard to the placement of various kinds of middlebox is studied. The flow path assignment problem is formulated to a linear programming problem, which is very time consuming. On the other hand, a naive greedy algorithm is studied. Which is very fast but causes much more latency than the linear programming algorithm. At last, the paper presents a heuristic algorithm named FPA, which takes bottleneck link information and estimated bandwidth occupancy into consideration, and achieves near optimal latency in much less time. Evaluation results validate the effectiveness of the proposed algorithm.Keywords: flow path, latency, middlebox, network
Procedia PDF Downloads 2055229 Design of Local Interconnect Network Controller for Automotive Applications
Authors: Jong-Bae Lee, Seongsoo Lee
Abstract:
Local interconnect network (LIN) is a communication protocol that combines sensors, actuators, and processors to a functional module in automotive applications. In this paper, a LIN ver. 2.2A controller was designed in Verilog hardware description language (Verilog HDL) and implemented in field-programmable gate array (FPGA). Its operation was verified by making full-scale LIN network with the presented FPGA-implemented LIN controller, commercial LIN transceivers, and commercial processors. When described in Verilog HDL and synthesized in 0.18 μm technology, its gate size was about 2,300 gates.Keywords: local interconnect network, controller, transceiver, processor
Procedia PDF Downloads 2865228 Adaptative Metabolism of Lactic Acid Bacteria during Brewers' Spent Grain Fermentation
Authors: M. Acin-Albiac, P. Filannino, R. Coda, Carlo G. Rizzello, M. Gobbetti, R. Di Cagno
Abstract:
Demand for smart management of large amounts of agro-food by-products has become an area of major environmental and economic importance worldwide. Brewers' spent grain (BSG), the most abundant by-product generated in the beer-brewing process, represents an example of valuable raw material and source of health-promoting compounds. To the date, the valorization of BSG as a food ingredient has been limited due to poor technological and sensory properties. Tailored bioprocessing through lactic acid bacteria (LAB) fermentation is a versatile and sustainable means for the exploitation of food industry by-products. Indigestible carbohydrates (e.g., hemicelluloses and celluloses), high phenolic content, and mostly lignin make of BSG a hostile environment for microbial survival. Hence, the selection of tailored starters is required for successful fermentation. Our study investigated the metabolic strategies of Leuconostoc pseudomesenteroides and Lactobacillus plantarum strains to exploit BSG as a food ingredient. Two distinctive BSG samples from different breweries (Italian IT- and Finish FL-BSG) were microbially and chemically characterized. Growth kinetics, organic acid profiles, and the evolution of phenolic profiles during the fermentation in two BSG model media were determined. The results were further complemented with gene expression targeting genes involved in the degradation cellulose, hemicelluloses building blocks, and the metabolism of anti-nutritional factors. Overall, the results were LAB genus dependent showing distinctive metabolic capabilities. Leuc. pseudomesenteroides DSM 20193 may degrade BSG xylans while sucrose metabolism could be furtherly exploited for extracellular polymeric substances (EPS) production to enhance BSG pro-technological properties. Although L. plantarum strains may follow the same metabolic strategies during BSG fermentation, the mode of action to pursue such strategies was strain-dependent. L. plantarum PU1 showed a great preference for β-galactans compared to strain WCFS1, while the preference for arabinose occurred at different metabolic phases. Phenolic compounds profiling highlighted a novel metabolic route for lignin metabolism. These findings will allow an improvement of understanding of how lactic acid bacteria transform BSG into economically valuable food ingredients.Keywords: brewery by-product valorization, metabolism of plant phenolics, metabolism of lactic acid bacteria, gene expression
Procedia PDF Downloads 1275227 Mechanism for Network Security via Routing Protocols Estimated with Network Simulator 2 (NS-2)
Authors: Rashid Mahmood, Muhammad Sufyan, Nasir Ahmed
Abstract:
The MANETs have lessened transportation and decentralized network. There are numerous basis of routing protocols. We derived the MANETs protocol into three major categories like Reactive, Proactive and hybrid. In these protocols, we discussed only some protocols like Distance Sequenced Distance Vector (DSDV), Ad hoc on Demand Distance Vector (AODV) and Dynamic Source Routing (DSR). The AODV and DSR are both reactive type of protocols. On the other hand, DSDV is proactive type protocol here. We compare these routing protocols for network security estimated by network simulator (NS-2). In this dissertation some parameters discussed such as simulation time, packet size, number of node, packet delivery fraction, push time and speed etc. We will construct all these parameters on routing protocols under suitable conditions for network security measures.Keywords: DSDV, AODV, DSR NS-2, PDF, push time
Procedia PDF Downloads 4315226 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices
Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu
Abstract:
Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction
Procedia PDF Downloads 1055225 Interaction Between Gut Microorganisms and Endocrine Disruptors - Effects on Hyperglycaemia
Authors: Karthika Durairaj, Buvaneswari G., Gowdham M., Gilles M., Velmurugan G.
Abstract:
Background: Hyperglycaemia is the primary cause of metabolic illness. Recently, researchers focused on the possibility that chemical exposure could promote metabolic disease. Hyperglycaemia causes a variety of metabolic diseases dependent on its etiologic conditions. According to animal and population-based research, individual chemical exposure causes health problems through alteration of endocrine function with the influence of microbial influence. We were intrigued by the function of gut microbiota variation in high fat and chemically induced hyperglycaemia. Methodology: C57/Bl6 mice were subjected to two different treatments to generate the etiologic-based diabetes model: I – a high-fat diet with a 45 kcal diet, and II - endocrine disrupting chemicals (EDCs) cocktail. The mice were monitored periodically for changes in body weight and fasting glucose. After 120 days of the experiment, blood anthropometry, faecal metagenomics and metabolomics were performed and analyzed through statistical analysis using one-way ANOVA and student’s t-test. Results: After 120 days of exposure, we found hyperglycaemic changes in both experimental models. The treatment groups also differed in terms of plasma lipid levels, creatinine, and hepatic markers. To determine the influence on glucose metabolism, microbial profiling and metabolite levels were significantly different between groups. The gene expression studies associated with glucose metabolism vary between hosts and their treatments. Conclusion: This research will result in the identification of biomarkers and molecular targets for better diabetes control and treatment.Keywords: hyperglycaemia, endocrine-disrupting chemicals, gut microbiota, host metabolism
Procedia PDF Downloads 405224 Internet-Based Architecture for Machine-to-Machine Communication of a Public Security Network
Authors: Ogwueleka Francisca Nonyelum, Jiya Muhammad
Abstract:
Poor communication between the victims of the burglaries, road and fire accidents and the agencies, and lack of quick emergency response by the agencies is solved through Machine-to-Machine (M2M) communication. A distress caller is expected to make a call through a network to the respective agency for emergency response but due to some challenges, this often becomes arduous and futile. This research puts forth an Internet-based architecture for Machine-to-Machine (M2M) communication to enhance information dissemination in National Public Security Communication System (NPSCS) network. M2M enables the flow of data between machines and machines and ultimately machines and people with information flowing from a machine over a network, and then through a gateway to a system where it is reviewed and acted on. The research findings showed that Internet-based architecture for M2M communication is most suitable for deployment of a public security network which will allow machines to use Internet to talk to each other.Keywords: machine-to-machine (M2M), internet-based architecture, network, gateway
Procedia PDF Downloads 4795223 Multi-Dimension Threat Situation Assessment Based on Network Security Attributes
Authors: Yang Yu, Jian Wang, Jiqiang Liu, Lei Han, Xudong He, Shaohua Lv
Abstract:
As the increasing network attacks become more and more complex, network situation assessment based on log analysis cannot meet the requirements to ensure network security because of the low quality of logs and alerts. This paper addresses the lack of consideration of security attributes of hosts and attacks in the network. Identity and effectiveness of Distributed Denial of Service (DDoS) are hard to be proved in risk assessment based on alerts and flow matching. This paper proposes a multi-dimension threat situation assessment method based on network security attributes. First, the paper offers an improved Common Vulnerability Scoring System (CVSS) calculation, which includes confident risk, integrity risk, availability risk and a weighted risk. Second, the paper introduces deterioration rate of properties collected by sensors in hosts and network, which aimed at assessing the time and level of DDoS attacks. Third, the paper introduces distribution of asset value in security attributes considering features of attacks and network, which aimed at assessing and show the whole situation. Experiments demonstrate that the approach reflects effectiveness and level of DDoS attacks, and the result can show the primary threat in network and security requirement of network. Through comparison and analysis, the method reflects more in security requirement and security risk situation than traditional methods based on alert and flow analyzing.Keywords: DDoS evaluation, improved CVSS, network security attribute, threat situation assessment
Procedia PDF Downloads 2085222 Optimal and Critical Path Analysis of State Transportation Network Using Neo4J
Authors: Pallavi Bhogaram, Xiaolong Wu, Min He, Onyedikachi Okenwa
Abstract:
A transportation network is a realization of a spatial network, describing a structure which permits either vehicular movement or flow of some commodity. Examples include road networks, railways, air routes, pipelines, and many more. The transportation network plays a vital role in maintaining the vigor of the nation’s economy. Hence, ensuring the network stays resilient all the time, especially in the face of challenges such as heavy traffic loads and large scale natural disasters, is of utmost importance. In this paper, we used the Neo4j application to develop the graph. Neo4j is the world's leading open-source, NoSQL, a native graph database that implements an ACID-compliant transactional backend to applications. The Southern California network model is developed using the Neo4j application and obtained the most critical and optimal nodes and paths in the network using centrality algorithms. The edge betweenness centrality algorithm calculates the critical or optimal paths using Yen's k-shortest paths algorithm, and the node betweenness centrality algorithm calculates the amount of influence a node has over the network. The preliminary study results confirm that the Neo4j application can be a suitable tool to study the important nodes and the critical paths for the major congested metropolitan area.Keywords: critical path, transportation network, connectivity reliability, network model, Neo4j application, edge betweenness centrality index
Procedia PDF Downloads 1335221 Social Network Analysis in Water Governance
Authors: Faribaebrahimi, Mehdi Ghorbani, Mohsen Mohsenisaravi
Abstract:
Ecosystem management is complex because of natural and human issues. To cope with this complexity water governance is recommended since it involves all stakeholders including people, governmental and non-governmental organization who related to environmental systems. Water governance emphasizes on water co-management through consideration of all the stakeholders in the form of social and organizational network. In this research, to illustrate indicators of water governance in Dorood watershed, in Shemiranat region of Iran, social network analysis had been applied. The results revealed that social cohesion among pastoralists in Dorood is medium because of trust links, while link sustainability is weak to medium. According to the results, some pastoralists have high social power and therefore are key actors in the utilization network, regarding to centrality index and trust links. The results also demonstrated that Agricultural Development Office and (Shemshak-Darbandsar Islamic) Council are key actors in rangeland co-management, based on centrality index in rangeland institutional network at regional scale in Shemiranat district.Keywords: social network analysis, water governance, organizational network, water co-management
Procedia PDF Downloads 3505220 Analysis of the Omnichannel Delivery Network with Application to Last Mile Delivery
Authors: Colette Malyack, Pius Egbelu
Abstract:
Business-to-Customer (B2C) delivery options have improved to meet increased demand in recent years. The change in end users has forced logistics networks to focus on customer service and sentiment that would have previously been the priority of the company or organization of origin. This has led to increased pressure on logistics companies to extend traditional B2B networks into a B2C solution while accommodating additional costs, roadblocks, and customer sentiment; the result has been the creation of the omnichannel delivery network encompassing a number of traditional and modern methods of package delivery. In this paper the many solutions within the omnichannel delivery network are defined and discussed. It can be seen through this analysis that the omnichannel delivery network can be applied to reduce the complexity of package delivery and provide customers with more options. Applied correctly the result is a reduction in cost to the logistics company over time, even with an initial increase in cost to obtain the technology.Keywords: network planning, last mile delivery, omnichannel delivery network, omnichannel logistics
Procedia PDF Downloads 1505219 Optimization of Interface Radio of Universal Mobile Telecommunication System Network
Authors: O. Mohamed Amine, A. Khireddine
Abstract:
Telecoms operators are always looking to meet their share of the other customers, they try to gain optimum utilization of the deployed equipment and network optimization has become essential. This project consists of optimizing UMTS network, and the study area is an urban area situated in the center of Algiers. It was initially questions to become familiar with the different communication systems (3G) and the optimization technique, its main components, and its fundamental characteristics radios were introduced.Keywords: UMTS, UTRAN, WCDMA, optimization
Procedia PDF Downloads 382