Search results for: Aghasadeghi MR.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: Aghasadeghi MR.

3 Design and in Slico Study of the Truncated Spike-M-N SARS-CoV-2 as a Novel Effective Vaccine Candidate

Authors: Aghasadeghi MR., Bahramali G., Sadat SM., Sadeghi SA., Yousefi M., Khodaei K., Ghorbani M., Sadat Larijani M.

Abstract:

Background:The emerging COVID-19 pandemic is a serious concernfor the public health worldwide. Despite the many mutations in the virus genome, it is important to find an effective vaccine against viral mutations. Therefore, in current study, we aimed at immunoinformatic evaluation of the virus proteins immunogenicity to design a preventive vaccine candidate, which could elicit humoral and cellular immune responses as well. Methods:Three antigenic regions are included;Spike, Membrane, and Nucleocapsid amino acid sequences were obtained, and possible fusion proteins were assessed andcompared by immunogenicity, structural features, and population coverage. The best fusion protein was also evaluated for MHC-I and MHC-II T-cell epitopes and the linear and conformational B-cell epitopes. Results: Among the four predicted models, the truncated Spike protein in fusion with M and N proteins is composed of 24 highly immunogenic human MHC class I and 29 MHC class II, along with 14 B-cell linear and 61 discontinues epitopes. Also, the selected protein has high antigenicity and acceptable population coverage of 82.95% in Iran and 92.51% in Europe. Conclusion: The data indicate that the truncated Spike-M-N SARS-CoV-2form which could be potential targets of neutralizing antibodies. The protein also has the ability to stimulate humoral and cellular immunity. The in silico study provided the fusion protein as a potential preventive vaccine candidate for further in vivo evaluation.

Keywords: SARS-CoV-2, immunoinformatic, protein, vaccine

Procedia PDF Downloads 175
2 Prevalence of Cytomegalovirus DNA in the Patients’ Serum with HIV using Real-Time PCR

Authors: Mohammadreza Aghasadeghi, Mojtaba Hamidi-Fard, Seyed Amir Sadeghi, Ashkan Noorbakhsh

Abstract:

Introduction: HIV is known as one of the most important pathogens and mortality in all human societies, but unfortunately, no definitive cure has been found for it. Due to its weakened immune system, this virus causes a variety of primary and secondary opportunistic infections. Cytomegalovirus (CMV) is one of the most relevant opportunistic viruses seen in HIV-positive people that cause various infections in HIV-positive people. This virus causes various infections in HIV-positive people, such as retinal infection (CMVR), gastrointestinal infections, diarrhea, severe weight loss, and cerebrospinal fluid problems. These various infections make it important to evaluate the prevalence of CMV in HIV-positive people to diagnose it quickly and in a timely manner. This infection in HIV-positive people reduces life expectancy and causes serious harm to patients. However, a simple test in HIV-positive people can prevent the virus from progressing. Material and Methods: In this study, we collected 200 blood samples (including 147 men and 53 women) from HIV-positive individuals and examined the frequency of CMV-DNA in these cases by real-time PCR method. In the next step, the data was analyzed by SPSS software, and then we obtained the relationship between age, sex, and the frequency of CMV in HIV-positive individuals. Results: The total frequency of CMV DNA was about 59%, which is a relatively high prevalence due to the age range of the subjects. The frequency in men was 61.2% and 52.8% in women. This frequency was also higher in males than females. We also observed more frequency in two age groups of 16 to 30 years and 31 to 45 years. Discussion: Due to the high prevalence of CMV in HIV-positive individuals and causing serious problems in this group of people, this study was shown that both the patients and the community should pay more attention to this issue. Ministry of Health, as a stakeholder organization, can make CMV DNA testing mandatory as soon as a person is HIV positive.

Keywords: CMV, HIV, AIDS, real-time PCR, SPSS

Procedia PDF Downloads 179
1 The Association between IFNAR2 and Dpp9 Genes Single Nucleotide Polymorphisms Frequency with COVID-19 Severity in Iranian Patients

Authors: Sima Parvizi Omran, Rezvan Tavakoli, Mahnaz Safari, Mohammadreza Aghasadeghi, Abolfazl Fateh, Pooneh Rahimi

Abstract:

Background: SARS-CoV-2, a single-stranded RNA betacoronavirus causes the global outbreak of coronavirus disease 2019 (COVID-19). Several clinical and scientific concerns are raised by this pandemic. Genetic factors can contribute to pathogenesis and disease susceptibility. There are single nucleotide polymorphisms (SNPs) in many of the genes in the immune system that affect the expression of specific genes or functions of some proteins related to immune responses against viral infections. In this study, we analyzed the impact of polymorphism in the interferon alpha and beta receptor subunit 2 (IFNAR2) and dipeptidyl peptidase 9 (Dpp9) genes and clinical parameters on the susceptibility and resistance to Coronavirus disease (COVID-19). Methods: A total of 330- SARS-CoV-2 positive patients (188 survivors and 142 nonsurvivors) were included in this study. All single-nucleotide polymorphisms (SNPs) on IFNAR2 (rs2236757) and Dpp9 (rs2109069) were genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results: In survivor patients, the frequency of the favourable genotypes of IFNAR2 SNP (rs2236757 GC) was significantly higher than in nonsurvivor patients, and also Dpp9 (rs2109069 AT) genotypes were associated with the severity of COVID-19 infection. Conclusions: This study demonstrated that the severity of COVID- 19 patients was strongly associated with clinical parameters and unfavourable IFNAR2, Dpp9 SNP genotypes. In order to establish the relationship between host genetic factors and the severity of COVID-19 infection, further studies are needed in multiple parts of the world.

Keywords: SARS-CoV-2, COVID-19, interferon alpha and beta receptor subunit 2, dipeptidyl peptidase 9, single-nucleotide polymorphisms

Procedia PDF Downloads 118