Search results for: cellular automata model
17271 Students' Performance, Perception and Attitude towards Interactive Online Modules to Improve Undergraduate Quantitative Skills in Biological Science
Authors: C. Suphioglu , V. Simbag, J. Markham, C. Coady, S. Belward, G. Di Trapani, P. Chunduri, J. Chuck, Y. Hodgson, L. Lluka, L. Poladian, D. Watters
Abstract:
Advances in science have made quantitative skills (QS) an essential graduate outcome for undergraduate science programs in Australia and other parts of the world. However, many students entering into degrees in Australian universities either lack these skills or have little confidence in their ability to apply them in their biological science units. It has been previously reported that integration of quantitative skills into life science programs appears to have a positive effect on student attitudes towards the importance of mathematics and statistics in biological sciences. It has also been noted that there is deficiency in QS resources available and applicable to undergraduate science students in Australia. MathBench (http://mathbench.umd.edu) is a series of online modules involving quantitative biology scenarios developed by the University of Maryland. Through collaboration with Australian universities, a project was funded by the Australian government through its Office for Learning and Teaching (OLT) to develop customized MathBench biology modules to promote the quantitative skills of undergraduate biology students in Australia. This presentation will focus on the assessment of changes in performance, perception and attitude of students in a third year Cellular Physiology unit after use of interactive online cellular diffusion modules modified for the Australian context. The modules have been designed to integrate QS into the biological science curriculum using familiar scenarios and informal language and providing students with the opportunity to review solutions to diffusion QS-related problems with interactive graphics. This paper will discuss results of pre and post MathBench quizzes composed of general and module specific questions that assessed change in student QS after MathBench; and pre and post surveys, administered before and after using MathBench modules to evaluate the students’ change in perception towards the influence of the modules, their attitude towards QS and on the development of their confidence in completing the inquiry-based activity as well as changes to their appreciation of the relevance of mathematics to cellular processes. Results will be compared to changes reported by Thompson et al., (2010) at the University of Maryland and implications for further integration of interactive online activities in the curriculum will be explored and discussed.Keywords: quantitative skills, MathBench, maths in biology
Procedia PDF Downloads 38317270 Quantifying the Protein-Protein Interaction between the Ion-Channel-Forming Colicin A and the Tol Proteins by Potassium Efflux in E. coli Cells
Authors: Fadilah Aleanizy
Abstract:
Colicins are a family of bacterial toxins that kill Escherichia coli and other closely related species. The mode of action of colicins involves binding to an outer membrane receptor and translocation across the cell envelope, leading to cytotoxicity through specific targets. The mechanism of colicin cytotoxicity includes a non-specific endonuclease activity or depolarization of the cytoplasmic membrane by pore-forming activity. For Group A colicins, translocation requires an interaction between the N-terminal domain of the colicin and a series of membrane- bound and periplasmic proteins known as the Tol system (TolB, TolR, TolA, TolQ, and Pal and the active domain must be translocated through the outer membranes. Protein-protein interactions are intrinsic to virtually every cellular process. The transient protein-protein interactions of the colicin include the interaction with much more complicated assemblies during colicin translocation across the cellular membrane to its target. The potassium release assay detects variation in the K+ content of bacterial cells (K+in). This assays is used to measure the effect of pore-forming colicins such as ColA on an indicator organism by measuring the changes of the K+ concentration in the external medium (K+out ) that are caused by cell killing with a K+ selective electrode. One of the goals of this work is to employ a quantifiable in-vivo method to spot which Tol protein are more implicated in the interaction with colicin A as it is translocated to its target.Keywords: K+ efflux, Colicin A, Tol-proteins, E. coli
Procedia PDF Downloads 41017269 Anti-Aging Effects of Two Agricultural Plant Extracts and Their Underlying Mechanism
Authors: Shwu-Ling Peng, Chiung-Man Tsai, Chia-Jui Weng
Abstract:
Chronic micro-inflammation is a hallmark of many aging-related neurodegenerative and metabolic syndrome-driven diseases. In high glucose (HG) environment, reactive oxygen species (ROS) is generated and the ROS induced inflammation, cytokines secretion, DNA damage, and cell cycle arrest to lead to cellular senescence. Water chestnut shell (WCS) is a plant hull which containing polyphenolic compounds and showed antioxidant and anticancer activities. Orchid, which containing a natural polysaccharide compound, possesses many physiological activities including anti-inflammatory and neuroprotective effects. These agricultural plants might be able to reduce oxidative stress and inflammation. This study was used HG-induced human normal dermal fibroblasts (HG-HNDFs) as an in vitro model to disclose the effects of water extract of Phalaenopsis orchid flower (WEPF) and ethanol extract of water chestnut shell (EEWCS) on the anti-aging and their underlying molecular mechanisms. The toxicity of extracts on human normal dermal fibroblasts (HNDFs) was determined by MTT method. The senescence of cells was assayed by β-galactosidase (SA-β-gal) kit. ROS and nitrate production was analyzed by Intracellular ROS contents and ELISA, respectively. Western blotting was used to detect the proteins in cells. The results showed that the exposure of HNDFs to HG (30 mM) for 72 h were caused cellular senescence and arrested cells at G0/G1 phase. Indeed, the treatment of HG-HNDFs with WEPF (200 μg/ml) and EEWCS (10 μg/ml) significantly released cell cycle arrest and promoted cell proliferation. The G1/S phase transition regulatory proteins such as protein retinoblastoma (pRb), p53, and p16ᴵᴺᴷ⁴ᵃ depressed by WEPF and EEWCS were also observed. Additionally, the treatment of WEPF and EEWCS increased the activity of HO-1 through upregulating Nrf2 as well as decreased the ROS and NO of HG-HNDFs. Therefore, the senescence marker protein-30 (SMP30) in cells was diminished. In conclusion, the WEPF and EEWCS might inhibit HG-induced aging of HNDFs by reducing oxidative stress and free radicals.Keywords: agricultural plant extract, anti-aging, high glucose, Phalaenopsis orchid flower, water chestnut shell
Procedia PDF Downloads 15617268 Model Driven Architecture Methodologies: A Review
Authors: Arslan Murtaza
Abstract:
Model Driven Architecture (MDA) is technique presented by OMG (Object Management Group) for software development in which different models are proposed and converted them into code. The main plan is to identify task by using PIM (Platform Independent Model) and transform it into PSM (Platform Specific Model) and then converted into code. In this review paper describes some challenges and issues that are faced in MDA, type and transformation of models (e.g. CIM, PIM and PSM), and evaluation of MDA-based methodologies.Keywords: OMG, model driven rrchitecture (MDA), computation independent model (CIM), platform independent model (PIM), platform specific model(PSM), MDA-based methodologies
Procedia PDF Downloads 45917267 A More Sustainable Decellularized Plant Scaffold for Lab Grown Meat with Ocean Water
Authors: Isabella Jabbour
Abstract:
The world's population is expected to reach over 10 billion by 2050, creating a significant demand for food production, particularly in the agricultural industry. Cellular agriculture presents a solution to this challenge by producing meat that resembles traditionally produced meat, but with significantly less land use. Decellularized plant scaffolds, such as spinach leaves, have been shown to be a suitable edible scaffold for growing animal muscle, enabling cultured cells to grow and organize into three-dimensional structures that mimic the texture and flavor of conventionally produced meat. However, the use of freshwater to remove the intact extracellular material from these plants remains a concern, particularly when considering scaling up the production process. In this study, two protocols were used, 1X SDS and Boom Sauce, to decellularize spinach leaves with both distilled water and ocean water. The decellularization process was confirmed by histology, which showed an absence of cell nuclei, DNA and protein quantification. Results showed that spinach decellularized with ocean water contained 9.9 ± 1.4 ng DNA/mg tissue, which is comparable to the 9.2 ± 1.1 ng DNA/mg tissue obtained with DI water. These findings suggest that decellularized spinach leaves using ocean water hold promise as an eco-friendly and cost-effective scaffold for laboratory-grown meat production, which could ultimately transform the meat industry by providing a sustainable alternative to traditional animal farming practices while reducing freshwater use.Keywords: cellular agriculture, plant scaffold, decellularization, ocean water usage
Procedia PDF Downloads 9617266 Prednisone and Its Active Metabolite Prednisolone Attenuate Lipid Accumulation in Macrophages
Authors: H. Jeries, N. Volkova, C. G. Iglesias, M. Najjar, M. Rosenblat, M. Aviram, T. Hayek
Abstract:
Background: Synthetic forms of glucocorticoids (e.g., prednisone, prednisolone) are anti-inflammatory drugs which are widely used in clinical practice. The role of glucocorticoids (GCs) in cardiovascular diseases including atherosclerosis is highly controversial, and their impact on macrophage foam cell formation is still unknown. Our aim was to investigate the effects of prednisone or its active metabolite, prednisolone, on macrophage oxidative stress and lipid metabolism using in-vivo, ex-vivo and in-vitro systems. Methods: The in-vivo study included C57BL/6 mice which were intraperitoneally injected with prednisone or prednisolone (5mg/kg) for 4 weeks, followed by lipid metabolism analyses in the mice aorta, and in peritoneal macrophages (MPM). In the ex-vivo study, we analyzed the effect of serum samples obtained from 9 healthy volunteers before or after treatment with oral prednisone (20mg for 5 days), on J774A.1 macrophage atherogenicity. In-vitro studies were conducted using J774A.1 macrophages, human monocyte derived macrophages (HMDM) and fibroblasts. Cells were incubated with increasing concentrations (0-200 ng/ml) of prednisone or prednisolone, followed by determination of cellular oxidative status, triglyceride and cholesterol metabolism. Results: Prednisone or prednisolone treatment resulted in a significant reduction in triglycerides and mainly in cholesterol cellular accumulation in MPM or in J774A.1 macrophages incubated with human serum. Similar resulted were noted in HMDM or in J774A.1 macrophages which were directly incubated with the GCs. These effects were associated with GCs inhibitory effect on triglycerides and cholesterol biosynthesis rates, throughout downregulation of diacylglycerol acyltransferase1 (DGAT1) expression, and of the sterol regulatory element binding protein (SREBP2) and HMGCR expression, respectively. In parallel to prednisone or prednisolone induced reduction in macrophage triglyceride content, paraoxonase 2 (PON2) expression was significantly upregulated. GCs-induced reduction of cellular triglyceride and cholesterol mass was mediated by the GCs receptors on macrophages since the GCs receptor antagonist (RU 486) abolished these effects. In fibroblasts, unlike macrophages, prednisone or prednisolone showed no anti-atherogenic effects. Conclusions: Prednisone or prednisolone are anti-atherogenic since they protected macrophages from lipid accumulation and foam cell formation.Keywords: atherosclerosis, cholesterol, foam cell, macrophage, prednisone, prednisolone, triglycerides
Procedia PDF Downloads 14617265 Using Multi-Level Analysis to Identify Future Trends in Small Device Digital Communication Examinations
Authors: Mark A. Spooner
Abstract:
The growth of technological advances in the digital communications industry has dictated the way forensic examination laboratories receive, analyze, and report on digital evidence. This study looks at the trends in a medium sized digital forensics lab that examines small communications devices (i.e., cellular telephones, tablets, thumb drives, etc.) over the past five years. As law enforcement and homeland security organizations budgets shrink, many agencies are being asked to perform more examinations with less resources available. Using multi-level statistical analysis using five years of examination data, this research shows the increasing technological demand trend. The research then extrapolates the current data into the model created and finds a continued exponential growth curve of said demands is well within the parameters defined earlier on in the research.Keywords: digital forensics, forensic examination, small device, trends
Procedia PDF Downloads 19917264 The Influence of the Concentration and Temperature on the Rheological Behavior of Carbonyl-Methylcellulose
Authors: Mohamed Rabhi, Kouider Halim Benrahou
Abstract:
The rheological properties of the carbonyl-methylcellulose (CMC), of different concentrations (25000, 50000, 60000, 80000 and 100000 ppm) and different temperatures were studied. We found that the rheological behavior of all CMC solutions presents a pseudo-plastic behavior, it follows the model of Ostwald-de Waele. The objective of this work is the modeling of flow by the CMC Cross model. The Cross model gives us the variation of the viscosity according to the shear rate. This model allowed us to adjust more clearly the rheological characteristics of CMC solutions. A comparison between the Cross model and the model of Ostwald was made. Cross the model fitting parameters were determined by a numerical simulation to make an approach between the experimental curve and those given by the two models. Our study has shown that the model of Cross, describes well the flow of "CMC" for low concentrations.Keywords: CMC, rheological modeling, Ostwald model, cross model, viscosity
Procedia PDF Downloads 40617263 3D Model of Rain-Wind Induced Vibration of Inclined Cable
Authors: Viet-Hung Truong, Seung-Eock Kim
Abstract:
Rain–wind induced vibration of inclined cable is a special aerodynamic phenomenon because it is easily influenced by many factors, especially the distribution of rivulet and wind velocity. This paper proposes a new 3D model of inclined cable, based on single degree-of-freedom model. Aerodynamic forces are firstly established and verified with the existing results from a 2D model. The 3D model of inclined cable is developed. The 3D model is then applied to assess the effects of wind velocity distribution and the continuity of rivulets on the cable. Finally, an inclined cable model with small sag is investigated.Keywords: 3D model, rain - wind induced vibration, rivulet, analytical model
Procedia PDF Downloads 49017262 Efficient Production of Cell-Adhesive Motif From Human Fibronectin Domains to Design a Bio-Functionalized Scaffold for Tissue Engineering
Authors: Amina Ben Abla, Sylvie Changotade, Geraldine Rohman, Guilhem Boeuf, Cyrine Dridi, Ahmed Elmarjou, Florence Dufour, Didier Lutomski, Abdellatif Elm’semi
Abstract:
Understanding cell adhesion and interaction with the extracellular matrix is essential for biomedical and biotechnological applications, including the development of biomaterials. In recent years, numerous biomaterials have emerged and were used in the field of tissue engineering. Nevertheless, the lack of interaction of biomaterials with cells still limits their bio-integration. Thus, the design of bioactive biomaterials to improve cell attachment and proliferation is of growing interest. In this study, bio-functionalized material was developed combining a synthetic polymer scaffold surface with selected domains of type III human fibronectin (FNIII-DOM) to promote cell adhesion and proliferation. Bioadhesive ligand includes cell-binding domains of human fibronectin, a major ECM protein that interacts with a variety of integrins cell-surface receptors, and ECM proteins through specific binding domains were engineered. FNIII-DOM was produced in bacterial system E. coli in 5L fermentor with a high yield level reaching 20mg/L. Bioactivity of the produced fragment was validated by studying cellular adhesion of human cells. The adsorption and immobilization of FNIII-DOM onto the polymer scaffold were evaluated in order to develop an innovative biomaterial.Keywords: biomaterials, cellular adhesion, fibronectin, tissue engineering
Procedia PDF Downloads 15417261 Effects of Boldenone Injections and Endurance Exercise on Hepatocyte Morphologic Damages in Male Wistar Rats
Authors: Seyyed Javad Ziaolhagh
Abstract:
Background: The purpose of present study was to investigate, the effects of anabolic steroid Boldenone (BOL) with eight weeks of resistance training on structural changes in rat liver. Method: 21 Male adult Wistar rats, 12 weeks old and 228/53±7/94 g initial body weight were randomly assigned to three groups: group1: Control+ Placebo (C), group2: training+ Placebo (T), group3: Boldenone intramuscular injections 5mg/kg (B). The endurance training protocol consisted three exercise sessions weekly started by a 30-minute run with the speed of 12 m/min and lasted by 60min run with the speed of 30 m/min in 8 weeks. At the end of the experiment, for light microscopic study Slides were prepared. Results: Sections stained of rat's livers showed no any cell degeneration and cytoplasmic lipid vacuoles in all groups, but few samples were seen. Indeed, congested blood sinusoids, cell infiltration and degeneration were seen in the Boldenone-treated group. Hepatotoxic effects were severe in group treatment received 5 mg/kg and directly depended on the doses. Indeed, training group was no any hepatocyte degeneration, inflammation and congestion. Conclusion: The present results showed that BOL has a marked adverse effect on the liver tissue, even with low– dose and endurance training. As a result, athletes should aware of Boldenone dosage consumption.Keywords: anabolic androgenic steroids, Boldenone, blood congestion, cellular inflammation, cellular degeneration, lipid vocuolations, endurance training
Procedia PDF Downloads 43017260 IL6/PI3K/mTOR/GFAP Molecular Pathway Role in COVID-19-Induced Neurodegenerative Autophagy, Impacts and Relatives
Authors: Mohammadjavad Sotoudeheian
Abstract:
COVID-19, which began in December 2019, uses the angiotensin-converting enzyme 2 (ACE2) receptor to enter and spread through the cells. ACE2 mRNA is present in almost every organ, including nasopharynx, lung, as well as the brain. Ports of entry of SARS-CoV-2 into the central nervous system (CNS) may include arterial circulation, while viremia is remarkable. However, it is imperious to develop neurological symptoms evaluation CSF analysis in patients with COVID-19, but theoretically, ACE2 receptors are expressed in cerebellar cells and may be a target for SARS-CoV-2 infection in the brain. Recent evidence agrees that SARS-CoV-2 can impact the brain through direct and indirect injury. Two biomarkers for CNS injury, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NFL) detected in the plasma of patients with COVID-19. NFL, an axonal protein expressed in neurons, is related to axonal neurodegeneration, and GFAP is over-expressed in CNS inflammation. GFAP cytoplasmic accumulation causes Schwan cells to misfunction, so affects myelin generation, reduces neuroskeletal support over NfLs during CNS inflammation, and leads to axonal degeneration. Interleukin-6 (IL-6), which extensively over-express due to interleukin storm during COVID-19 inflammation, regulates gene expression, as well as GFAP through STAT molecular pathway. IL-6 also impresses the phosphoinositide 3-kinase (PI3K)/STAT/smads pathway. The PI3K/ protein kinase B (Akt) pathway is the main modulator upstream of the mammalian target of rapamycin (mTOR), and alterations in this pathway are common in neurodegenerative diseases. Most neurodegenerative diseases show a disruption of autophagic function and display an abnormal increase in protein aggregation that promotes cellular death. Therefore, induction of autophagy has been recommended as a rational approach to help neurons clear abnormal protein aggregates and survive. The mTOR is a major regulator of the autophagic process and is regulated by cellular stressors. The mTORC1 pathway and mTORC2, as complementary and important elements in mTORC1 signaling, have become relevant in the regulation of the autophagic process and cellular survival through the extracellular signal-regulated kinase (ERK) pathway.Keywords: mTORC1, COVID-19, PI3K, autophagy, neurodegeneration
Procedia PDF Downloads 8617259 Mobile Traffic Management in Congested Cells using Fuzzy Logic
Authors: A. A. Balkhi, G. M. Mir, Javid A. Sheikh
Abstract:
To cater the demands of increasing traffic with new applications the cellular mobile networks face new changes in deployment in infrastructure for making cellular networks heterogeneous. To reduce overhead processing the densely deployed cells require smart behavior with self-organizing capabilities with high adaptation to the neighborhood. We propose self-organization of unused resources usually excessive unused channels of neighbouring cells with densely populated cells to reduce handover failure rates. The neighboring cells share unused channels after fulfilling some conditional candidature criterion using threshold values so that they are not suffered themselves for starvation of channels in case of any abrupt change in traffic pattern. The cells are classified as ‘red’, ‘yellow’, or ‘green’, as per the available channels in cell which is governed by traffic pattern and thresholds. To combat the deficiency of channels in red cell, migration of unused channels from under-loaded cells, hierarchically from the qualified candidate neighboring cells is explored. The resources are returned back when the congested cell is capable of self-contained traffic management. In either of the cases conditional sharing of resources is executed for enhanced traffic management so that User Equipment (UE) is provided uninterrupted services with high Quality of Service (QoS). The fuzzy logic-based simulation results show that the proposed algorithm is efficiently in coincidence with improved successful handoffs.Keywords: candidate cell, channel sharing, fuzzy logic, handover, small cells
Procedia PDF Downloads 12117258 Factory Communication System for Customer-Based Production Execution: An Empirical Study on the Manufacturing System Entropy
Authors: Nyashadzashe Chiraga, Anthony Walker, Glen Bright
Abstract:
The manufacturing industry is currently experiencing a paradigm shift into the Fourth Industrial Revolution in which customers are increasingly at the epicentre of production. The high degree of production customization and personalization requires a flexible manufacturing system that will rapidly respond to the dynamic and volatile changes driven by the market. They are a gap in technology that allows for the optimal flow of information and optimal manufacturing operations on the shop floor regardless of the rapid changes in the fixture and part demands. Information is the reduction of uncertainty; it gives meaning and context on the state of each cell. The amount of information needed to describe cellular manufacturing systems is investigated by two measures: the structural entropy and the operational entropy. Structural entropy is the expected amount of information needed to describe scheduled states of a manufacturing system. While operational entropy is the amount of information that describes the scheduled states of a manufacturing system, which occur during the actual manufacturing operation. Using Anylogic simulator a typical manufacturing job shop was set-up with a cellular manufacturing configuration. The cellular make-up of the configuration included; a Material handling cell, 3D Printer cell, Assembly cell, manufacturing cell and Quality control cell. The factory shop provides manufactured parts to a number of clients, and there are substantial variations in the part configurations, new part designs are continually being introduced to the system. Based on the normal expected production schedule, the schedule adherence was calculated from the structural entropy and operation entropy of varying the amounts of information communicated in simulated runs. The structural entropy denotes a system that is in control; the necessary real-time information is readily available to the decision maker at any point in time. For contractive analysis, different out of control scenarios were run, in which changes in the manufacturing environment were not effectively communicated resulting in deviations in the original predetermined schedule. The operational entropy was calculated from the actual operations. From the results obtained in the empirical study, it was seen that increasing, the efficiency of a factory communication system increases the degree of adherence of a job to the expected schedule. The performance of downstream production flow fed from the parallel upstream flow of information on the factory state was increased.Keywords: information entropy, communication in manufacturing, mass customisation, scheduling
Procedia PDF Downloads 24717257 Efficient Delivery of Biomaterials into Living Organism by Using Noble Metal Nanowire Injector
Authors: Kkochorong Park, Keun Cheon Kim, Hyoban Lee, Eun Ju Lee, Bongsoo Kim
Abstract:
Introduction of biomaterials such as DNA, RNA, proteins is important for many research areas. There are many methods to introduce biomaterials into living organisms like tissue and cells. To introduce biomaterials, several indirect methods including virus‐mediated delivery, chemical reagent (i.e., lipofectamine), electrophoresis have been used. Such methods are passive delivery using an endocytosis process of cell, reducing an efficiency of delivery. Unlike the indirect delivery method, it has been reported that a direct delivery of exogenous biomolecules into nucleus have been more efficient to expression or integration of biomolecules. Nano-sized material is beneficial for detect signal from cell or deliver stimuli/materials into the cell at cellular and molecular levels, due to its similar physical scale. Especially, because 1 dimensional (1D) nanomaterials such as nanotube, nanorod and nanowire with high‐aspect ratio have nanoscale geometry and excellent mechanical, electrical, and chemical properties, they could play an important role in molecular and cellular biology. In this study, by using single crystalline 1D noble metal nanowire, we fabricated nano-sized 1D injector which can successfully interface with living cells and directly deliver biomolecules into several types of cell line (i.e., stem cell, mammalian embryo) without inducing detrimental damages on living cell. This nano-bio technology could be a promising and robust tool for introducing exogenous biomaterials into living organism.Keywords: DNA, gene delivery, nanoinjector, nanowire
Procedia PDF Downloads 27517256 Design and in Slico Study of the Truncated Spike-M-N SARS-CoV-2 as a Novel Effective Vaccine Candidate
Authors: Aghasadeghi MR., Bahramali G., Sadat SM., Sadeghi SA., Yousefi M., Khodaei K., Ghorbani M., Sadat Larijani M.
Abstract:
Background:The emerging COVID-19 pandemic is a serious concernfor the public health worldwide. Despite the many mutations in the virus genome, it is important to find an effective vaccine against viral mutations. Therefore, in current study, we aimed at immunoinformatic evaluation of the virus proteins immunogenicity to design a preventive vaccine candidate, which could elicit humoral and cellular immune responses as well. Methods:Three antigenic regions are included;Spike, Membrane, and Nucleocapsid amino acid sequences were obtained, and possible fusion proteins were assessed andcompared by immunogenicity, structural features, and population coverage. The best fusion protein was also evaluated for MHC-I and MHC-II T-cell epitopes and the linear and conformational B-cell epitopes. Results: Among the four predicted models, the truncated Spike protein in fusion with M and N proteins is composed of 24 highly immunogenic human MHC class I and 29 MHC class II, along with 14 B-cell linear and 61 discontinues epitopes. Also, the selected protein has high antigenicity and acceptable population coverage of 82.95% in Iran and 92.51% in Europe. Conclusion: The data indicate that the truncated Spike-M-N SARS-CoV-2form which could be potential targets of neutralizing antibodies. The protein also has the ability to stimulate humoral and cellular immunity. The in silico study provided the fusion protein as a potential preventive vaccine candidate for further in vivo evaluation.Keywords: SARS-CoV-2, immunoinformatic, protein, vaccine
Procedia PDF Downloads 22417255 Mobile Learning in Teacher Education: A Review in Context of Developing Countries
Authors: Mehwish Raza
Abstract:
Mobile learning (m-learning) offers unique affordances to learners, setting them free of limitations posed by time and geographic space; thus becoming an affordable device for convenient distant learning. There is a plethora of research available on mobile learning projects planned, implemented and evaluated across disciplines in the context of developed countries, however, the potential of m-learning at different educational levels remain unexplored with little evidence of research carried out in developing countries. Despite the favorable technical infrastructure offered by cellular networks and boom in mobile subscriptions in the developing world, there is limited focus on utilizing m-learning for education and development purposes. The objective of this review is to unify findings from m-learning projects that have been implemented in developing countries such as Pakistan, Bangladesh, Philippines, India, and Tanzania for teachers’ in-service training. The purpose is to draw upon key characteristics of mobile learning that would be useful for future researchers to inform conceptualizations of mobile learning for developing countries.Keywords: design model, developing countries, key characteristics, mobile learning
Procedia PDF Downloads 44817254 Synthesis and Characterization of pH-Responsive Nanocarriers Based on POEOMA-b-PDPA Block Copolymers for RNA Delivery
Authors: Bruno Baptista, Andreia S. R. Oliveira, Patricia V. Mendonca, Jorge F. J. Coelho, Fani Sousa
Abstract:
Drug delivery systems are designed to allow adequate protection and controlled delivery of drugs to specific locations. These systems aim to reduce side effects and control the biodistribution profile of drugs, thus improving therapeutic efficacy. This study involved the synthesis of polymeric nanoparticles, based on amphiphilic diblock copolymers, comprising a biocompatible, poly (oligo (ethylene oxide) methyl ether methacrylate (POEOMA) as hydrophilic segment and a pH-sensitive block, the poly (2-diisopropylamino)ethyl methacrylate) (PDPA). The objective of this work was the development of polymeric pH-responsive nanoparticles to encapsulate and carry small RNAs as a model to further develop non-coding RNAs delivery systems with therapeutic value. The responsiveness of PDPA to pH allows the electrostatic interaction of these copolymers with nucleic acids at acidic pH, as a result of the protonation of the tertiary amine groups of this polymer at pH values below its pKa (around 6.2). Initially, the molecular weight parameters and chemical structure of the block copolymers were determined by size exclusion chromatography (SEC) and nuclear magnetic resonance (1H-NMR) spectroscopy, respectively. Then, the complexation with small RNAs was verified, generating polyplexes with sizes ranging from 300 to 600 nm and with encapsulation efficiencies around 80%, depending on the molecular weight of the polymers, their composition, and concentration used. The effect of pH on the morphology of nanoparticles was evaluated by scanning electron microscopy (SEM) being verified that at higher pH values, particles tend to lose their spherical shape. Since this work aims to develop systems for the delivery of non-coding RNAs, studies on RNA protection (contact with RNase, FBS, and Trypsin) and cell viability were also carried out. It was found that they induce some protection against constituents of the cellular environment and have no cellular toxicity. In summary, this research work contributes to the development of pH-sensitive polymers, capable of protecting and encapsulating RNA, in a relatively simple and efficient manner, to further be applied on drug delivery to specific sites where pH may have a critical role, as it can occur in several cancer environments.Keywords: drug delivery systems, pH-responsive polymers, POEOMA-b-PDPA, small RNAs
Procedia PDF Downloads 25917253 Effects of Hierarchy on Poisson’s Ratio and Phononic Bandgaps of Two-Dimensional Honeycomb Structures
Authors: Davood Mousanezhad, Ashkan Vaziri
Abstract:
As a traditional cellular structure, hexagonal honeycombs are known for their high strength-to-weight ratio. Here, we introduce a class of fractal-appearing hierarchical metamaterials by replacing the vertices of the original non-hierarchical hexagonal grid with smaller hexagons and iterating this process to achieve higher levels of hierarchy. It has been recently shown that the isotropic in-plane Young's modulus of this hierarchical structure at small deformations becomes 25 times greater than its regular counterpart with the same mass. At large deformations, we find that hierarchy-dependent elastic buckling introduced at relatively early stages of deformation decreases the value of Poisson's ratio as the structure is compressed uniaxially leading to auxeticity (i.e., negative Poisson's ratio) in subsequent stages of deformation. We also show that the topological hierarchical architecture and instability-induced pattern transformations of the structure under compression can be effectively used to tune the propagation of elastic waves within the structure. We find that the hierarchy tends to shift the existing phononic bandgaps (defined as frequency ranges of strong wave attenuation) to lower frequencies while opening up new bandgaps. Deformation is also demonstrated as another mechanism for opening more bandgaps in hierarchical structures. The results provide new insights into the role of structural organization and hierarchy in regulating mechanical properties of materials at both the static and dynamic regimes.Keywords: cellular structures, honeycombs, hierarchical structures, metamaterials, multifunctional structures, phononic crystals, auxetic structures
Procedia PDF Downloads 35017252 Identifying Model to Predict Deterioration of Water Mains Using Robust Analysis
Authors: Go Bong Choi, Shin Je Lee, Sung Jin Yoo, Gibaek Lee, Jong Min Lee
Abstract:
In South Korea, it is difficult to obtain data for statistical pipe assessment. In this paper, to address these issues, we find that various statistical model presented before is how data mixed with noise and are whether apply in South Korea. Three major type of model is studied and if data is presented in the paper, we add noise to data, which affects how model response changes. Moreover, we generate data from model in paper and analyse effect of noise. From this we can find robustness and applicability in Korea of each model.Keywords: proportional hazard model, survival model, water main deterioration, ecological sciences
Procedia PDF Downloads 74417251 Optimal Design of Linear Generator to Recharge the Smartphone Battery
Authors: Jin Ho Kim, Yujeong Shin, Seong-Jin Cho, Dong-Jin Kim, U-Syn Ha
Abstract:
Due to the development of the information industry and technologies, cellular phones have must not only function to communicate, but also have functions such as the Internet, e-banking, entertainment, etc. These phones are called smartphones. The performance of smartphones has improved, because of the various functions of smartphones, and the capacity of the battery has been increased gradually. Recently, linear generators have been embedded in smartphones in order to recharge the smartphone's battery. In this study, optimization is performed and an array change of permanent magnets is examined in order to increase efficiency. We propose an optimal design using design of experiments (DOE) to maximize the generated induced voltage. The thickness of the poleshoe and permanent magnet (PM), the height of the poleshoe and PM, and the thickness of the coil are determined to be design variables. We made 25 sampling points using an orthogonal array according to four design variables. We performed electromagnetic finite element analysis to predict the generated induced voltage using the commercial electromagnetic analysis software ANSYS Maxwell. Then, we made an approximate model using the Kriging algorithm, and derived optimal values of the design variables using an evolutionary algorithm. The commercial optimization software PIAnO (Process Integration, Automation, and Optimization) was used with these algorithms. The result of the optimization shows that the generated induced voltage is improved.Keywords: smartphone, linear generator, design of experiment, approximate model, optimal design
Procedia PDF Downloads 34617250 Nanoporous Metals Reinforced with Fullerenes
Authors: Deni̇z Ezgi̇ Gülmez, Mesut Kirca
Abstract:
Nanoporous (np) metals have attracted considerable attention owing to their cellular morphological features at atomistic scale which yield ultra-high specific surface area awarding a great potential to be employed in diverse applications such as catalytic, electrocatalytic, sensing, mechanical and optical. As one of the carbon based nanostructures, fullerenes are also another type of outstanding nanomaterials that have been extensively investigated due to their remarkable chemical, mechanical and optical properties. In this study, the idea of improving the mechanical behavior of nanoporous metals by inclusion of the fullerenes, which offers a new metal-carbon nanocomposite material, is examined and discussed. With this motivation, tensile mechanical behavior of nanoporous metals reinforced with carbon fullerenes is investigated by classical molecular dynamics (MD) simulations. Atomistic models of the nanoporous metals with ultrathin ligaments are obtained through a stochastic process simply based on the intersection of spherical volumes which has been used previously in literature. According to this technique, the atoms within the ensemble of intersecting spherical volumes is removed from the pristine solid block of the selected metal, which results in porous structures with spherical cells. Following this, fullerene units are added into the cellular voids to obtain final atomistic configurations for the numerical tensile tests. Several numerical specimens are prepared with different number of fullerenes per cell and with varied fullerene sizes. LAMMPS code was used to perform classical MD simulations to conduct uniaxial tension experiments on np models filled by fullerenes. The interactions between the metal atoms are modeled by using embedded atomic method (EAM) while adaptive intermolecular reactive empirical bond order (AIREBO) potential is employed for the interaction of carbon atoms. Furthermore, atomic interactions between the metal and carbon atoms are represented by Lennard-Jones potential with appropriate parameters. In conclusion, the ultimate goal of the study is to present the effects of fullerenes embedded into the cellular structure of np metals on the tensile response of the porous metals. The results are believed to be informative and instructive for the experimentalists to synthesize hybrid nanoporous materials with improved properties and multifunctional characteristics.Keywords: fullerene, intersecting spheres, molecular dynamic, nanoporous metals
Procedia PDF Downloads 23917249 Neuroblastoma in Children and the Potential Involvement of Viruses in Its Pathogenesis
Authors: Ugo Rovigatti
Abstract:
Neuroblastoma (NBL) has epitomized for at least 40 years our understanding of cancer cellular and molecular biology and its potential applications to novel therapeutic strategies. This includes the discovery of the very first oncogene aberrations and tumorigenesis suppression by differentiation in the 80s; the potential role of suppressor genes in the 90s; the relevance of immunotherapy in the millennium first, and the discovery of additional mutations by NGS technology in the millennium second decade. Similar discoveries were achieved in the majority of human cancers, and similar therapeutic interventions were obtained subsequently to NBL discoveries. Unfortunately, targeted therapies suggested by specific mutations (such as MYCN amplification –MNA- present in ¼ or 1/5 of cases) have not elicited therapeutic successes in aggressive NBL, where the prognosis is still dismal. The reasons appear to be linked to Tumor Heterogeneity, which is particularly evident in NBL but also a clear hallmark of aggressive human cancers generally. The new avenue of cancer immunotherapy (CIT) provided new hopes for cancer patients, but we still ignore the cellular or molecular targets. CIT is emblematic of high-risk disease (HR-NBL) since the mentioned GD2 passive immunotherapy is still providing better survival. We recently critically reviewed and evaluated the literature depicting the genomic landscapes of HR-NBL, coming to the qualified conclusion that among hundreds of affected genes, potential targets, or chromosomal sites, none correlated with anti-GD2 sensitivity. A better explanation is provided by the Micro-Foci inducing Virus (MFV) model, which predicts that neuroblasts infection with the MFV, an RNA virus isolated from a cancer-cluster (space-time association) of HR-NBL cases, elicits the appearance of MNA and additional genomic aberrations with mechanisms resembling chromothripsis. Neuroblasts infected with low titers of MFV amplified MYCN up to 100 folds and became highly transformed and malignant, thus causing neuroblastoma in young rat pups of strains SD and Fisher-344 and larger tumor masses in nu/nu mice. An association was discovered with GD2 since this glycosphingolipid is also the receptor for the family of MFV virus (dsRNA viruses). It is concluded that a dsRNA virus, MFV, appears to provide better explicatory mechanisms for the genesis of i) specific genomic aberrations such as MNA; ii) extensive tumor heterogeneity and chromothripsis; iii) the effects of passive immunotherapy with anti-GD2 monoclonals and that this and similar models should be further investigated in both pediatric and adult cancers.Keywords: neuroblastoma, MYCN, amplification, viruses, GD2
Procedia PDF Downloads 10017248 The Use of a Rabbit Model to Evaluate the Influence of Age on Excision Wound Healing
Authors: S. Bilal, S. A. Bhat, I. Hussain, J. D. Parrah, S. P. Ahmad, M. R. Mir
Abstract:
Background: The wound healing involves a highly coordinated cascade of cellular and immunological response over a period including coagulation, inflammation, granulation tissue formation, epithelialization, collagen synthesis and tissue remodeling. Wounds in aged heal more slowly than those in younger, mainly because of comorbidities that occur as one age. The present study is about the influence of age on wound healing. 1x1cm^2 (100 mm) wounds were created on the back of the animal. The animals were divided into two groups; one group had animals in the age group of 3-9 months while another group had animals in the age group of 15-21 months. Materials and Methods: 24 clinically healthy rabbits in the age group of 3-21 months were used as experimental animals and divided into two groups viz A and B. All experimental parameters, i.e., Excision wound model, Measurement of wound area, Protein extraction and estimation, Protein extraction and estimation and DNA extraction and estimation were done by standard methods. Results: The parameters studied were wound contraction, hydroxyproline, glucosamine, protein, and DNA. A significant increase (p<0.005) in the hydroxyproline, glucosamine, protein and DNA and a significant decrease in wound area (p<0.005) was observed in the age group of 3-9 months when compared to animals of an age group of 15-21 months. Wound contraction together with hydroxyproline, glucosamine, protein and DNA estimations suggest that advanced age results in retarded wound healing. Conclusion: The decrease wound contraction and accumulation of hydroxyproline, glucosamine, protein and DNA in group B animals may be associated with the reduction or delay in growth factors because of the advancing age.Keywords: age, wound healing, excision wound, hydroxyproline, glucosamine
Procedia PDF Downloads 66017247 Functionalized Single Walled Carbon Nanotubes: Targeting, Cellular Uptake, and Applications in Photodynamic Therapy
Authors: Prabhavathi Sundaram, Heidi Abrahamse
Abstract:
In recent years, nanotechnology coupled with photodynamic therapy (PDT) has received considerable attention in terms of improving the effectiveness of drug delivery in cancer therapeutics. The development of functionalized single-walled carbon nanotubes (SWCNTs) has become revolutionary in targeted photosensitizers delivery since it improves the therapeutic index of drugs. The objective of this study was to prepare, characterize and evaluate the potential of functionalized SWCNTs using hyaluronic acid and loading it with photosensitizer and to effectively target colon cancer cells. The single-walled carbon nanotubes were covalently functionalized with hyaluronic acid and the loaded photosensitizer by non-covalent interaction. The photodynamic effect of SWCNTs is detected under laser irradiation in vitro. The hyaluronic acid-functionalized nanocomposites had a good affinity with CD44 receptors, and it avidly binds on to the surface of CACO-2 cells. The cellular uptake of nanocomposites was studied using fluorescence microscopy using lyso tracker. The anticancer activity of nanocomposites was analyzed in CACO-2 cells using different studies such as cell morphology, cell apoptosis, and nuclear morphology. The combined effect of nanocomposites and PDT improved the therapeutic effect of cancer treatment. The study suggested that the nanocomposites and PDT have great potential in the treatment of colon cancer.Keywords: colon cancer, hyaluronic acid, single walled carbon nanotubes, photosensitizers, photodynamic therapy
Procedia PDF Downloads 11717246 Alleviation of Endoplasmic Reticulum Stress in Mosquito Cells to Survive Dengue 2 Virus Infection
Authors: Jiun-Nan Hou, Tien-Huang Chen, Wei-June Chen
Abstract:
Dengue viruses (DENVs) are naturally transmitted between humans by mosquito vectors. Mosquito cells usually survive DENV infection, allowing infected mosquitoes to retain an active status for virus transmission. In this study, we found that DENV2 virus infection in mosquito cells causes the unfolded protein response (UPR) that activates the protein kinase RNA-like endoplasmic reticulum kinase (PERK) signal pathway, leading to shutdown of global protein translation in infected cells which was apparently regulated by the PERK signal pathway. According to observation in this study, the PERK signal pathway in DENV2-infected C6/36 cells alleviates ER stress, and reduces initiator and effector caspases, as well as the apoptosis rate via shutdown of cellular proteins. In fact, phosphorylation of eukaryotic initiation factor 2ɑ (eIF2ɑ) by the PERK signal pathway may impair recruitment of ribosomes that bind to the mRNA 5’-cap structure, resulting in an inhibitory effect on canonical cap-dependent cellular protein translation. The resultant pro-survival “byproduct” of infected mosquito cells is undoubtedly advantageous for viral replication. This finding provides insights into elucidating the PERK-mediated modulating web that is actively involved in dynamic protein synthesis, cell survival, and viral replication in mosquito cells.Keywords: cap-dependent protein translation, dengue virus, endoplasmic reticulum stress, mosquito cells, PERK signal pathway
Procedia PDF Downloads 26717245 Nanocomplexes on the Base of Triterpene Saponins Isolated from Glycyrrhiza glabra and Saponaria officinalis Plants as an Efficient Adjuvants for Influenza Vaccine Use
Authors: Vladimir Berezin, Andrey Bogoyavlenskiy, Pavel Alexyuk, Madina Alexyuk, Aizhan Turmagambetova, Irina Zaitseva, Nadezhda Sokolova, Elmira Omirtaeva
Abstract:
Introduction: Triterpene saponins of plant origin are one of the most promising candidates for elaboration of novel adjuvants. Due to the combination of immunostimulating activity and the capacity interact with amphipathic molecules with formation of highly immunogenic nanocomplexes, triterpene saponins could serve as a good adjuvant/delivery system for vaccine use. In the research presented adjuvants on the base of nanocomplexes contained triterpene saponins isolated from Glycyrrhiza glabra and Saponaria officinalis plants indigenous to Kazakhstan were elaborated for influenza vaccine use. Methods: Purified triterpene saponins 'Glabilox' and 'SO1' with low toxicity and high immunostimulatory activity were isolated from plants Glycyrrhiza glabra L. and Saponaria officinalis L. by high-performance liquid chromatography (HPLC) and identified using electrospray ionization mass spectrometry (ESI-MS). Influenza virus A/St-Petersburg/5/09 (H1N1) propagated in 9-days old chicken embryos was concentrated and purified by centrifugation in sucrose gradient. Nanocomplexes contained lipids, and triterpene saponins Glabilox or SO1 were prepared by dialysis technique. Immunostimulating activity of experimental vaccine preparations was studied in vaccination/challenge experiments in mice. Results: Humoral and cellular immune responses and protection against influenza virus infection were examined after single subcutaneous and intranasal immunization. Mice were immunized subunit influenza vaccine (HA+NA) or whole virus inactivated influenza vaccine in doses 3.0/5.0/10.0 µg antigen/animal mixed with adjuvant in dose 15.0 µg/animal. Sera were taken 14-21 days following single immunization and mice challenged by A/St-Petersburg/5/09 influenza virus in dose 100 EID₅₀. Study of experimental influenza vaccine preparations in animal immunization experiments has shown that subcutaneous and intranasal immunization with subunit influenza vaccine mixed with nanocomplexes contained Glabilox or SO1 saponins stimulated high levels of humoral immune response (IgM, IgA, IgG1, IgG2a, and IgG2b antibody) and cellular immune response (IL-2, IL-4, IL-10, and IFN-γ cytokines) and resulted 80-90% protection against lethal influenza infection. Also, single intranasal and single subcutaneous immunization with whole virus inactivated influenza vaccine mixed with nanoparticulated adjuvants stimulated high levels of humoral and cellular immune responses and provided 100% protection against lethal influenza infection. Conclusion: The results of study have shown that nanocomplexes contained purified triterpene saponins Glabilox and SO1 isolated from plants indigenous to Kazakhstan can stimulate a broad spectrum of humoral and cellular immune responses and induce protection against lethal influenza infection. Both elaborated adjuvants are promising for incorporation to influenza vaccine intended for subcutaneous and intranasal routes of immunization.Keywords: influenza vaccine, adjuvants, triterpene saponins, immunostimulating activity
Procedia PDF Downloads 13717244 Distribution of Micro Silica Powder at a Ready Mixed Concrete
Authors: Kyong-Ku Yun, Dae-Ae Kim, Kyeo-Re Lee, Kyong Namkung, Seung-Yeon Han
Abstract:
Micro silica is collected as a by-product of the silicon and ferrosilicon alloy production in electric arc furnace using highly pure quartz, wood chips, coke and the like. It consists of about 85% of silicon which has spherical particles with an average particle size of 150 μm. The bulk density of micro silica varies from 150 to 700kg/m^3 and the fineness ranges from 150,000 to 300,000cm^2/g. An amorphous structure with a high silicon oxide content of micro silica induces an active reaction with calcium hydroxide (Ca(OH)₂) generated by the cement hydrate of a large surface area (about 20 m^² / g), and they are also known to form calcium, silicate, hydrate conjugate (C-S-H). Micro silica tends to act as a filler because of the fine particles and the spherical shape. These particles do not get covered by water and they fit well in the space between the relatively rough cement grains which does not freely fluidize concrete. On the contrary, water demand increases since micro silica particles have a tendency to absorb water because of the large surface area. The overall effect of micro silica depends on the amount of micro silica added with other parameters in the water-(cement + micro silica) ratio, and the availability of superplasticizer. In this research, it was studied on cellular sprayed concrete. This method involves a direct re-production of ready mixed concrete into a high performance at a job site. It could reduce the cost of construction by an adding a cellular and a micro silica into a ready mixed concrete truck in a field. Also, micro silica which is difficult with mixing due to high fineness in the field can be added and dispersed in concrete by increasing the fluidity of ready mixed concrete through the surface activity of cellular. Increased air content is converged to a certain level of air content by spraying and it also produces high-performance concrete by remixing of powders in the process of spraying. As it does not use a field mixing equipment the cost of construction decrease and it can be constructed after installing special spray machine in a commercial pump car. Therefore, use of special equipment is minimized, providing economic feasibility through the utilization of existing equipment. This study was carried out to evaluate a highly reliable method of confirming dispersion through a high performance cellular sprayed concrete. A mixture of 25mm coarse aggregate and river sand was applied to the concrete. In addition, by applying silica fume and foam, silica fume dispersion is confirmed in accordance with foam mixing, and the mean and standard deviation is obtained. Then variation coefficient is calculated to finally evaluate the dispersion. Comparison and analysis of before and after spraying were conducted on the experiment variables of 21L, 35L foam for each 7%, 14% silica fume respectively. Taking foam and silica fume as variables, the experiment proceed. Casting a specimen for each variable, a five-day sample is taken from each specimen for EDS test. In this study, it was examined by an experiment materials, plan and mix design, test methods, and equipment, for the evaluation of dispersion in accordance with micro silica and foam.Keywords: micro silica, distribution, ready mixed concrete, foam
Procedia PDF Downloads 22017243 Characterization of a Dentigerous Cyst Cell Line and Its Secretion of Metalloproteinases
Authors: Muñiz-Lino Marcos A.
Abstract:
The ectomesenchymal tissues involved in tooth development and their remnants are the origin of different odontogenic lesions, including tumors and cysts of the jaws, with a wide range of clinical behaviors. A dentigerous cyst (DC) represents approximately 20% of all cases of odontogenic cysts, and it has been demonstrated that it can develop benign and malignant odontogenic tumors. DC is characterized by bone destruction of the area surrounding the crown of a tooth that has not erupted and contains liquid. The treatment of odontogenic tumors and cysts usually involves a partial or total removal of the jaw, causing important secondary co-morbidities. However, molecules implicated in DC pathogenesis, as well as in its development into odontogenic tumors, remain unknown. A cellular model may be useful to study these molecules, but that model has not been established yet. Here, we reported the establishment of a cell culture derived from a dentigerous cyst. This cell line was named DeCy-1. In spite of its ectomesenchymal morphology, DeCy-1 cells express epithelial markers such as cytokeratins 5, 6, and 8. Furthermore, these cells express the ODAM protein, which is present in odontogenesis and in dental follicles, indicating that DeCy-1 cells are derived from odontogenic epithelium. Analysis by electron microscopy of this cell line showed that it has a high vesicular activity, suggesting that DeCy-1 could secrete molecules that may be involved in DC pathogenesis. Thus, secreted proteins were analyzed by PAGE-SDS where we observed approximately 11 bands. In addition, the capacity of these secretions to degrade proteins was analyzed by gelatin substrate zymography. A degradation band of about 62 kDa was found in these assays. Western blot assays suggested that the matrix metalloproteinase 2 (MMP-2) is responsible for this protease activity. Thus, our results indicate that the establishment of a cell line derived from DC is a useful in vitro model to study the biology of this odontogenic lesion and its participation in the development of odontogenic tumors.Keywords: dentigerous cyst, ameloblastoma, MMP-2, odontogenic tumors
Procedia PDF Downloads 4317242 Optimising Light Conditions for Recombinant Protein Production in the Microalgal Chlamydomonas reinhardtii Chloroplast
Authors: Saskya E. Carrera P., Ben Hankamer, Melanie Oey
Abstract:
The green alga C. reinhardtii provides a platform for the cheap, scalable, and safe production of complex proteins. Despite gene expression in photosynthetic organisms being tightly regulated by light, most expression studies have analysed chloroplast recombinant protein production under constant light. Here the influence of illumination time and intensity on GFP and a GFP-PlyGBS (bacterial-lysin) fusion protein expression was investigated. The expression of both proteins was strongly influenced by the light regime (6-24 hr illumination per day), the light intensity (0-450 E m⁻²s⁻¹) and growth condition (photoautotrophic, mixotrophic and heterotrophic). Heterotrophic conditions resulted in relatively low recombinant protein yields per unit volume, despite high protein yields per cell, due to low growth rates. Mixotrophic conditions exhibited the highest yields at 6 hrs illumination at 200µE m⁻²s⁻¹ and under continuous low light illumination (13-16 mg L⁻¹ GFP and 1.2-1.6 mg L⁻¹ GFP-PlyGBS), as these conditions supported good cell growth and cellular protein yields. A ~23-fold increase in protein accumulation per cell and ~9-fold increase L⁻¹ culture was observed compared to standard constant 24 hr illumination for GFP-PlyGBS. The highest yields under photoautotrophic conditions were obtained under 9 hrs illumination (6 mg L⁻¹ GFP and 2.1 mg L⁻¹ GFP-PlyGBS). This represents a ~4-fold increase in cellular protein accumulation for GFP-PlyGBS. On a volumetric basis the highest yield was at 15 hrs illumination (~2-fold increase L⁻¹ over the constant light for GFP-PlyGBS). Optimising illumination conditions to balance growth and protein expression can thus significantly enhance overall recombinant protein production in C. reinhardtii cultures.Keywords: chlamydomonas reinhardtii, light, mixotrophic, recombinant protein
Procedia PDF Downloads 255