Search results for: false positives and negatives (FPFN)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 441

Search results for: false positives and negatives (FPFN)

231 Predicting Indonesia External Debt Crisis: An Artificial Neural Network Approach

Authors: Riznaldi Akbar

Abstract:

In this study, we compared the performance of the Artificial Neural Network (ANN) model with back-propagation algorithm in correctly predicting in-sample and out-of-sample external debt crisis in Indonesia. We found that exchange rate, foreign reserves, and exports are the major determinants to experiencing external debt crisis. The ANN in-sample performance provides relatively superior results. The ANN model is able to classify correctly crisis of 89.12 per cent with reasonably low false alarms of 7.01 per cent. In out-of-sample, the prediction performance fairly deteriorates compared to their in-sample performances. It could be explained as the ANN model tends to over-fit the data in the in-sample, but it could not fit the out-of-sample very well. The 10-fold cross-validation has been used to improve the out-of-sample prediction accuracy. The results also offer policy implications. The out-of-sample performance could be very sensitive to the size of the samples, as it could yield a higher total misclassification error and lower prediction accuracy. The ANN model could be used to identify past crisis episodes with some accuracy, but predicting crisis outside the estimation sample is much more challenging because of the presence of uncertainty.

Keywords: debt crisis, external debt, artificial neural network, ANN

Procedia PDF Downloads 447
230 Typology of Fake News Dissemination Strategies in Social Networks in Social Events

Authors: Mohadese Oghbaee, Borna Firouzi

Abstract:

The emergence of the Internet and more specifically the formation of social media has provided the ground for paying attention to new types of content dissemination. In recent years, Social media users share information, communicate with others, and exchange opinions on social events in this space. Many of the information published in this space are suspicious and produced with the intention of deceiving others. These contents are often called "fake news". Fake news, by disrupting the circulation of the concept and similar concepts such as fake news with correct information and misleading public opinion, has the ability to endanger the security of countries and deprive the audience of the basic right of free access to real information; Competing governments, opposition elements, profit-seeking individuals and even competing organizations, knowing about this capacity, act to distort and overturn the facts in the virtual space of the target countries and communities on a large scale and influence public opinion towards their goals. This process of extensive de-truthing of the information space of the societies has created a wave of harm and worries all over the world. The formation of these concerns has led to the opening of a new path of research for the timely containment and reduction of the destructive effects of fake news on public opinion. In addition, the expansion of this phenomenon has the potential to create serious and important problems for societies, and its impact on events such as the 2016 American elections, Brexit, 2017 French elections, 2019 Indian elections, etc., has caused concerns and led to the adoption of approaches It has been dealt with. In recent years, a simple look at the growth trend of research in "Scopus" shows an increasing increase in research with the keyword "false information", which reached its peak in 2020, namely 524 cases, reached, while in 2015, only 30 scientific-research contents were published in this field. Considering that one of the capabilities of social media is to create a context for the dissemination of news and information, both true and false, in this article, the classification of strategies for spreading fake news in social networks was investigated in social events. To achieve this goal, thematic analysis research method was chosen. In this way, an extensive library study was first conducted in global sources. Then, an in-depth interview was conducted with 18 well-known specialists and experts in the field of news and media in Iran. These experts were selected by purposeful sampling. Then by analyzing the data using the theme analysis method, strategies were obtained; The strategies achieved so far (research is in progress) include unrealistically strengthening/weakening the speed and content of the event, stimulating psycho-media movements, targeting emotional audiences such as women, teenagers and young people, strengthening public hatred, calling the reaction legitimate/illegitimate. events, incitement to physical conflict, simplification of violent protests and targeted publication of images and interviews were introduced.

Keywords: fake news, social network, social events, thematic analysis

Procedia PDF Downloads 68
229 Geometric, Energetic and Topological Analysis of (Ethanol)₉-Water Heterodecamers

Authors: Jennifer Cuellar, Angie L. Parada, Kevin N. S. Chacon, Sol M. Mejia

Abstract:

The purification of bio-ethanol through distillation methods is an unresolved issue at the biofuel industry because of the ethanol-water azeotrope formation, which increases the steps of the purification process and subsequently increases the production costs. Therefore, understanding the mixture nature at the molecular level could provide new insights for improving the current methods and/or designing new and more efficient purification methods. For that reason, the present study focuses on the evaluation and analysis of (ethanol)₉-water heterodecamers, as the systems with the minimum molecular proportion that represents the azeotropic concentration (96 %m/m in ethanol). The computational modelling was carried out with B3LYP-D3/6-311++G(d,p) in Gaussian 09. Initial explorations of the potential energy surface were done through two methods: annealing simulated runs and molecular dynamics trajectories besides intuitive structures obtained from smaller (ethanol)n-water heteroclusters, n = 7, 8 and 9. The energetic order of the seven stable heterodecamers determines the most stable heterodecamer (Hdec-1) as a structure forming a bicyclic geometry with the O-H---O hydrogen bonds (HBs) where the water is a double proton donor molecule. Hdec-1 combines 1 water molecule and the same quantity of every ethanol conformer; this is, 3 trans, 3 gauche 1 and 3 gauche 2; its abundance is 89%, its decamerization energy is -80.4 kcal/mol, i.e. 13 kcal/mol most stable than the less stable heterodecamer. Besides, a way to understand why methanol does not form an azeotropic mixture with water, analogous systems ((ethanol)10, (methanol)10, and (methanol)9-water)) were optimized. Topologic analysis of the electron density reveals that Hec-1 forms 33 weak interactions in total: 11 O-H---O, 8 C-H---O, 2 C-H---C hydrogen bonds and 12 H---H interactions. The strength and abundance of the most unconventional interactions (H---H, C-H---O and C-H---O) seem to explain the preference of the ethanol for forming heteroclusters instead of clusters. Besides, O-H---O HBs present a significant covalent character according to topologic parameters as the Laplacian of electron density and the relationship between potential and kinetic energy densities evaluated at the bond critical points; obtaining negatives values and values between 1 and 2, for those two topological parameters, respectively.

Keywords: ADMP, DFT, ethanol-water azeotrope, Grimme dispersion correction, simulated annealing, weak interactions

Procedia PDF Downloads 110
228 Ship Detection Requirements Analysis for Different Sea States: Validation on Real SAR Data

Authors: Jaime Martín-de-Nicolás, David Mata-Moya, Nerea del-Rey-Maestre, Pedro Gómez-del-Hoyo, María-Pilar Jarabo-Amores

Abstract:

Ship detection is nowadays quite an important issue in tasks related to sea traffic control, fishery management and ship search and rescue. Although it has traditionally been carried out by patrol ships or aircrafts, coverage and weather conditions and sea state can become a problem. Synthetic aperture radars can surpass these coverage limitations and work under any climatological condition. A fast CFAR ship detector based on a robust statistical modeling of sea clutter with respect to sea states in SAR images is used. In this paper, the minimum SNR required to obtain a given detection probability with a given false alarm rate for any sea state is determined. A Gaussian target model using real SAR data is considered. Results show that SNR does not depend heavily on the class considered. Provided there is some variation in the backscattering of targets in SAR imagery, the detection probability is limited and a post-processing stage based on morphology would be suitable.

Keywords: SAR, generalized gamma distribution, detection curves, radar detection

Procedia PDF Downloads 457
227 Minimization of Denial of Services Attacks in Vehicular Adhoc Networking by Applying Different Constraints

Authors: Amjad Khan

Abstract:

The security of Vehicular ad hoc networking is of great importance as it involves serious life threats. Thus to provide secure communication amongst Vehicles on road, the conventional security system is not enough. It is necessary to prevent the network resources from wastage and give them protection against malicious nodes so that to ensure the data bandwidth availability to the legitimate nodes of the network. This work is related to provide a non conventional security system by introducing some constraints to minimize the DoS (Denial of services) especially data and bandwidth. The data packets received by a node in the network will pass through a number of tests and if any of the test fails, the node will drop those data packets and will not forward it anymore. Also if a node claims to be the nearest node for forwarding emergency messages then the sender can effectively identify the true or false status of the claim by using these constraints. Consequently the DoS(Denial of Services) attack is minimized by the instant availability of data without wasting the network resources.

Keywords: black hole attack, grey hole attack, intransient traffic tempering, networking

Procedia PDF Downloads 288
226 Synthesis of Double Dye-Doped Silica Nanoparticles and Its Application in Paper-Based Chromatography

Authors: Ka Ho Yau, Jan Frederick Engels, Kwok Kei Lai, Reinhard Renneberg

Abstract:

Lateral flow test is a prevalent technology in various sectors such as food, pharmacology and biomedical sciences. Colloidal gold (CG) is widely used as the signalling molecule because of the ease of synthesis, bimolecular conjugation and its red colour due to intrinsic SPRE. However, the production of colloidal gold is costly and requires vigorous conditions. The stability of colloidal gold are easily affected by environmental factors such as pH, high salt content etc. Silica nanoparticles are well known for its ease of production and stability over a wide range of solvents. Using reverse micro-emulsion (w/o), silica nanoparticles with different sizes can be produced precisely by controlling the amount of water. By incorporating different water-soluble dyes, a rainbow colour of the silica nanoparticles could be produced. Conjugation with biomolecules such as antibodies can be achieved after surface modification of the silica nanoparticles with organosilane. The optimum amount of the antibodies to be labelled was determined by Bradford Assay. In this work, we have demonstrated the ability of the dye-doped silica nanoparticles as a signalling molecule in lateral flow test, which showed a semi-quantitative measurement of the analyte. The image was further analysed for the LOD=10 ng of the analyte. The working range and the linear range of the test were from 0 to 2.15μg/mL and from 0 to 1.07 μg/mL (R2=0.988) respectively. The performance of the tests was comparable to those using colloidal gold with the advantages of lower cost, enhanced stability and having a wide spectrum of colours. The positives lines can be imaged by naked eye or by using a mobile phone camera for a better quantification. Further research has been carried out in multicolour detection of different biomarkers simultaneously. The preliminary results were promising as there was little cross-reactivity being observed for an optimized system. This approach provides a platform for multicolour detection for a set of biomarkers that enhances the accuracy of diseases diagnostics.

Keywords: colorimetric detection, immunosensor, paper-based biosensor, silica

Procedia PDF Downloads 386
225 Novel Nanomagnetic Beads Based- Latex Agglutination Assay for Rapid Diagnosis of Human Schistosomiasis Haematobium

Authors: Ibrahim Aly, Rabab Zalat, Bahaa EL Deen W. El Aswad, Ismail M. Moharm, Basam M. Masoud, Tarek Diab

Abstract:

The objective of the present study was to evaluate the novel nanomagnetic beads based–latex agglutination assay (NMB-LAT) as a simple test for diagnosis of S. haematobium as well as standardize the novel nanomagnetic beads based –ELISA (NMB-ELISA). According to urine examination this study included 85 S. haematobium infected patients, 30 other parasites infected patients and 25 negative control samples. The sensitivity of novel NMB-LAT was 82.4% versus 96.5% and 88.2% for NMB-ELISA and currently used sandwich ELISA respectively. The specificity of NMB-LAT was 83.6% versus 96.3% and 87.3% for NMB-ELISA and currently used sandwich ELISA respectively. In conclusion, the novel NMB-ELISA is a valuable applicable diagnostic technique for diagnosis of human schistosomiasis haematobium. The novel NMB-ELISA assay is a suitable applicable diagnostic method in field survey especially when followed by ELISA as a confirmatory test in query false negative results. Trials are required to increase the sensitivity and specificity of NMB-ELISA assay.

Keywords: diagnosis, iatex agglutination, nanomagnetic beads, sandwich ELISA

Procedia PDF Downloads 386
224 Comparison Serum Vitamin D by Geographic between the Highland and Lowland Schizophrenic Patient in the Sumatera Utara

Authors: Novita Linda Akbar, Elmeida Effendy, Mustafa M. Amin

Abstract:

Background: The most common of psychotic disorders is schizophrenia. Vitamin D is made from sunlight, and in the skin from UVB radiation from sunlight. If people with Vitamin D deficiency is common severe mental illness such as schizophrenia.Schizophrenia is a chronic mental illness characterised by positive symptoms and negatives symptoms, such as hallucinations and delusions, flat affect and lack of motivation we can found. In patients with Schizophrenia maybe have several environmental risk factors for schizophrenia, such as season of birth, latitude, and climate has been linked to vitamin D deficiency. There is also relationship between the risk of schizophrenia and latitude, and with an increased incidence rate of schizophrenia seen at a higher latitude. Methods: This study was an analytical study, conducted in BLUD RS Jiwa Propinsi Sumatera Utara and RSUD Deli Serdang, the period in May 2016 and ended in June 2016 with a sample of the study 60 sample (20 patients live in the Highland and Lowland, 20 healthy controls). Inclusion criteria were schizophrenic patients both men and women, aged between 18 to 60 years old, acute phase no agitation or abstinence antipsychotic drugs for two weeks, live in the Highland and Lowland, and willing to participate this study. Exclusion criteria were history of other psychotic disorders, comorbidities with other common medical condition, a history of substance abuse. Sample inspection for serum vitamin D using ELFA method. Statistical analysis using numeric comparative T-independent test. Results: The results showed that average levels of vitamin D for a group of subjects living in areas of high land was 227.6 ng / mL with a standard deviation of 86.78 ng / mL, the lowest levels of vitamin D is 138 ng / mL and the highest 482 ng / mL. In the group of subjects who settled in the low lands seem mean vitamin D levels higher than the mountainous area with an average 237.8 ng / mL with a standard deviation of 100.16 ng / mL. Vitamin D levels are lowest and the highest 138-585 ng / mL. Conclusion and Suggestion: The results of the analysis using the Mann Whitney test showed that there were no significant differences between the mean for the levels of vitamin D based on residence subject with a value of p = 0.652.

Keywords: latitude, schizophrenia, Vitamin D, Sumatera Utara

Procedia PDF Downloads 257
223 The Beacon of Collective Hope: Mixed Method Study on the Participation of Indian Youth with Regard to Mass Demonstrations Fueled by Social Activism Media

Authors: Akanksha Lohmore, Devanshu Arya, Preeti Kapur

Abstract:

Rarely does the human mind look at the positive fallout of highly negative events. Positive psychology attempts to emphasize on the strengths and positives for human well-being. The present study examines the underpinning socio-cognitive factors of the protest movements regarding the gang rape case of December 16th, 2012 through the lens of positive psychology. A gamut of negative emotions came to the forum globally: of anger, shame, hatred, violence, death penalty for the perpetrators, amongst other equally strong. In relation to this incident, a number of questions can be raised. Can such a heinous crime have some positive inputs for contemporary society? What is it that has held people to protests for long even when they see faded lines of success in view? This paper explains the constant feeding of protests and continuation of movements by the robust model of Collective Hope by Snyder, a phenomenon unexplored by social psychologists. In this paper, mixed method approach was undertaken. Results confirmed the interaction of various socio-psychological factors that imitated the Snyders model of collective hope. Emergence of major themes was: Sense of Agency, Sense of Worthiness, Social Sharing and Common Grievances and Hope of Collective Efficacy. Statistical analysis (correlation and regression) showed significant relationship between media usage and occurrence of these themes among participants. Media-communication processes and educational theories for development of citizenship behavior can find implications from these results. Theory development as indicated by theorists working in the area of Social Psychology of Protests can be furthered by the direction of research.

Keywords: agency, collective, hope, positive psychology, protest, social media

Procedia PDF Downloads 365
222 Fast and Accurate Model to Detect Ictal Waveforms in Electroencephalogram Signals

Authors: Piyush Swami, Bijaya Ketan Panigrahi, Sneh Anand, Manvir Bhatia, Tapan Gandhi

Abstract:

Visual inspection of electroencephalogram (EEG) signals to detect epileptic signals is very challenging and time-consuming task even for any expert neurophysiologist. This problem is most challenging in under-developed and developing countries due to shortage of skilled neurophysiologists. In the past, notable research efforts have gone in trying to automate the seizure detection process. However, due to high false alarm detections and complexity of the models developed so far, have vastly delimited their practical implementation. In this paper, we present a novel scheme for epileptic seizure detection using empirical mode decomposition technique. The intrinsic mode functions obtained were then used to calculate the standard deviations. This was followed by probability density based classifier to discriminate between non-ictal and ictal patterns in EEG signals. The model presented here demonstrated very high classification rates ( > 97%) without compromising the statistical performance. The computation timings for each testing phase were also very low ( < 0.029 s) which makes this model ideal for practical applications.

Keywords: electroencephalogram (EEG), epilepsy, ictal patterns, empirical mode decomposition

Procedia PDF Downloads 411
221 Volunteering and Social Integration of Ex-Soviet Immigrants in Israel

Authors: Natalia Khvorostianov, Larissa Remennick

Abstract:

Recent immigrants seldom join the ranks of volunteers for various social causes. This gap reflects both material reasons (immigrants’ lower income and lack of free time) and cultural differences (value systems, religiosity, language barrier, attitudes towards host society, etc.). Immigrants from the former socialist countries are particularly averse to organized forms of volunteering for a host of reasons rooted in their past, including the memories of false or forced forms of collectivism imposed by the state. In this qualitative study, based on 21 semi-structured interviews, we explored the perceptions and practices of volunteer work among FSU immigrants - participants in one volunteering project run by an Israeli NGO for the benefit of elderly ex-Soviet immigrants. Our goal was to understand the motivations of immigrant volunteers and the role of volunteering in the processes of their own social and economic integration in their adopted country – Israel. The results indicate that most volunteers chose causes targeting fellow immigrants, their resettlement and well-being, and were motivated by the wish to build co-ethnic support network and overcome marginalization in the Israeli society. Other volunteers were driven by the need for self-actualization in the context of underemployment and occupational downgrading.

Keywords: FSU immigrants, integration, volunteering, participation, social capital

Procedia PDF Downloads 399
220 Liquid Nitrogen as Fracturing Method for Hot Dry Rocks in Kazakhstan

Authors: Sotirios Longinos, Anna Loskutova, Assel Tolegenova, Assem Imanzhussip, Lei Wang

Abstract:

Hot, dry rock (HDR) has substantial potential as a thermal energy source. It has been exploited by hydraulic fracturing to extract heat and generate electricity, which is a well-developed technique known for creating the enhanced geothermal systems (EGS). These days, LN2 is being tested as an environmental friendly fracturing fluid to generate densely interconnected crevices to augment heat exchange efficiency and production. This study examines experimentally the efficacy of LN2 cryogenic fracturing for granite samples in Kazakhstan with immersion method. A comparison of two different experimental models is carried out. The first mode is rock heating along with liquid nitrogen treatment (heating with freezing time), and the second mode is multiple times of heating along with liquid nitrogen treatment (heating with LN2 freezing-thawing cycles). The experimental results indicated that with multiple heating and LN2-treatment cycles, the permeability of granite first ameliorates with increasing number of cycles and later reaches a plateau after a certain number of cycles. On the other hand, density, P-wave velocity, uniaxial compressive strength, elastic modulus, and tensile strength indicate a downward trend with increasing heating and treatment cycles. The thermal treatment cycles do not seem to have an obvious effect on the Poisson’s ratio. The changing rate of granite rock properties decreases as the number of cycles increases. The deterioration of granite primarily happens within the early few cycles. The heating temperature during the cycles shows an important influence on the deterioration of granite. More specifically, mechanical deterioration and permeability amelioration become more remarkable as the heating temperature increases.LN2 fracturing generates many positives compared to conventional fracturing methods such as little water consumption, requirement of zero chemical additives, lessening of reservoir damage, and so forth. Based on the experimental observations, LN2 can work as a promising waterless fracturing fluid to stimulate hot, dry rock reservoirs.

Keywords: granite, hydraulic fracturing, liquid nitrogen, Kazakhstan

Procedia PDF Downloads 169
219 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine

Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour

Abstract:

Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.

Keywords: decision tree, feature selection, intrusion detection system, support vector machine

Procedia PDF Downloads 269
218 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection

Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim

Abstract:

As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).

Keywords: intrusion detection, supervised learning, traffic classification, computer networks

Procedia PDF Downloads 356
217 Teaching in the Post Truth Era: A Narrative Analysis of Modern Anti-Scientific Discourses in the Classroom

Authors: Jason T. Hilton

Abstract:

The ‘post-truth era’ is marked by a shift toward a period in which objective facts are less influential in shaping public opinion than appeals to emotion and personal belief. Applying narrative analysis techniques to current public discourses in education that run counter to scientific findings, it becomes possible to identify weakness in modern pedagogy and suggest ways to counter false narratives in the classroom. Results of this study indicate that a failure to engage with popular narratives lessens teachers’ ability to be convincing in the classroom, even when presenting information supported by scientific evidence. This study seeks to empower teachers by illustrating the influence of story within the post-truth era and the ways in which narrative and rhetorical elements take hold in social media contexts. Equipped with this knowledge, teachers can create a shift in pedagogy, away from transmission of knowledge toward the crafting of powerful narratives, built upon evidence, and connected to the lives of modern learners.

Keywords: 21st century learner, critical pedagogy, culture, narrative, post-truth era, social media

Procedia PDF Downloads 274
216 Strabismus Detection Using Eye Alignment Stability

Authors: Anoop T. R., Otman Basir, Robert F. Hess, Ben Thompson

Abstract:

Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. Currently, many children with strabismus remain undiagnosed until school entry because current automated screening methods have limited success in the preschool age range. A method for strabismus detection using eye alignment stability (EAS) is proposed. This method starts with face detection, followed by facial landmark detection, eye region segmentation, eye gaze extraction, and eye alignment stability estimation. Binarization and morphological operations are performed for segmenting the pupil region from the eye. After finding the EAS, its absolute value is used to differentiate the strabismic eye from the non-strabismic eye. If the value of the eye alignment stability is greater than a particular threshold, then the eyes are misaligned, and if its value is less than the threshold, the eyes are aligned. The method was tested on 175 strabismic and non-strabismic images obtained from Kaggle and Google Photos. The strabismic eye is taken as a positive class, and the non-strabismic eye is taken as a negative class. The test produced a true positive rate of 100% and a false positive rate of 7.69%.

Keywords: strabismus, face detection, facial landmarks, eye segmentation, eye gaze, binarization

Procedia PDF Downloads 83
215 Investigation of Diseases and Enemies of Bees of Breeding Apis mellifera intermissa (Buttel-Reepen, 1906)

Authors: S. Zenia, L. Bitta, O. Bouhamam, H. Brines, M. Boudriaa, F. Haddadj, F. Marniche, A. Milla, H. Saadi, A. Smai

Abstract:

The bee Apis mellifera intermissa is a major social insect, in addition to its honey production, it is a pillar of our biodiversity. Several living organisms can come into contact with it: bacteria, viruses, protozoa, fungi, mites, and insects. In Algeria, many beekeepers have reported unusual mortality of local bees, loss of foragers and significant losses of their livestock. Despite the presence of a varied honey-bearing flora and a favourable Mediterranean climate, honey production remains low. This phenomenon can be attributed to the excess winter mortality, but also to the increasing difficulties that beekeepers face in maintaining healthy bee colonies, particularly bee diseases and their transmission facilitated by trade and beekeeping practices. Our survey is based on a questionnaire composed of several parts. The results obtained show that the disease that most affects bees according to beekeepers is varroa mite with 93% followed by fungi with 26%. The most replied enemy of bees is the false ringworm with 73%, followed by the bee-eater with 63%. Our goal is to determine the causes of this low production in two areas: Bejaia and Tizi-Ouzou.

Keywords: diseases, Apis mellifera L., varroa, European foulbrood

Procedia PDF Downloads 168
214 Intrusion Detection Systems in Autonomous Vehicles Using Machine Learning

Authors: Hashim Babat, Nirangan Dangi, Anish Dabhane

Abstract:

As autonomous vehicles (AVs) and the Internet of Vehicles (IoV) transform transportation, ensuring the security of vehicular networks is crucial. Increased connectivity through Vehicle-to-Everything (V2X) technology exposes both intra-vehicle (CAN) and external networks to cyber-attacks. This survey examines state-of-the-art Intrusion Detection Systems (IDS) designed to counter threats like DoS, message injection, spoofing, and sniffing attacks. We focus on key IDS frameworks—Multi-Tiered Hybrid IDS (MTH-IDS), Tree-Based IDS, and Leader Class Confidence Decision Ensemble (LCCDE)—that leverage machine learning models such as decision trees, ensemble learning, XGBoost, and LightGBM. Their performance on datasets like CICIDS2017 and CAN-Intrusion is compared based on detection accuracy, false alarms, and real-time feasibility. We also discuss challenges such as computational limits and propose future directions, including advanced ML and blockchain, to enhance AV and IoV security.

Keywords: autonomous vehicles, internet of vehicles, V2X, CAN, intrusion detection systems, cyber-attacks, decision trees, ensemble learning, gradient-boosting, XGBoost, LightGBM, CAN-intrusion, zero-day attacks

Procedia PDF Downloads 7
213 Machine Learning Invariants to Detect Anomalies in Secure Water Treatment

Authors: Jonathan Heng, Yoong Cheah Huei

Abstract:

A strategic model that does not trigger any false alarms to detect anomalies in Secure Water Treatment (SWaT) test bed is presented. This model uses machine learning invariants formulated from streamlining the general form of Auto-Regressive models with eXogenous input. A creative generalized CUSUM algorithm to integrate the invariants and the detection strategy technique is successfully developed and tested in the SWaT Programmable Logic Controllers (PLCs). Three steps to fine-tune parameters, b and τ in the generalized algorithm are stated and an example used to demonstrate the tuning process is discussed. This approach can swiftly and effectively detect various scopes of cyber-attacks such as multiple points single stage and multiple points multiple stages in SWaT. This technique can be applied in water treatment plants and other cyber physical systems like power and gas plants too.

Keywords: machine learning invariants, generalized CUSUM algorithm with invariants and detection strategy, scope of cyber attacks, strategic model, tuning parameters

Procedia PDF Downloads 186
212 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters

Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu

Abstract:

Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.

Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning

Procedia PDF Downloads 206
211 Flood Monitoring in the Vietnamese Mekong Delta Using Sentinel-1 SAR with Global Flood Mapper

Authors: Ahmed S. Afifi, Ahmed Magdy

Abstract:

Satellite monitoring is an essential tool to study, understand, and map large-scale environmental changes that affect humans, climate, and biodiversity. The Sentinel-1 Synthetic Aperture Radar (SAR) instrument provides a high collection of data in all-weather, short revisit time, and high spatial resolution that can be used effectively in flood management. Floods occur when an overflow of water submerges dry land that requires to be distinguished from flooded areas. In this study, we use global flood mapper (GFM), a new google earth engine application that allows users to quickly map floods using Sentinel-1 SAR. The GFM enables the users to adjust manually the flood map parameters, e.g., the threshold for Z-value for VV and VH bands and the elevation and slope mask threshold. The composite R:G:B image results by coupling the bands of Sentinel-1 (VH:VV:VH) reduces false classification to a large extent compared to using one separate band (e.g., VH polarization band). The flood mapping algorithm in the GFM and the Otsu thresholding are compared with Sentinel-2 optical data. And the results show that the GFM algorithm can overcome the misclassification of a flooded area in An Giang, Vietnam.

Keywords: SAR backscattering, Sentinel-1, flood mapping, disaster

Procedia PDF Downloads 109
210 Metamorphic Computer Virus Classification Using Hidden Markov Model

Authors: Babak Bashari Rad

Abstract:

A metamorphic computer virus uses different code transformation techniques to mutate its body in duplicated instances. Characteristics and function of new instances are mostly similar to their parents, but they cannot be easily detected by the majority of antivirus in market, as they depend on string signature-based detection techniques. The purpose of this research is to propose a Hidden Markov Model for classification of metamorphic viruses in executable files. In the proposed solution, portable executable files are inspected to extract the instructions opcodes needed for the examination of code. A Hidden Markov Model trained on portable executable files is employed to classify the metamorphic viruses of the same family. The proposed model is able to generate and recognize common statistical features of mutated code. The model has been evaluated by examining the model on a test data set. The performance of the model has been practically tested and evaluated based on False Positive Rate, Detection Rate and Overall Accuracy. The result showed an acceptable performance with high average of 99.7% Detection Rate.

Keywords: malware classification, computer virus classification, metamorphic virus, metamorphic malware, Hidden Markov Model

Procedia PDF Downloads 318
209 Case Study Analysis for Driver's Company in the Transport Sector with the Help of Data Mining

Authors: Diana Katherine Gonzalez Galindo, David Rolando Suarez Mora

Abstract:

With this study, we used data mining as a new alternative of the solution to evaluate the comments of the customers in order to find a pattern that helps us to determine some behaviors to reduce the deactivation of the partners of the LEVEL app. In one of the greatest business created in the last times, the partners are being affected due to an internal process that compensates the customer for a bad experience, but these comments could be false towards the driver, that’s why we made an investigation to collect information to restructure this process, many partners have been disassociated due to this internal process and many of them refuse the comments given by the customer. The main methodology used in this case study is the observation, we recollect information in real time what gave us the opportunity to see the most common issues to get the most accurate solution. With this new process helped by data mining, we could get a prediction based on the behaviors of the customer and some basic data recollected such as the age, the gender, and others; this could help us in future to improve another process. This investigation gives more opportunities to the partner to keep his account active even if the customer writes a message through the app. The term is trying to avoid a recession of drivers in the future offering improving in the processes, at the same time we are in search of stablishing a strategy which benefits both the app’s managers and the associated driver.

Keywords: agent, driver, deactivation, rider

Procedia PDF Downloads 286
208 Deep Learning and Accurate Performance Measure Processes for Cyber Attack Detection among Web Logs

Authors: Noureddine Mohtaram, Jeremy Patrix, Jerome Verny

Abstract:

As an enormous number of online services have been developed into web applications, security problems based on web applications are becoming more serious now. Most intrusion detection systems rely on each request to find the cyber-attack rather than on user behavior, and these systems can only protect web applications against known vulnerabilities rather than certain zero-day attacks. In order to detect new attacks, we analyze the HTTP protocols of web servers to divide them into two categories: normal attacks and malicious attacks. On the other hand, the quality of the results obtained by deep learning (DL) in various areas of big data has given an important motivation to apply it to cybersecurity. Deep learning for attack detection in cybersecurity has the potential to be a robust tool from small transformations to new attacks due to its capability to extract more high-level features. This research aims to take a new approach, deep learning to cybersecurity, to classify these two categories to eliminate attacks and protect web servers of the defense sector which encounters different web traffic compared to other sectors (such as e-commerce, web app, etc.). The result shows that by using a machine learning method, a higher accuracy rate, and a lower false alarm detection rate can be achieved.

Keywords: anomaly detection, HTTP protocol, logs, cyber attack, deep learning

Procedia PDF Downloads 218
207 Pefloxacin as a Surrogate Marker for Ciprofloxacin Resistance in Salmonella: Study from North India

Authors: Varsha Gupta, Priya Datta, Gursimran Mohi, Jagdish Chander

Abstract:

Fluoroquinolones form the mainstay of therapy for the treatment of infections due to Salmonella enterica subsp. enterica. There is a complex interplay between several resistance mechanisms for quinolones and various fluoroquinolones discs, giving varying results, making detection and interpretation of fluoroquinolone resistance difficult. For detection of fluoroquinolone resistance in Salmonella ssp., we compared the use of pefloxacin and nalidixic acid discs as surrogate marker. Using MIC for ciprofloxacin as the gold standard, 43.5% of strains showed MIC as ≥1 μg/ml and were thus resistant to fluoroquinoloes. Based on the performance of nalidixic acid and pefloxacin discs as surrogate marker for ciprofloxacin resistance, both the discs could correctly detect all the resistant phenotypes; however, use of nalidixic acid disc showed false resistance in the majority of the sensitive phenotypes. We have also tested newer antimicrobial agents like cefixime, imipenem, tigecycline and azithromycin against Salmonella spp. Moreover, there was a comeback of susceptibility to older antimicrobials like ampicillin, chloramphenicol, and cotrimoxazole. We can also use cefixime, imipenem, tigecycline and azithromycin in the treatment of multidrug resistant S. typhi due to their high susceptibility.

Keywords: salmonella, pefloxacin, surrogate marker, chloramphenicol

Procedia PDF Downloads 992
206 Track Initiation Method Based on Multi-Algorithm Fusion Learning of 1DCNN And Bi-LSTM

Authors: Zhe Li, Aihua Cai

Abstract:

Aiming at the problem of high-density clutter and interference affecting radar detection target track initiation in ECM and complex radar mission, the traditional radar target track initiation method has been difficult to adapt. To this end, we propose a multi-algorithm fusion learning track initiation algorithm, which transforms the track initiation problem into a true-false track discrimination problem, and designs an algorithm based on 1DCNN(One-Dimensional CNN)combined with Bi-LSTM (Bi-Directional Long Short-Term Memory )for fusion classification. The experimental dataset consists of real trajectories obtained from a certain type of three-coordinate radar measurements, and the experiments are compared with traditional trajectory initiation methods such as rule-based method, logical-based method and Hough-transform-based method. The simulation results show that the overall performance of the multi-algorithm fusion learning track initiation algorithm is significantly better than that of the traditional method, and the real track initiation rate can be effectively improved under high clutter density with the average initiation time similar to the logical method.

Keywords: track initiation, multi-algorithm fusion, 1DCNN, Bi-LSTM

Procedia PDF Downloads 100
205 The Polarization on Twitter and COVID-19 Vaccination in Brazil

Authors: Giselda Cristina Ferreira, Carlos Alberto Kamienski, Ana Lígia Scott

Abstract:

The COVID-19 pandemic has enhanced the anti-vaccination movement in Brazil, supported by unscientific theories and false news and the possibility of wide communication through social networks such as Twitter, Facebook, and YouTube. The World Health Organization (WHO) classified the large volume of information on the subject against COVID-19 as an Infodemic. In this paper, we present a protocol to identify polarizing users (called polarizers) and study the profiles of Brazilian polarizers on Twitter (renamed to X some weeks ago). We analyzed polarizing interactions on Twitter (in Portuguese) to identify the main polarizers and how the conflicts they caused influenced the COVID-19 vaccination rate throughout the pandemic. This protocol uses data from this social network, graph theory, Java, and R-studio scripts to model and analyze the data. The information about the vaccination rate was obtained in a public database for the government called OpenDataSus. The results present the profiles of Twitter’s Polarizer (political position, gender, professional activity, immunization opinions). We observed that social and political events influenced the participation of these different profiles in conflicts and the vaccination rate.

Keywords: Twitter, polarization, vaccine, Brazil

Procedia PDF Downloads 80
204 Determinants of Youth Engagement with Health Information on Social Media Platforms in United Arab Emirates

Authors: Niyi Awofeso, Yunes Gaber, Moyosola Bamidele

Abstract:

Since most social media platforms are accessible anytime and anywhere where Internet connections and smartphones are available, the invisibility of the reader raises questions about accuracy, appropriateness and comprehensibility of social media communication. Furthermore, the identity and motives of individuals and organizations who post articles on social media sites are not always transparent. In the health sector, through socially networked platforms constitute a common source of health-related information, given their purported wealth of information. Nevertheless, fake blogs and sponsored postings for marketing 'natural cures' pervade most commonly used social media platforms, thus complicating readers’ abilities to access and understand trustworthy health-related information. This purposive sampling study of 120 participants aged 18-35 year in UAE was conducted between September and December 2017, and explored commonly used social media platforms, frequency of use of social media for accessing health related information, and approaches for assessing the trustworthiness of health information on social media platforms. Results indicate that WhatsApp (95%), Instagram (87%) and Youtube (82%) were the most commonly used social media platforms among respondents. Majority of respondents (81%) indicated that they regularly access social media to get health-associated information. More than half of respondents (55%) with non-chronic health status relied on unsolicited messages to obtain health-related information. Doctors’ health blogs (21%) and social media sites of international healthcare organizations (20%) constitute the most trusted source of health information among respondents, with UAE government health agencies’ social media accounts trusted by 15% of respondents. Cardiovascular diseases, diabetes, and hypertension were the most commonly searched topics on social media (29%), followed by nutrition (20%) and skin care (16%). Majority of respondents (41%) rely on reliability of hits on Google search engines, 22% check for health information only from 'reliable' social media sites, while 8% utilize 'logic' to ascertain reliability of health information. As social media has rapidly become an integral part of the health landscape, it is important that health care policy makers, healthcare providers and social media companies collaborate to promote the positive aspects of social media for young people, whilst mitigating the potential negatives. Utilizing popular social media platforms for posting reader-friendly health information will achieve high coverage. Improving youth digital literacy will facilitate easier access to trustworthy information on the internet.

Keywords: social media, United Arab Emirates, youth engagement, digital literacy

Procedia PDF Downloads 122
203 Formative Assessment in an Introductory Python Programming Course

Authors: María José Núñez-Ruiz, Luis Álvarez-González, Cristian Olivares-Rodriguez, Benjamin Lazo-Letelier

Abstract:

This paper begins with some concept of formative assessment and the relationship with learning objective: contents objectives, processes objectives, and metacognitive objectives. Two methodologies are describes Evidence-Based teaching and Question Drive Instruction. To do formative assessments in larges classes a Classroom Response System (CRS) is needed. But most of CRS use only Multiple Choice Questions (MCQ), True/False question, or text entry; however, this is insufficient to formative assessment. To do that a new CRS, call FAMA was developed. FAMA support six types of questions: Choice, Order, Inline choice, Text entry, Associated, and Slider. An experiment participated in 149 students from four engineering careers. For results, Kendall's Range Correlation Analysis and descriptive analysis was done. In conclusion, there is a strong relation between contents question, process questions (ask in formative assessment without a score) and metacognitive questions, asked in summative assessment. As future work, the lecturer can do personalized teaching, because knows the behavior of all students in each formative assessment

Keywords: Python language, formative assessment, classroom response systems, evidence-Based teaching, question drive instruction

Procedia PDF Downloads 142
202 West Nile Virus in North-Eastern Italy: Overview of Integrated Surveillance Activities

Authors: Laura Amato, Paolo Mulatti, Fabrizio Montarsi, Matteo Mazzucato, Laura Gagliazzo, Michele Brichese, Manlio Palei, Gioia Capelli, Lebana Bonfanti

Abstract:

West Nile virus (WNV) re-emerged in north-eastern Italy in 2008, after ten years from its first appearance in Tuscany. In 2009, a national surveillance programme was implemented, and re-modulated in north-eastern Italy in 2011. Hereby, we present the results of surveillance activities in 2008-2016 in the north-eastern Italian regions, with inferences on WNV epidemiological trend in the area. The re-modulated surveillance programmes aimed at early detecting WNV seasonal reactivation by searching IgM antibodies in horses. In 2013, the surveillance plans were further modified including a risk-based approach. Spatial analysis techniques, including Bernoulli space-time scan-statistics, were applied to the results of 2010–2012 surveillance on mosquitoes, equines, and humans to identify areas where WNV reactivation was more likely to occur. From 2008 to 2016, residential horses tested positive for anti-WNV antibodies on a yearly basis (503 cases), also in areas where WNV circulation was not detected in mosquito populations. Surveillance activities detected 26 syndromic cases in horses, 102 infected mosquito pools and WNV in 18 dead wild birds. Human cases were also recurrently detected in the study area during the surveillance period (68 cases of West Nile neuroinvasive disease). The recurrent identification of WNV in animals, mosquitoes, and humans indicates the virus has likely become endemic in the area. In 2016, findings of WNV positives in horses or mosquitoes were included as triggers for enhancing screening activities in humans. The evolution of the epidemiological situation prompts for continuous and accurate surveillance measures. The results of the 2013-2016 surveillance indicate that the risk-based approach was effective in early detecting seasonal reactivation of WNV, key factor of the integrated surveillance strategy in endemic areas.

Keywords: arboviruses, horses, Italy, surveillance, west nile virus, zoonoses

Procedia PDF Downloads 361