Search results for: data privacy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25278

Search results for: data privacy

25068 Security of Internet of Things: Challenges, Requirements and Future Directions

Authors: Amjad F. Alharbi, Bashayer A. Alotaibi, Fahd S. Alotaibi

Abstract:

The emergence of Internet of Things (IoT) technology provides capabilities for a huge number of smart devices, services and people to be communicate with each other for exchanging data and information over existing network. While as IoT is progressing, it provides many opportunities for new ways of communications as well it introduces many security and privacy threats and challenges which need to be considered for the future of IoT development. In this survey paper, an IoT security issues as threats and current challenges are summarized. The security architecture for IoT are presented from four main layers. Based on these layers, the IoT security requirements are presented to insure security in the whole system. Furthermore, some researches initiatives related to IoT security are discussed as well as the future direction for IoT security are highlighted.

Keywords: Internet of Things (IoT), IoT security challenges, IoT security requirements, IoT security architecture

Procedia PDF Downloads 372
25067 Analyzing the Risk Based Approach in General Data Protection Regulation: Basic Challenges Connected with Adapting the Regulation

Authors: Natalia Kalinowska

Abstract:

The adoption of the General Data Protection Regulation, (GDPR) finished the four-year work of the European Commission in this area in the European Union. Considering far-reaching changes, which will be applied by GDPR, the European legislator envisaged two-year transitional period. Member states and companies have to prepare for a new regulation until 25 of May 2018. The idea, which becomes a new look at an attitude to data protection in the European Union is risk-based approach. So far, as a result of implementation of Directive 95/46/WE, in many European countries (including Poland) there have been adopted very particular regulations, specifying technical and organisational security measures e.g. Polish implementing rules indicate even how long password should be. According to the new approach from May 2018, controllers and processors will be obliged to apply security measures adequate to level of risk associated with specific data processing. The risk in GDPR should be interpreted as the likelihood of a breach of the rights and freedoms of the data subject. According to Recital 76, the likelihood and severity of the risk to the rights and freedoms of the data subject should be determined by reference to the nature, scope, context and purposes of the processing. GDPR does not indicate security measures which should be applied – in recitals there are only examples such as anonymization or encryption. It depends on a controller’s decision what type of security measures controller considered as sufficient and he will be responsible if these measures are not sufficient or if his identification of risk level is incorrect. Data protection regulation indicates few levels of risk. Recital 76 indicates risk and high risk, but some lawyers think, that there is one more category – low risk/now risk. Low risk/now risk data processing is a situation when it is unlikely to result in a risk to the rights and freedoms of natural persons. GDPR mentions types of data processing when a controller does not have to evaluate level of risk because it has been classified as „high risk” processing e.g. processing on a large scale of special categories of data, processing with using new technologies. The methodology will include analysis of legal regulations e.g. GDPR, the Polish Act on the Protection of personal data. Moreover: ICO Guidelines and articles concerning risk based approach in GDPR. The main conclusion is that an appropriate risk assessment is a key to keeping data safe and avoiding financial penalties. On the one hand, this approach seems to be more equitable, not only for controllers or processors but also for data subjects, but on the other hand, it increases controllers’ uncertainties in the assessment which could have a direct impact on incorrect data protection and potential responsibility for infringement of regulation.

Keywords: general data protection regulation, personal data protection, privacy protection, risk based approach

Procedia PDF Downloads 251
25066 Data Transformations in Data Envelopment Analysis

Authors: Mansour Mohammadpour

Abstract:

Data transformation refers to the modification of any point in a data set by a mathematical function. When applying transformations, the measurement scale of the data is modified. Data transformations are commonly employed to turn data into the appropriate form, which can serve various functions in the quantitative analysis of the data. This study addresses the investigation of the use of data transformations in Data Envelopment Analysis (DEA). Although data transformations are important options for analysis, they do fundamentally alter the nature of the variable, making the interpretation of the results somewhat more complex.

Keywords: data transformation, data envelopment analysis, undesirable data, negative data

Procedia PDF Downloads 19
25065 IoT Based Information Processing and Computing

Authors: Mannan Ahmad Rasheed, Sawera Kanwal, Mansoor Ahmad Rasheed

Abstract:

The Internet of Things (IoT) has revolutionized the way we collect and process information, making it possible to gather data from a wide range of connected devices and sensors. This has led to the development of IoT-based information processing and computing systems that are capable of handling large amounts of data in real time. This paper provides a comprehensive overview of the current state of IoT-based information processing and computing, as well as the key challenges and gaps that need to be addressed. This paper discusses the potential benefits of IoT-based information processing and computing, such as improved efficiency, enhanced decision-making, and cost savings. Despite the numerous benefits of IoT-based information processing and computing, several challenges need to be addressed to realize the full potential of these systems. These challenges include security and privacy concerns, interoperability issues, scalability and reliability of IoT devices, and the need for standardization and regulation of IoT technologies. Moreover, this paper identifies several gaps in the current research related to IoT-based information processing and computing. One major gap is the lack of a comprehensive framework for designing and implementing IoT-based information processing and computing systems.

Keywords: IoT, computing, information processing, Iot computing

Procedia PDF Downloads 183
25064 Integration of “FAIR” Data Principles in Longitudinal Mental Health Research in Africa: Lessons from a Landscape Analysis

Authors: Bylhah Mugotitsa, Jim Todd, Agnes Kiragga, Jay Greenfield, Evans Omondi, Lukoye Atwoli, Reinpeter Momanyi

Abstract:

The INSPIRE network aims to build an open, ethical, sustainable, and FAIR (Findable, Accessible, Interoperable, Reusable) data science platform, particularly for longitudinal mental health (MH) data. While studies have been done at the clinical and population level, there still exists limitations in data and research in LMICs, which pose a risk of underrepresentation of mental disorders. It is vital to examine the existing longitudinal MH data, focusing on how FAIR datasets are. This landscape analysis aimed to provide both overall level of evidence of availability of longitudinal datasets and degree of consistency in longitudinal studies conducted. Utilizing prompters proved instrumental in streamlining the analysis process, facilitating access, crafting code snippets, categorization, and analysis of extensive data repositories related to depression, anxiety, and psychosis in Africa. While leveraging artificial intelligence (AI), we filtered through over 18,000 scientific papers spanning from 1970 to 2023. This AI-driven approach enabled the identification of 228 longitudinal research papers meeting inclusion criteria. Quality assurance revealed 10% incorrectly identified articles and 2 duplicates, underscoring the prevalence of longitudinal MH research in South Africa, focusing on depression. From the analysis, evaluating data and metadata adherence to FAIR principles remains crucial for enhancing accessibility and quality of MH research in Africa. While AI has the potential to enhance research processes, challenges such as privacy concerns and data security risks must be addressed. Ethical and equity considerations in data sharing and reuse are also vital. There’s need for collaborative efforts across disciplinary and national boundaries to improve the Findability and Accessibility of data. Current efforts should also focus on creating integrated data resources and tools to improve Interoperability and Reusability of MH data. Practical steps for researchers include careful study planning, data preservation, machine-actionable metadata, and promoting data reuse to advance science and improve equity. Metrics and recognition should be established to incentivize adherence to FAIR principles in MH research

Keywords: longitudinal mental health research, data sharing, fair data principles, Africa, landscape analysis

Procedia PDF Downloads 88
25063 Mapping a Data Governance Framework to the Continuum of Care in the Active Assisted Living Context

Authors: Gaya Bin Noon, Thoko Hanjahanja-Phiri, Laura Xavier Fadrique, Plinio Pelegrini Morita, Hélène Vaillancourt, Jennifer Teague, Tania Donovska

Abstract:

Active Assisted Living (AAL) refers to systems designed to improve the quality of life, aid in independence, and create healthier lifestyles for care recipients. As the population ages, there is a pressing need for non-intrusive, continuous, adaptable, and reliable health monitoring tools to support aging in place. AAL has great potential to support these efforts with the wide variety of solutions currently available, but insufficient efforts have been made to address concerns arising from the integration of AAL into care. The purpose of this research was to (1) explore the integration of AAL technologies and data into the clinical pathway, and (2) map data access and governance for AAL technology in order to develop standards for use by policy-makers, technology manufacturers, and developers of smart communities for seniors. This was done through four successive research phases: (1) literature search to explore existing work in this area and identify lessons learned; (2) modeling of the continuum of care; (3) adapting a framework for data governance into the AAL context; and (4) interviews with stakeholders to explore the applicability of previous work. Opportunities for standards found in these research phases included a need for greater consistency in language and technology requirements, better role definition regarding who can access and who is responsible for taking action based on the gathered data, and understanding of the privacy-utility tradeoff inherent in using AAL technologies in care settings.

Keywords: active assisted living, aging in place, internet of things, standards

Procedia PDF Downloads 130
25062 Unlocking Health Insights: Studying Data for Better Care

Authors: Valentina Marutyan

Abstract:

Healthcare data mining is a rapidly developing field at the intersection of technology and medicine that has the potential to change our understanding and approach to providing healthcare. Healthcare and data mining is the process of examining huge amounts of data to extract useful information that can be applied in order to improve patient care, treatment effectiveness, and overall healthcare delivery. This field looks for patterns, trends, and correlations in a variety of healthcare datasets, such as electronic health records (EHRs), medical imaging, patient demographics, and treatment histories. To accomplish this, it uses advanced analytical approaches. Predictive analysis using historical patient data is a major area of interest in healthcare data mining. This enables doctors to get involved early to prevent problems or improve results for patients. It also assists in early disease detection and customized treatment planning for every person. Doctors can customize a patient's care by looking at their medical history, genetic profile, current and previous therapies. In this way, treatments can be more effective and have fewer negative consequences. Moreover, helping patients, it improves the efficiency of hospitals. It helps them determine the number of beds or doctors they require in regard to the number of patients they expect. In this project are used models like logistic regression, random forests, and neural networks for predicting diseases and analyzing medical images. Patients were helped by algorithms such as k-means, and connections between treatments and patient responses were identified by association rule mining. Time series techniques helped in resource management by predicting patient admissions. These methods improved healthcare decision-making and personalized treatment. Also, healthcare data mining must deal with difficulties such as bad data quality, privacy challenges, managing large and complicated datasets, ensuring the reliability of models, managing biases, limited data sharing, and regulatory compliance. Finally, secret code of data mining in healthcare helps medical professionals and hospitals make better decisions, treat patients more efficiently, and work more efficiently. It ultimately comes down to using data to improve treatment, make better choices, and simplify hospital operations for all patients.

Keywords: data mining, healthcare, big data, large amounts of data

Procedia PDF Downloads 75
25061 Bioinformatics High Performance Computation and Big Data

Authors: Javed Mohammed

Abstract:

Right now, bio-medical infrastructure lags well behind the curve. Our healthcare system is dispersed and disjointed; medical records are a bit of a mess; and we do not yet have the capacity to store and process the crazy amounts of data coming our way from widespread whole-genome sequencing. And then there are privacy issues. Despite these infrastructure challenges, some researchers are plunging into bio medical Big Data now, in hopes of extracting new and actionable knowledge. They are doing delving into molecular-level data to discover bio markers that help classify patients based on their response to existing treatments; and pushing their results out to physicians in novel and creative ways. Computer scientists and bio medical researchers are able to transform data into models and simulations that will enable scientists for the first time to gain a profound under-standing of the deepest biological functions. Solving biological problems may require High-Performance Computing HPC due either to the massive parallel computation required to solve a particular problem or to algorithmic complexity that may range from difficult to intractable. Many problems involve seemingly well-behaved polynomial time algorithms (such as all-to-all comparisons) but have massive computational requirements due to the large data sets that must be analyzed. High-throughput techniques for DNA sequencing and analysis of gene expression have led to exponential growth in the amount of publicly available genomic data. With the increased availability of genomic data traditional database approaches are no longer sufficient for rapidly performing life science queries involving the fusion of data types. Computing systems are now so powerful it is possible for researchers to consider modeling the folding of a protein or even the simulation of an entire human body. This research paper emphasizes the computational biology's growing need for high-performance computing and Big Data. It illustrates this article’s indispensability in meeting the scientific and engineering challenges of the twenty-first century, and how Protein Folding (the structure and function of proteins) and Phylogeny Reconstruction (evolutionary history of a group of genes) can use HPC that provides sufficient capability for evaluating or solving more limited but meaningful instances. This article also indicates solutions to optimization problems, and benefits Big Data and Computational Biology. The article illustrates the Current State-of-the-Art and Future-Generation Biology of HPC Computing with Big Data.

Keywords: high performance, big data, parallel computation, molecular data, computational biology

Procedia PDF Downloads 362
25060 The Internet of Things Ecosystem: Survey of the Current Landscape, Identity Relationship Management, Multifactor Authentication Mechanisms, and Underlying Protocols

Authors: Nazli W. Hardy

Abstract:

A critical component in the Internet of Things (IoT) ecosystem is the need for secure and appropriate transmission, processing, and storage of the data. Our current forms of authentication, and identity and access management do not suffice because they are not designed to service cohesive, integrated, interconnected devices, and service applications. The seemingly endless opportunities of IoT are in fact circumscribed on multiple levels by concerns such as trust, privacy, security, loss of control, and related issues. This paper considers multi-factor authentication (MFA) mechanisms and cohesive identity relationship management (IRM) standards. It also surveys messaging protocols that are appropriate for the IoT ecosystem.

Keywords: identity relation management, multifactor authentication, protocols, survey of internet of things ecosystem

Procedia PDF Downloads 352
25059 Radio Based Location Detection

Authors: M. Pallikonda Rajasekaran, J. Joshapath, Abhishek Prasad Shaw

Abstract:

Various techniques has been employed to find location such as GPS, GLONASS, Galileo, and Beidou (compass). This paper currently deals with finding location using the existing FM signals that operates between 88-108 MHz. The location can be determined based on the received signal strength of nearby existing FM stations by mapping the signal strength values using trilateration concept. Thus providing security to users data and maintains eco-friendly environment at zero installation cost as this technology already existing FM stations operating in commercial FM band 88-108 MHZ. Along with the signal strength based trilateration it also finds azimuthal angle of the transmitter by employing directional antenna like Yagi-Uda antenna at the receiver side.

Keywords: location, existing FM signals, received signal strength, trilateration, security, eco-friendly, direction, privacy, zero installation cost

Procedia PDF Downloads 516
25058 Abnormality Detection of Persons Living Alone Using Daily Life Patterns Obtained from Sensors

Authors: Ippei Kamihira, Takashi Nakajima, Taiyo Matsumura, Hikaru Miura, Takashi Ono

Abstract:

In this research, the goal was construction of a system by which multiple sensors were used to observe the daily life behavior of persons living alone (while respecting their privacy). Using this information to judge such conditions as a bad physical condition or falling in the home, etc., so that these abnormal conditions can be made known to relatives and third parties. The daily life patterns of persons living alone are expressed by the number of responses of sensors each time that a set time period has elapsed. By comparing data for the prior two weeks, it was possible to judge a situation as 'normal' when the person was in a good physical condition or as 'abnormal' when the person was in a bad physical condition.

Keywords: sensors, elderly living alone, abnormality detection, iifestyle habit

Procedia PDF Downloads 252
25057 Artificial Intelligence in Ethiopian Higher Education: The Impact of Digital Readiness Support, Acceptance, Risk, and Trust on Adoption

Authors: Merih Welay Welesilassie

Abstract:

Understanding educators' readiness to incorporate AI tools into their teaching methods requires comprehensively examining the influencing factors. This understanding is crucial, given the potential of these technologies to personalise learning experiences, improve instructional effectiveness, and foster innovative pedagogical approaches. This study evaluated factors affecting teachers' adoption of AI tools in their English language instruction by extending the Technology Acceptance Model (TAM) to encompass digital readiness support, perceived risk, and trust. A cross-sectional quantitative survey was conducted with 128 English language teachers, supplemented by qualitative data collection from 15 English teachers. The structural mode analysis indicated that implementing AI tools in Ethiopian higher education was notably influenced by digital readiness support, perceived ease of use, perceived usefulness, perceived risk, and trust. Digital readiness support positively impacted perceived ease of use, usefulness, and trust while reducing safety and privacy risks. Perceived ease of use positively correlated with perceived usefulness but negatively influenced trust. Furthermore, perceived usefulness strengthened trust in AI tools, while perceived safety and privacy risks significantly undermined trust. Trust was crucial in increasing educators' willingness to adopt AI technologies. The qualitative analysis revealed that the teachers exhibited strong content and pedagogical knowledge but needed more technology-related knowledge. Moreover, It was found that the teachers did not utilise digital tools to teach English. The study identified several obstacles to incorporating digital tools into English lessons, such as insufficient digital infrastructure, a shortage of educational resources, inadequate professional development opportunities, and challenging policies and governance. The findings provide valuable guidance for educators, inform policymakers about creating supportive digital environments, and offer a foundation for further investigation into technology adoption in educational settings in Ethiopia and similar contexts.

Keywords: digital readiness support, AI acceptance, perceived risc, AI trust

Procedia PDF Downloads 17
25056 Secure E-Pay System Using Steganography and Visual Cryptography

Authors: K. Suganya Devi, P. Srinivasan, M. P. Vaishnave, G. Arutperumjothi

Abstract:

Today’s internet world is highly prone to various online attacks, of which the most harmful attack is phishing. The attackers host the fake websites which are very similar and look alike. We propose an image based authentication using steganography and visual cryptography to prevent phishing. This paper presents a secure steganographic technique for true color (RGB) images and uses Discrete Cosine Transform to compress the images. The proposed method hides the secret data inside the cover image. The use of visual cryptography is to preserve the privacy of an image by decomposing the original image into two shares. Original image can be identified only when both qualified shares are simultaneously available. Individual share does not reveal the identity of the original image. Thus, the existence of the secret message is hard to be detected by the RS steganalysis.

Keywords: image security, random LSB, steganography, visual cryptography

Procedia PDF Downloads 328
25055 Artificial Intelligence in Ethiopian Universities: The Influence of Technological Readiness, Acceptance, Perceived Risk, and Trust on Implementation—An Integrative Research Approach

Authors: Merih Welay Welesilassie

Abstract:

Understanding educators' readiness to incorporate AI tools into their teaching methods requires comprehensively examining the influencing factors. This understanding is crucial, given the potential of these technologies to personalise learning experiences, improve instructional effectiveness, and foster innovative pedagogical approaches. This study evaluated factors affecting teachers' adoption of AI tools in their English language instruction by extending the Technology Acceptance Model (TAM) to encompass digital readiness support, perceived risk, and trust. A cross-sectional quantitative survey was conducted with 128 English language teachers, supplemented by qualitative data collection from 15 English teachers. The structural mode analysis indicated that implementing AI tools in Ethiopian higher education was notably influenced by digital readiness support, perceived ease of use, perceived usefulness, perceived risk, and trust. Digital readiness support positively impacted perceived ease of use, usefulness, and trust while reducing safety and privacy risks. Perceived ease of use positively correlated with perceived usefulness but negatively influenced trust. Furthermore, perceived usefulness strengthened trust in AI tools, while perceived safety and privacy risks significantly undermined trust. Trust was crucial in increasing educators' willingness to adopt AI technologies. The qualitative analysis revealed that the teachers exhibited strong content and pedagogical knowledge but needed more technology-related knowledge. Moreover, It was found that the teachers did not utilise digital tools to teach English. The study identified several obstacles to incorporating digital tools into English lessons, such as insufficient digital infrastructure, a shortage of educational resources, inadequate professional development opportunities, and challenging policies and governance. The findings provide valuable guidance for educators, inform policymakers about creating supportive digital environments, and offer a foundation for further investigation into technology adoption in educational settings in Ethiopia and similar contexts.

Keywords: digital readiness support, AI acceptance, risk, trust

Procedia PDF Downloads 14
25054 AI-Enabled Smart Contracts for Reliable Traceability in the Industry 4.0

Authors: Harris Niavis, Dimitra Politaki

Abstract:

The manufacturing industry was collecting vast amounts of data for monitoring product quality thanks to the advances in the ICT sector and dedicated IoT infrastructure is deployed to track and trace the production line. However, industries have not yet managed to unleash the full potential of these data due to defective data collection methods and untrusted data storage and sharing. Blockchain is gaining increasing ground as a key technology enabler for Industry 4.0 and the smart manufacturing domain, as it enables the secure storage and exchange of data between stakeholders. On the other hand, AI techniques are more and more used to detect anomalies in batch and time-series data that enable the identification of unusual behaviors. The proposed scheme is based on smart contracts to enable automation and transparency in the data exchange, coupled with anomaly detection algorithms to enable reliable data ingestion in the system. Before sensor measurements are fed to the blockchain component and the smart contracts, the anomaly detection mechanism uniquely combines artificial intelligence models to effectively detect unusual values such as outliers and extreme deviations in data coming from them. Specifically, Autoregressive integrated moving average, Long short-term memory (LSTM) and Dense-based autoencoders, as well as Generative adversarial networks (GAN) models, are used to detect both point and collective anomalies. Towards the goal of preserving the privacy of industries' information, the smart contracts employ techniques to ensure that only anonymized pointers to the actual data are stored on the ledger while sensitive information remains off-chain. In the same spirit, blockchain technology guarantees the security of the data storage through strong cryptography as well as the integrity of the data through the decentralization of the network and the execution of the smart contracts by the majority of the blockchain network actors. The blockchain component of the Data Traceability Software is based on the Hyperledger Fabric framework, which lays the ground for the deployment of smart contracts and APIs to expose the functionality to the end-users. The results of this work demonstrate that such a system can increase the quality of the end-products and the trustworthiness of the monitoring process in the smart manufacturing domain. The proposed AI-enabled data traceability software can be employed by industries to accurately trace and verify records about quality through the entire production chain and take advantage of the multitude of monitoring records in their databases.

Keywords: blockchain, data quality, industry4.0, product quality

Procedia PDF Downloads 188
25053 Formal Development of Electronic Identity Card System Using Event-B

Authors: Tomokazu Nagata, Jawid Ahmad Baktash

Abstract:

The goal of this paper is to explore the use of formal methods for Electronic Identity Card System. Nowadays, one of the core research directions in a constantly growing distributed environment is the improvement of the communication process. The responsibility for proper verification becomes crucial. Formal methods can play an essential role in the development and testing of systems. The thesis presents two different methodologies for assessing correctness. Our first approach employs abstract interpretation techniques for creating a trace based model for Electronic Identity Card System. The model was used for building a semi decidable procedure for verifying the system model. We also developed the code for the eID System and can cover three parts login to system sending of Acknowledgment from user side, receiving of all information from server side and log out from system. The new concepts of impasse and spawned sessions that we introduced led our research to original statements about the intruder’s knowledge and eID system coding with respect to secrecy. Furthermore, we demonstrated that there is a bound on the number of sessions needed for the analysis of System.Electronic identity (eID) cards promise to supply a universal, nation-wide mechanism for user authentication. Most European countries have started to deploy eID for government and private sector applications. Are government-issued electronic ID cards the proper way to authenticate users of online services? We use the eID project as a showcase to discuss eID from an application perspective. The new eID card has interesting design features, it is contact-less, it aims to protect people’s privacy to the extent possible, and it supports cryptographically strong mutual authentication between users and services. Privacy features include support for pseudonymous authentication and per service controlled access to individual data items. The article discusses key concepts, the eID infrastructure, observed and expected problems, and open questions. The core technology seems ready for prime time and government projects deploy it to the masses. But application issues may hamper eID adoption for online applications.

Keywords: eID, event-B, Pro-B, formal method, message passing

Procedia PDF Downloads 233
25052 A Lightweight Blockchain: Enhancing Internet of Things Driven Smart Buildings Scalability and Access Control Using Intelligent Direct Acyclic Graph Architecture and Smart Contracts

Authors: Syed Irfan Raza Naqvi, Zheng Jiangbin, Ahmad Moshin, Pervez Akhter

Abstract:

Currently, the IoT system depends on a centralized client-servant architecture that causes various scalability and privacy vulnerabilities. Distributed ledger technology (DLT) introduces a set of opportunities for the IoT, which leads to practical ideas for existing components at all levels of existing architectures. Blockchain Technology (BCT) appears to be one approach to solving several IoT problems, like Bitcoin (BTC) and Ethereum, which offer multiple possibilities. Besides, IoTs are resource-constrained devices with insufficient capacity and computational overhead to process blockchain consensus mechanisms; the traditional BCT existing challenge for IoTs is poor scalability, energy efficiency, and transaction fees. IOTA is a distributed ledger based on Direct Acyclic Graph (DAG) that ensures M2M micro-transactions are free of charge. IOTA has the potential to address existing IoT-related difficulties such as infrastructure scalability, privacy and access control mechanisms. We proposed an architecture, SLDBI: A Scalable, lightweight DAG-based Blockchain Design for Intelligent IoT Systems, which adapts the DAG base Tangle and implements a lightweight message data model to address the IoT limitations. It enables the smooth integration of new IoT devices into a variety of apps. SLDBI enables comprehensive access control, energy efficiency, and scalability in IoT ecosystems by utilizing the Masked Authentication Message (MAM) protocol and the IOTA Smart Contract Protocol (ISCP). Furthermore, we suggest proof-of-work (PoW) computation on the full node in an energy-efficient way. Experiments have been carried out to show the capability of a tangle to achieve better scalability while maintaining energy efficiency. The findings show user access control management at granularity levels and ensure scale up to massive networks with thousands of IoT nodes, such as Smart Connected Buildings (SCBDs).

Keywords: blockchain, IOT, direct acyclic graphy, scalability, access control, architecture, smart contract, smart connected buildings

Procedia PDF Downloads 120
25051 The Synopsis of the AI-Powered Therapy Web Platform ‘Free AI Therapist'

Authors: Arwa Alnowaiser, Hala Shoukri

Abstract:

The ‘FreeAITherapist’ is an artificial intelligence application that uses the power of AI to offer advice and mental health counseling to its users through its chatbot services. The AI therapist is designed to understand users' issues, concerns, and problems and respond appropriately; it provides empathy and guidance and uses evidence-based therapeutic techniques. With its user-friendly platform, it ensures accessibility for individuals in need, regardless of their geographical location. This website was created in direct response to the growing demand for mental health support, aiming to provide a cost-effective and confidential solution. Through promising confidentiality, it considers user privacy and data security. The ‘FreeAITherapist’ strives to bridge the gap in mental health services, offering a reliable resource for individuals seeking guidance and counseling to improve their overall well-being.

Keywords: artificial intelligence, mental health, AI therapist, website, counseling

Procedia PDF Downloads 43
25050 Forensic Analysis of Signal Messenger on Android

Authors: Ward Bakker, Shadi Alhakimi

Abstract:

The amount of people moving towards more privacy focused instant messaging applications has grown significantly. Signal is one of these instant messaging applications, which makes Signal interesting for digital investigators. In this research, we evaluate the artifacts that are generated by the Signal messenger for Android. This evaluation was done by using the features that Signal provides to create artifacts, whereafter, we made an image of the internal storage and the process memory. This image was analysed manually. The manual analysis revealed the content that Signal stores in different locations during its operation. From our research, we were able to identify the artifacts and interpret how they were used. We also examined the source code of Signal. Using our obtain knowledge from the source code, we developed a tool that decrypts some of the artifacts using the key stored in the Android Keystore. In general, we found that most artifacts are encrypted and encoded, even after decrypting some of the artifacts. During data visualization, some artifacts were found, such as that Signal does not use relationships between the data. In this research, two interesting groups of artifacts were identified, those related to the database and those stored in the process memory dump. In the database, we found plaintext private- and group chats, and in the memory dump, we were able to retrieve the plaintext access code to the application. Nevertheless, we conclude that Signal contains a wealth of artifacts that could be very valuable to a digital forensic investigation.

Keywords: forensic, signal, Android, digital

Procedia PDF Downloads 81
25049 The Technophobia among Older Adults in China

Authors: Erhong Sun, Xuchun Ye

Abstract:

Technophobia, namely the fear or dislike of modern advanced technologies, plays a central role in age-related digital divides and is considered a new risk factor for older adults, which can affect the daily lives of people through low adherence to digital living. Indeed, there is considerable heterogeneity in the group of older adults who feel technophobia. Therefore, the aim of this study was to identify different technophobia typologies of older people and to examine their associations with the subjective age factor. A sample of 704 retired elderly over the age of 55 was recruited in China. Technophobia and subjective age were assessed with a questionnaire, respectively. Latent profile analysis was used to identify technophobia subgroups, using three dimensions including techno-anxiety, techno-paranoia, and privacy concerns as indicators. The association between the identified technophobia subgroups and subjective age was explored. In summary, four different technophobia typologies were identified among older adults in China. Combined with an investigation of personal background characteristics and subjective age, it draws a more nuanced image of the technophobia phenome among older adults in China. First, not all older adults suffer from technophobia, with about half of the elderly subjects belonging to the profiles of “Low-technophobia” and “Medium-technophobia.” Second, privacy concern plays an important role in the classification of technophobia among older adults. Third, subjective age might be a protective factor for technophobia in older adults. Although the causal direction between identified technophobia typologies and subjective age remains uncertain, our suggests that future interventions should better focus on subjective age by breaking the age stereotype of technology to reduce the negative effect of technophobia on older. Future development of this research will involve extensive investigation of the detailed impact of technophobia in senior populations, measurement of the negative outcomes, as well as formulation of innovative educational and clinical pathways.

Keywords: technophobia, older adults, latent profile analysis, subjective age

Procedia PDF Downloads 71
25048 Sharing Personal Information for Connection: The Effect of Social Exclusion on Consumer Self-Disclosure to Brands

Authors: Jiyoung Lee, Andrew D. Gershoff, Jerry Jisang Han

Abstract:

Most extant research on consumer privacy concerns and their willingness to share personal data has focused on contextual factors (e.g., types of information collected, type of compensation) that lead to consumers’ personal information disclosure. Unfortunately, the literature lacks a clear understanding of how consumers’ incidental psychological needs may influence consumers’ decisions to share their personal information with companies or brands. In this research, we investigate how social exclusion, which is an increasing societal problem, especially since the onset of the COVID-19 pandemic, leads to increased information disclosure intentions for consumers. Specifically, we propose and find that when consumers become socially excluded, their desire for social connection increases, and this desire leads to a greater willingness to disclose their personal information with firms. The motivation to form and maintain interpersonal relationships is one of the most fundamental human needs, and many researchers have found that deprivation of belongingness has negative consequences. Given the negative effects of social exclusion and the universal need to affiliate with others, people respond to exclusion with a motivation for social reconnection, resulting in various cognitive and behavioral consequences, such as paying greater attention to social cues and conforming to others. Here, we propose personal information disclosure as another form of behavior that can satisfy such social connection needs. As self-disclosure can serve as a strategic tool in creating and developing social relationships, those who have been socially excluded and thus have greater social connection desires may be more willing to engage in self-disclosure behavior to satisfy such needs. We conducted four experiments to test how feelings of social exclusion can influence the extent to which consumers share their personal information with brands. Various manipulations and measures were used to demonstrate the robustness of our effects. Through the four studies, we confirmed that (1) consumers who have been socially excluded show greater willingness to share their personal information with brands and that (2) such an effect is driven by the excluded individuals’ desire for social connection. Our findings shed light on how the desire for social connection arising from exclusion influences consumers’ decisions to disclose their personal information to brands. We contribute to the consumer disclosure literature by uncovering a psychological need that influences consumers’ disclosure behavior. We also extend the social exclusion literature by demonstrating that exclusion influences not only consumers’ choice of products but also their decision to disclose personal information to brands.

Keywords: consumer-brand relationship, consumer information disclosure, consumer privacy, social exclusion

Procedia PDF Downloads 121
25047 Improving Cheon-Kim-Kim-Song (CKKS) Performance with Vector Computation and GPU Acceleration

Authors: Smaran Manchala

Abstract:

Homomorphic Encryption (HE) enables computations on encrypted data without requiring decryption, mitigating data vulnerability during processing. Usable Fully Homomorphic Encryption (FHE) could revolutionize secure data operations across cloud computing, AI training, and healthcare, providing both privacy and functionality, however, the computational inefficiency of schemes like Cheon-Kim-Kim-Song (CKKS) hinders their widespread practical use. This study focuses on optimizing CKKS for faster matrix operations through the implementation of vector computation parallelization and GPU acceleration. The variable effects of vector parallelization on GPUs were explored, recognizing that while parallelization typically accelerates operations, it could introduce overhead that results in slower runtimes, especially in smaller, less computationally demanding operations. To assess performance, two neural network models, MLPN and CNN—were tested on the MNIST dataset using both ARM and x86-64 architectures, with CNN chosen for its higher computational demands. Each test was repeated 1,000 times, and outliers were removed via Z-score analysis to measure the effect of vector parallelization on CKKS performance. Model accuracy was also evaluated under CKKS encryption to ensure optimizations did not compromise results. According to the results of the trail runs, applying vector parallelization had a 2.63X efficiency increase overall with a 1.83X performance increase for x86-64 over ARM architecture. Overall, these results suggest that the application of vector parallelization in tandem with GPU acceleration significantly improves the efficiency of CKKS even while accounting for vector parallelization overhead, providing impact in future zero trust operations.

Keywords: CKKS scheme, runtime efficiency, fully homomorphic encryption (FHE), GPU acceleration, vector parallelization

Procedia PDF Downloads 20
25046 Data Mining in Healthcare for Predictive Analytics

Authors: Ruzanna Muradyan

Abstract:

Medical data mining is a crucial field in contemporary healthcare that offers cutting-edge tactics with enormous potential to transform patient care. This abstract examines how sophisticated data mining techniques could transform the healthcare industry, with a special focus on how they might improve patient outcomes. Healthcare data repositories have dynamically evolved, producing a rich tapestry of different, multi-dimensional information that includes genetic profiles, lifestyle markers, electronic health records, and more. By utilizing data mining techniques inside this vast library, a variety of prospects for precision medicine, predictive analytics, and insight production become visible. Predictive modeling for illness prediction, risk stratification, and therapy efficacy evaluations are important points of focus. Healthcare providers may use this abundance of data to tailor treatment plans, identify high-risk patient populations, and forecast disease trajectories by applying machine learning algorithms and predictive analytics. Better patient outcomes, more efficient use of resources, and early treatments are made possible by this proactive strategy. Furthermore, data mining techniques act as catalysts to reveal complex relationships between apparently unrelated data pieces, providing enhanced insights into the cause of disease, genetic susceptibilities, and environmental factors. Healthcare practitioners can get practical insights that guide disease prevention, customized patient counseling, and focused therapies by analyzing these associations. The abstract explores the problems and ethical issues that come with using data mining techniques in the healthcare industry. In order to properly use these approaches, it is essential to find a balance between data privacy, security issues, and the interpretability of complex models. Finally, this abstract demonstrates the revolutionary power of modern data mining methodologies in transforming the healthcare sector. Healthcare practitioners and researchers can uncover unique insights, enhance clinical decision-making, and ultimately elevate patient care to unprecedented levels of precision and efficacy by employing cutting-edge methodologies.

Keywords: data mining, healthcare, patient care, predictive analytics, precision medicine, electronic health records, machine learning, predictive modeling, disease prognosis, risk stratification, treatment efficacy, genetic profiles, precision health

Procedia PDF Downloads 59
25045 Data-Driven Strategies for Enhancing Food Security in Vulnerable Regions: A Multi-Dimensional Analysis of Crop Yield Predictions, Supply Chain Optimization, and Food Distribution Networks

Authors: Sulemana Ibrahim

Abstract:

Food security remains a paramount global challenge, with vulnerable regions grappling with issues of hunger and malnutrition. This study embarks on a comprehensive exploration of data-driven strategies aimed at ameliorating food security in such regions. Our research employs a multifaceted approach, integrating data analytics to predict crop yields, optimizing supply chains, and enhancing food distribution networks. The study unfolds as a multi-dimensional analysis, commencing with the development of robust machine learning models harnessing remote sensing data, historical crop yield records, and meteorological data to foresee crop yields. These predictive models, underpinned by convolutional and recurrent neural networks, furnish critical insights into anticipated harvests, empowering proactive measures to confront food insecurity. Subsequently, the research scrutinizes supply chain optimization to address food security challenges, capitalizing on linear programming and network optimization techniques. These strategies intend to mitigate loss and wastage while streamlining the distribution of agricultural produce from field to fork. In conjunction, the study investigates food distribution networks with a particular focus on network efficiency, accessibility, and equitable food resource allocation. Network analysis tools, complemented by data-driven simulation methodologies, unveil opportunities for augmenting the efficacy of these critical lifelines. This study also considers the ethical implications and privacy concerns associated with the extensive use of data in the realm of food security. The proposed methodology outlines guidelines for responsible data acquisition, storage, and usage. The ultimate aspiration of this research is to forge a nexus between data science and food security policy, bestowing actionable insights to mitigate the ordeal of food insecurity. The holistic approach converging data-driven crop yield forecasts, optimized supply chains, and improved distribution networks aspire to revitalize food security in the most vulnerable regions, elevating the quality of life for millions worldwide.

Keywords: data-driven strategies, crop yield prediction, supply chain optimization, food distribution networks

Procedia PDF Downloads 62
25044 LuMee: A Centralized Smart Protector for School Children who are Using Online Education

Authors: Lumindu Dilumka, Ranaweera I. D., Sudusinghe S. P., Sanduni Kanchana A. M. K.

Abstract:

This study was motivated by the challenges experienced by parents and guardians in ensuring the safety of children in cyberspace. In the last two or three years, online education has become very popular all over the world due to the Covid 19 pandemic. Therefore, parents, guardians and teachers must ensure the safety of children in cyberspace. Children are more likely to go astray and there are plenty of online programs are waiting to get them on the wrong track and also, children who are engaging in the online education can be distracted at any moment. Therefore, parents should keep a close check on their children's online activity. Apart from that, due to the unawareness of children, they tempt to share their sensitive information, causing a chance of being a victim of phishing attacks from outsiders. These problems can be overcome through the proposed web-based system. We use feature extraction, web tracking and analysis mechanisms, image processing and name entity recognition to implement this web-based system.

Keywords: online education, cyber bullying, social media, face recognition, web tracker, privacy data

Procedia PDF Downloads 86
25043 Processing Big Data: An Approach Using Feature Selection

Authors: Nikat Parveen, M. Ananthi

Abstract:

Big data is one of the emerging technology, which collects the data from various sensors and those data will be used in many fields. Data retrieval is one of the major issue where there is a need to extract the exact data as per the need. In this paper, large amount of data set is processed by using the feature selection. Feature selection helps to choose the data which are actually needed to process and execute the task. The key value is the one which helps to point out exact data available in the storage space. Here the available data is streamed and R-Center is proposed to achieve this task.

Keywords: big data, key value, feature selection, retrieval, performance

Procedia PDF Downloads 339
25042 Canadian Business Leaders’ Phenomenological Online Education Expansion

Authors: Amna Khaliq

Abstract:

This research project centers on Canadian business leaders’ phenomenological online education expansion by navigating the challenges faced by strategic leaders concerning the expansion of online education in the Canadian higher education sector from a business perspective. The study identifies the problems and opportunities of faculty members’ transition from traditional face-to-face to online instruction, particularly in the context of technology-enhanced learning (TEL), and their influence on the growth strategies of Canadian educational institutions. It explores strategic leaders’ approaches and the impact of emerging technologies to assist with developing and executing business strategies to expand online education in Canada. As online education has gained prominence in the country, this research addresses a relevant business problem for educational institutions. The research employs a phenomenological approach in the qualitative research design to conduct this investigation. The study interviews eighteen faculty members engaged in online education in Canada. The interview data is analyzed to answer the three research questions for strategic leaders to expand online education with higher education institutions in Canada. The recommendations include 1) data privacy, infrastructure, security, and technology, 2) support and training for student engagement, 3) accessibility and inclusion, and 4) collaboration among institutions associated with expanding online education.

Keywords: strategic leadership, Canada, education, technology

Procedia PDF Downloads 62
25041 Computer-Aided Depression Screening: A Literature Review on Optimal Methodologies for Mental Health Screening

Authors: Michelle Nighswander

Abstract:

Suicide can be a tragic response to mental illness. It is difficult for people to disclose or discuss suicidal impulses. The stigma surrounding mental health can create a reluctance to seek help for mental illness. Patients may feel pressure to exhibit a socially desirable demeanor rather than reveal these issues, especially if they sense their healthcare provider is pressed for time or does not have an extensive history with their provider. Overcoming these barriers can be challenging. Although there are several validated depression and suicide risk instruments, varying processes used to administer these tools may impact the truthfulness of the responses. A literature review was conducted to find evidence of the impact of the environment on the accuracy of depression screening. Many investigations do not describe the environment and fewer studies use a comparison design. However, three studies demonstrated that computerized self-reporting might be more likely to elicit truthful and accurate responses due to increased privacy when responding compared to a face-to-face interview. These studies showed patients reported positive reactions to computerized screening for other stigmatizing health conditions such as alcohol use during pregnancy. Computerized self-screening for depression offers the possibility of more privacy and patient reflection, which could then send a targeted message of risk to the healthcare provider. This could potentially increase the accuracy while also increasing time efficiency for the clinic. Considering the persistent effects of mental health stigma, how these screening questions are posed can impact patients’ responses. This literature review analyzes trends in depression screening methodologies, the impact of setting on the results and how this may assist in overcoming one barrier caused by stigma.

Keywords: computerized self-report, depression, mental health stigma, suicide risk

Procedia PDF Downloads 128
25040 Utilizing Federated Learning for Accurate Prediction of COVID-19 from CT Scan Images

Authors: Jinil Patel, Sarthak Patel, Sarthak Thakkar, Deepti Saraswat

Abstract:

Recently, the COVID-19 outbreak has spread across the world, leading the World Health Organization to classify it as a global pandemic. To save the patient’s life, the COVID-19 symptoms have to be identified. But using an AI (Artificial Intelligence) model to identify COVID-19 symptoms within the allotted time was challenging. The RT-PCR test was found to be inadequate in determining the COVID status of a patient. To determine if the patient has COVID-19 or not, a Computed Tomography Scan (CT scan) of patient is a better alternative. It will be challenging to compile and store all the data from various hospitals on the server, though. Federated learning, therefore, aids in resolving this problem. Certain deep learning models help to classify Covid-19. This paper will have detailed work of certain deep learning models like VGG19, ResNet50, MobileNEtv2, and Deep Learning Aggregation (DLA) along with maintaining privacy with encryption.

Keywords: federated learning, COVID-19, CT-scan, homomorphic encryption, ResNet50, VGG-19, MobileNetv2, DLA

Procedia PDF Downloads 71
25039 Critical Review of Web Content Mining Extraction Mechanisms

Authors: Rabia Bashir, Sajjad Akbar

Abstract:

There is an inevitable demand of web mining due to rapid increase of huge information on the Internet, but the striking variety of web structures has made required content retrieval a difficult task. To counter this issue, Web Content Mining (WCM) emerges as a potential candidate which extracts and integrates suitable resources of data to users. In past few years, research has been done on several extraction techniques for WCM i.e. agent-based, template-based, assumption-based, statistic-based, wrapper-based and machine learning. However, it is still unclear that either these approaches are efficiently tackling the significant challenges of WCM or not. To answer this question, this paper identifies these challenges such as language independency, structure flexibility, performance, automation, dynamicity, redundancy handling, intelligence, relevant content retrieval, and privacy. Further, mapping of these challenges is done with existing extraction mechanisms which helps to adopt the most suitable WCM approach, given some conditions and characteristics at hand.

Keywords: content mining challenges, web content mining, web content extraction approaches, web information retrieval

Procedia PDF Downloads 545