Search results for: brain tumor segmentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2272

Search results for: brain tumor segmentation

2062 Exposure to Radio Frequency Waves of Mobile Phone and Temperature Changes of Brain Tissue

Authors: Farhad Forouharmajd, Hossein Ebrahimi, Siamak Pourabdian

Abstract:

Introduction: Prevalent use of cell phones (mobile phones) has led to increasing worries about the effect of radiofrequency waves on the physiology of human body. This study was done to determine different reactions of the temperatures in different depths of brain tissue in confronting with radiofrequency waves of cell phones. Methodology: This study was an empirical research. A cow's brain tissue was placed in a compartment and the effects of radiofrequency waves of the cell phone was analyzed during confrontation and after confrontation, in three different depths of 2, 12, and 22 mm of the tissue, in 4 mm and 4 cm distances of the tissue to a cell phone, for 15 min. Lutron thermometer was used to measure the tissue temperatures. Data analysis was done by Lutron software. Findings: The rate of increasing the temperature at the depth of 22 mm was higher than 2 mm and 12mm depths, during confrontation of the brain tissue at the distance of 4 mm with the cell phone, such that the tissue temperatures at 2, 12, and 22 mm depths increased by 0.29 ˚C, 0.31 ˚C, and 0.37 ˚C, respectively, relative to the base temperature (tissue temperature before confrontation). Moreover, the temperature of brain tissue at the distance of 4 cm by increasing the tissue depth was more than other depths. Increasing the tissue temperature also existed by increasing the brain tissue depth after the confrontation with the cell phone. The temperature of the 22 mm depth increased with higher speed at the time confrontation. Conclusion: Not only radiofrequency waves of cell phones increased the tissue temperature in all the depths of the brain tissue, but also the temperature due to radiofrequency waves of the cell phone was more at the depths higher than 22 mm of the tissue. In fact, the thermal effect of radiofrequency waves was higher in higher depths.

Keywords: mobile phone, radio frequency waves, brain tissue, temperature

Procedia PDF Downloads 200
2061 Using Self Organizing Feature Maps for Automatic Prostate Segmentation in TRUS Images

Authors: Ahad Salimi, Hassan Masoumi

Abstract:

Prostate cancer is one of the most common recognized cancers in men, and, is one of the most important mortality factors of cancer in this group. Determining of prostate’s boundary in TRUS (Transrectal Ultra Sound) images is very necessary for prostate cancer treatments. The weakness edges and speckle noise make the ultrasound images inherently to segment. In this paper a new automatic algorithm for prostate segmentation in TRUS images proposed that include three main stages. At first morphological smoothing and sticks filtering are used for noise removing. In second step, for finding a point in prostate region, SOFM algorithm is enlisted and in the last step, the boundary of prostate extracting accompanying active contour is employed. For validation of proposed method, a number of experiments are conducted. The results obtained by our algorithm show the promise of the proposed algorithm.

Keywords: SOFM, preprocessing, GVF contour, segmentation

Procedia PDF Downloads 325
2060 Targeting Glucocorticoid Receptor Eliminate Dormant Chemoresistant Cancer Stem Cells in Glioblastoma

Authors: Aoxue Yang, Weili Tian, Haikun Liu

Abstract:

Brain tumor stem cells (BTSCs) are resistant to therapy and give rise to recurrent tumors. These rare and elusive cells are likely to disseminate during cancer progression, and some may enter dormancy, remaining viable but not increasing. The identification of dormant BTSCs is thus necessary to design effective therapies for glioblastoma (GBM) patients. Glucocorticoids (GCs) are used to treat GBM-associated edema. However, glucocorticoids participate in the physiological response to psychosocial stress, linked to poor cancer prognosis. This raises concern that glucocorticoids affect the tumor and BTSCs. Identifying markers specifically expressed by brain tumor stem cells (BTSCs) may enable specific therapies that spare their regular tissue-resident counterparts. By ribosome profiling analysis, we have identified that glycerol-3-phosphate dehydrogenase 1 (GPD1) is expressed by dormant BTSCs but not by NSCs. Through different stress-induced experiments in vitro, we found that only dexamethasone (DEXA) can significantly increase the expression of GPD1 in NSCs. Adversely, mifepristone (MIFE) which is classified as glucocorticoid receptors antagonists, could decrease GPD1 protein level and weaken the proliferation and stemness in BTSCs. Furthermore, DEXA can induce GPD1 expression in tumor-bearing mice brains and shorten animal survival, whereas MIFE has a distinct adverse effect that prolonged mice lifespan. Knocking out GR in NSC can block the upregulation of GPD1 inducing by DEXA, and we find the specific sequences on GPD1 promotor combined with GR, thus improving the efficiency of GPD1 transcription from CHIP-Seq. Moreover, GR and GPD1 are highly co-stained on GBM sections obtained from patients and mice. All these findings confirmed that GR could regulate GPD1 and loss of GPD1 Impairs Multiple Pathways Important for BTSCs Maintenance GPD1 is also a critical enzyme regulating glycolysis and lipid synthesis. We observed that DEXA and MIFE could change the metabolic profiles of BTSCs by regulating GPD1 to shift the transition of cell dormancy. Our transcriptome and lipidomics analysis demonstrated that cell cycle signaling and phosphoglycerides synthesis pathways contributed a lot to the inhibition of GPD1 caused by MIFE. In conclusion, our findings raise concern that treatment of GBM with GCs may compromise the efficacy of chemotherapy and contribute to BTSC dormancy. Inhibition of GR can dramatically reduce GPD1 and extend the survival duration of GBM-bearing mice. The molecular link between GPD1 and GR may give us an attractive therapeutic target for glioblastoma.

Keywords: cancer stem cell, dormancy, glioblastoma, glycerol-3-phosphate dehydrogenase 1, glucocorticoid receptor, dexamethasone, RNA-sequencing, phosphoglycerides

Procedia PDF Downloads 131
2059 Smart Brain Wave Sensor for Paralyzed- a Real Time Implementation

Authors: U.B Mahadevswamy UBM, Siraj Ahmed Siraj

Abstract:

As the title of the paper indicates about brainwaves and its uses for various applications based on their frequencies and different parameters which can be implemented as real time application with the title a smart brain wave sensor system for paralyzed patients. Brain wave sensing is to detect a person's mental status. The purpose of brain wave sensing is to give exact treatment to paralyzed patients. The data or signal is obtained from the brainwaves sensing band. This data are converted as object files using Visual Basics. The processed data is further sent to Arduino which has the human's behavioral aspects like emotions, sensations, feelings, and desires. The proposed device can sense human brainwaves and detect the percentage of paralysis that the person is suffering. The advantage of this paper is to give a real-time smart sensor device for paralyzed patients with paralysis percentage for their exact treatment. Keywords:-Brainwave sensor, BMI, Brain scan, EEG, MCH.

Keywords: Keywords:-Brainwave sensor , BMI, Brain scan, EEG, MCH

Procedia PDF Downloads 153
2058 Brain Computer Interface Implementation for Affective Computing Sensing: Classifiers Comparison

Authors: Ramón Aparicio-García, Gustavo Juárez Gracia, Jesús Álvarez Cedillo

Abstract:

A research line of the computer science that involve the study of the Human-Computer Interaction (HCI), which search to recognize and interpret the user intent by the storage and the subsequent analysis of the electrical signals of the brain, for using them in the control of electronic devices. On the other hand, the affective computing research applies the human emotions in the HCI process helping to reduce the user frustration. This paper shows the results obtained during the hardware and software development of a Brain Computer Interface (BCI) capable of recognizing the human emotions through the association of the brain electrical activity patterns. The hardware involves the sensing stage and analogical-digital conversion. The interface software involves algorithms for pre-processing of the signal in time and frequency analysis and the classification of patterns associated with the electrical brain activity. The methods used for the analysis and classification of the signal have been tested separately, by using a database that is accessible to the public, besides to a comparison among classifiers in order to know the best performing.

Keywords: affective computing, interface, brain, intelligent interaction

Procedia PDF Downloads 387
2057 Network Analysis and Sex Prediction based on a full Human Brain Connectome

Authors: Oleg Vlasovets, Fabian Schaipp, Christian L. Mueller

Abstract:

we conduct a network analysis and predict the sex of 1000 participants based on ”connectome” - pairwise Pearson’s correlation across 436 brain parcels. We solve the non-smooth convex optimization problem, known under the name of Graphical Lasso, where the solution includes a low-rank component. With this solution and machine learning model for a sex prediction, we explain the brain parcels-sex connectivity patterns.

Keywords: network analysis, neuroscience, machine learning, optimization

Procedia PDF Downloads 146
2056 Gut-Microbiota-Brain-Axis, Leaky Gut, Leaky Brain: Pathophysiology of Second Brain Aging and Alzheimer’s Disease- A Neuroscientific Riddle

Authors: Bilal Ahmad

Abstract:

Alzheimer’s disease (AD) is one of the most common neurodegenerative illnesses. However, how Gut-microbiota plays a role in the pathogenesis of AD is not well elucidated. The purpose of this literature review is to summarize and understand the current findings that may elucidate the gut microbiota's role in the development of AD. Methods: A literature review of all the relevant papers known to the author was conducted. Relevant articles, abstracts and research papers were collected from well-accepted web sources like PubMed, PMC, and Google Scholar. Results: Recent studies have shown that Gut-microbiota has an important role in the progression of AD via Gut-Microbiota-Brain Axis. The onset of AD supports the ‘Hygiene Hypothesis’, which shows that AD might begin in the Gut, causing dysbiosis, which interferes with the intestinal barrier by releasing pro-inflammatory cytokines and making its way up to the brain via the blood-brain barrier (BBB). Molecular mechanisms lipopolysaccharides and serotonin kynurenine (tryptophan) pathways have a direct association with inflammation, the immune system, neurodegeneration, and AD. Conclusion: The studies helped to analyze the molecular basis of AD, other neurological conditions like depression, autism, and Parkinson's disease and how they are linked to Gut-microbiota. Further, studies to explore the therapeutic effects of probiotics in AD and cognitive enhancement should be warranted to provide significant clinical and practical value.

Keywords: gut-microbiota, Alzheimer’s disease, second brain aging, lipopolysaccharides, short-chain fatty acids

Procedia PDF Downloads 42
2055 A Character Detection Method for Ancient Yi Books Based on Connected Components and Regressive Character Segmentation

Authors: Xu Han, Shanxiong Chen, Shiyu Zhu, Xiaoyu Lin, Fujia Zhao, Dingwang Wang

Abstract:

Character detection is an important issue for character recognition of ancient Yi books. The accuracy of detection directly affects the recognition effect of ancient Yi books. Considering the complex layout, the lack of standard typesetting and the mixed arrangement between images and texts, we propose a character detection method for ancient Yi books based on connected components and regressive character segmentation. First, the scanned images of ancient Yi books are preprocessed with nonlocal mean filtering, and then a modified local adaptive threshold binarization algorithm is used to obtain the binary images to segment the foreground and background for the images. Second, the non-text areas are removed by the method based on connected components. Finally, the single character in the ancient Yi books is segmented by our method. The experimental results show that the method can effectively separate the text areas and non-text areas for ancient Yi books and achieve higher accuracy and recall rate in the experiment of character detection, and effectively solve the problem of character detection and segmentation in character recognition of ancient books.

Keywords: CCS concepts, computing methodologies, interest point, salient region detections, image segmentation

Procedia PDF Downloads 130
2054 Antioxidant Effects of C-Phycocyanin on Oxidized Astrocyte in Brain Injury Using 2D and 3D Neural Nanofiber Tissue Model

Authors: Seung Ju Yeon, Seul Ki Min, Jun Sang Park, Yeo Seon Kwon, Hoo Cheol Lee, Hyun Jung Shim, Il-Doo Kim, Ja Kyeong Lee, Hwa Sung Shin

Abstract:

In brain injury, depleting oxidative stress is the most effective way to reduce the brain infarct size. C-phycocyanin (C-Pc) is a well-known antioxidant protein that has neuroprotective effects obtained from green microalgae. Astrocyte is glial cell that supports the nerve cell such as neuron, which account for a large portion of the brain. In brain injury, such as ischemia and reperfusion, astrocyte has an important rule that overcomes the oxidative stress and protect from brain reactive oxygen species (ROS) injury. However little is known about how C-Pc regulates the anti-oxidants effects of astrocyte. In this study, when the C-Pc was treated in oxidized astrocyte, we confirmed that inflammatory factors Interleukin-6 and Interleukin-3 were increased and antioxidants enzyme, Superoxide dismutase (SOD) and catalase was upregulated, and neurotrophic factors, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) was alleviated. Also, it was confirmed to reduce infarct size of the brain in ischemia and reperfusion because C-Pc has anti-oxidant effects in middle cerebral artery occlusion (MCAO) animal model. These results show that C-Pc can help astrocytes lead neuroprotective activities in the oxidative stressed environment of the brain. In summary, the C-PC protects astrocytes from oxidative stress and has anti-oxidative, anti-inflammatory, neurotrophic effects under ischemic situations.

Keywords: c-phycocyanin, astrocyte, reactive oxygen species, ischemia and reperfusion, neuroprotective effect

Procedia PDF Downloads 318
2053 Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning

Authors: Larry Powell, Seth Polsley, Drew Casey, Tracy Hammond

Abstract:

Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95.

Keywords: time window, peak/valley segmentation, feature extraction, beginner swimming, activity recognition

Procedia PDF Downloads 121
2052 Virtualization of Biomass Colonization: Potential of Application in Precision Medicine

Authors: Maria Valeria De Bonis, Gianpaolo Ruocco

Abstract:

Nowadays, computational modeling is paving new design and verification ways in a number of industrial sectors. The technology is ripe to challenge some case in the Bioengineering and Medicine frameworks: for example, looking at the strategical and ethical importance of oncology research, efforts should be made to yield new and powerful resources to tumor knowledge and understanding. With these driving motivations, we approach this gigantic problem by using some standard engineering tools such as the mathematics behind the biomass transfer. We present here some bacterial colonization studies in complex structures. As strong analogies hold with some tumor proliferation, we extend our study to a benchmark case of solid tumor. By means of a commercial software, we model biomass and energy evolution in arbitrary media. The approach will be useful to cast virtualization cases of cancer growth in human organs, while augmented reality tools will be used to yield for a realistic aid to informed decision in treatment and surgery.

Keywords: bacteria, simulation, tumor, precision medicine

Procedia PDF Downloads 333
2051 Comparison and Effectiveness of Cranial Electrical Stimulation Treatment, Brain Training and Their Combination on Language and Verbal Fluency of Patients with Mild Cognitive Impairment: A Single Subject Design

Authors: Firoozeh Ghazanfari, Kourosh Amraei, Parisa Poorabadi

Abstract:

Mild cognitive impairment is one of the neurocognitive disorders that go beyond age-related decline in cognitive functions, but in fact, it is not so severe which affects daily activities. This study aimed to investigate and compare the effectiveness of treatment with cranial electrical stimulation, brain training and their double combination on the language and verbal fluency of the elderly with mild cognitive impairment. This is a single-subject method with comparative intervention designs. Four patients with a definitive diagnosis of mild cognitive impairment by a psychiatrist were selected via purposive and convenience sampling method. Addenbrooke's Cognitive Examination Scale (2017) was used to assess language and verbal fluency. Two groups were formed with different order of cranial electrical stimulation treatment, brain training by pencil and paper method and their double combination, and two patients were randomly replaced in each group. The arrangement of the first group included cranial electrical stimulation, brain training, double combination and the second group included double combination, cranial electrical stimulation and brain training, respectively. Treatment plan included: A1, B, A2, C, A3, D, A4, where electrical stimulation treatment was given in ten 30-minutes sessions (5 mA and frequency of 0.5-500 Hz) and brain training in ten 30-minutes sessions. Each baseline lasted four weeks. Patients in first group who first received cranial electrical stimulation treatment showed a higher percentage of improvement in the language and verbal fluency subscale of Addenbrooke's Cognitive Examination in comparison to patients of the second group. Based on the results, it seems that cranial electrical stimulation with its effect on neurotransmitters and brain blood flow, especially in the brain stem, may prepare the brain at the neurochemical and molecular level for a better effectiveness of brain training at the behavioral level, and the selective treatment of electrical stimulation solitude in the first place may be more effective than combining it with paper-pencil brain training.

Keywords: cranial electrical stimulation, treatment, brain training, verbal fluency, cognitive impairment

Procedia PDF Downloads 85
2050 ESDN Expression in the Tumor Microenvironment Coordinates Melanoma Progression

Authors: Roberto Coppo, Francesca Orso, Daniela Dettori, Elena Quaglino, Lei Nie, Mehran M. Sadeghi, Daniela Taverna

Abstract:

Malignant melanoma is currently the fifth most common cancer in the white population and it is fatal in its metastatic stage. Several research studies in recent years have provided evidence that cancer initiation and progression are driven by genetic alterations of the tumor and paracrine interactions between tumor and microenvironment. Scattered data show that the Endothelial and Smooth muscle cell-Derived Neuropilin-like molecule (ESDN) controls cell proliferation and movement of stroma and tumor cells. To investigate the role of ESDN in the tumor microenvironment during melanoma progression, murine melanoma cells (B16 or B16-F10) were injected in ESDN knockout mice in order to evaluate how the absence of ESDN in stromal cells could influence melanoma progression. While no effect was found on primary tumor growth, increased cell extravasation and lung metastasis formation was observed in ESDN knockout mice compared to wild type controls. In order to understand how cancer cells cross the endothelial barrier during metastatic dissemination in an ESDN-null microenvironment, structure, and permeability of lung blood vessels were analyzed. Interestingly, ESDN knockout mice showed structurally altered and more permeable vessels compared to wild type animals. Since cell surface molecules mediate the process of tumor cell extravasation, the expression of a panel of extravasation-related ligands and receptors was analyzed. Importantly, modulations of N-cadherin, E-selectin, ICAM-1 and VAP-1 were observed in ESDN knockout endothelial cells, suggesting the presence of a favorable tumor microenvironment which facilitates melanoma cell extravasation and metastasis formation in the absence of ESDN. Furthermore, a potential contribution of immune cells in tumor dissemination was investigated. An increased recruitment of macrophages in the lungs of ESDN knockout mice carrying subcutaneous B16-F10 tumors was found. In conclusion, our data suggest a functional role of ESDN in the tumor microenvironment during melanoma progression and the identification of the mechanisms that regulate tumor cell extravasation could lead to the development of new therapies to reduce metastasis formation.

Keywords: melanoma, tumor microenvironment, extravasation, cell surface molecules

Procedia PDF Downloads 332
2049 WT1 Exprassion in Malignant Surface Epithelial Ovarian Tumors

Authors: Mahmoodreza Tahamtan

Abstract:

Background: Malignant surface epithelial ovarian tumors (SEOT) account for approximately 90% of primary ovarian cancer. Wilms tumor gene (WT1) product was defined as a tumor suppressor gene, but today it is considered capable of performing oncogenic functions. There seems to be differences in WT1 expression patterns among SEOT subtypes. We evaluate the immunohistochemical expression of WT1 protein among different histologic subtypes of SEOT. Materials and Methods: Immunohistochemistry for WT1 was done on 35 serous cystadenocarcinomas, 9 borderline serous tumors, 3 mucinous cystadenocarcinomas, 10 borderline mucinous tumors, 7 endometrioid ovarian carcinomas, 3 clear cell carcinomas, 1 malignant Brenner tumor, 2 metastatic adenocarcinomas, and 6 endometrial adenocarcinomas. A tumor was considered negative if < 1% of tumor cells were stained.Positive reactions were graded as follows:1+,1%-24%; 2+,25%-49%; 3+,50%-74%; 4+,75%-100%. Results: Of the 35 cases of ovarian serous cystadenocarcinoma, 30(85.7%) were diffusely positive (3+,4+),4 showed reactivity of < 50% of the tumor cells (1+,2+), and one were negative. All 9 borderline serous tumors showed immunoreactivity with WT1. All the mucinous tumors(n:13), endometrioid carcinomas (n: 7), clear cell carcinomas (n: 3), metastatic adenocarcinomas (n: 2) and primary endometrial carcinomas (n:6) were negative. The single malignant Brenner tumor showed a positive reaction for WT1(4+) Conclusion: WT1 is a good marker to distinguish primary ovarian serous carcinomas from other surface epithelial tumors (especially endometrioid subtype) and metastatic carcinomas (especially endometrial serous carcinoma), other than malignant mesothelioma. We cannot rely to the degree of expression inorder to separate high grade borderline serous tumors from low grade ones.

Keywords: WT1, ovary, epithelial tumors, malignant

Procedia PDF Downloads 101
2048 Memory Types in Hemodialysis (HD) Patients; A Study Based on Hemodialysis Duration, Zahedan: South East of Iran

Authors: Behnoush Sabayan, Ali Alidadi, Saeid Ebarhimi, N. M. Bakhshani

Abstract:

Hemodialysis (HD) patients are at a high risk of atherosclerotic and vascular disease; also little information is available for the HD impact on brain structure of these patients. We studied the brain abnormalities in HD patients. The aim of this study was to investigate the effect of long term HD on brain structure of HD patients. Non-contrast MRI was used to evaluate imaging findings. Our study included 80 HD patients of whom 39 had less than six months of HD and 41 patients had a history of HD more than six months. The population had a mean age of 51.60 years old and 27.5% were female. According to study, HD patients who have been hemodialyzed for a long time (median time of HD was up to 4 years) had small vessel ischemia than the HD patients who underwent HD for a shorter term, which the median time was 3 to 5 months. Most of the small vessel ischemia was located in pre-ventricular, subcortical and white matter (1.33± .471, 1.23± .420 and 1.39±.490). However, the other brain damages like: central pons abnormality, global brain atrophy, thinning of corpus callosum and frontal lobe atrophy were found (P<0.01). The present study demonstrated that HD patients who were under HD for a longer time had small vessel ischemia and we conclude that this small vessel ischemia might be a causative mechanism of brain atrophy in chronic hemodialysis patients. However, additional researches are needed in this area.

Keywords: Hemodialysis Patients, Duration of Hemodialysis, MRI, Zahedan

Procedia PDF Downloads 212
2047 Discriminant Function Based on Circulating Tumor Cells for Accurate Diagnosis of Metastatic Breast Cancer

Authors: Hatem A. El-Mezayen, Ahmed Abdelmajeed, Fatehya Metwally, Usama Elsaly, Salwa Atef

Abstract:

Tumor metastasis involves the dissemination of malignant cells into the basement membrane and vascular system contributes to the circulating pool of these markers. In this context our aim has been focused on development of a non-invasive. Circulating tumor cells (CTCs) represent a unique liquid biopsy carrying comprehensive biological information of the primary tumor. Herein, we sought to develop a novel score based on the combination of the most significant CTCs biomarkers with and routine laboratory tests for accurate detection of metastatic breast cancer. Methods: Cytokeratin 18 (CK18), Cytokeratin 19 (CK19), and CA15.3 were assayed in metastatic breast cancer (MBC) patients (75), non-MBC patients (50) and healthy control (20). Results: Areas under receiving operating curve (AUCs) were calculated and used for construction on novel score. A novel score named MBC-CTCs = CA15.3 (U/L) × 0.08 + CK 18 % × 2.9 + CK19 × 3.1– 510. That function correctly classified 87% of metastatic breast cancer at cut-off value = 0.55. (i.e great than 0.55 indicates patients with metastatic breast cancer and less than 0.55 indicates patients with non-metastatic breast cancer). Conclusion: MBC-CTCs is a novel, non-invasive and simple can applied to discriminate patients with metastatic breast cancer.

Keywords: metastatic breast cancer, circulating tumor cells, cytokeratin, EpiCam

Procedia PDF Downloads 212
2046 High Prevalence of Canine Mammary Gland Tumor in Nulliparous Compared with Multiparous Female Dogs

Authors: Sudson Sirivaidyapong, Ratthanan Sathienbumrungkit, Nongnapas Ruangpet, Nattanun Uaprayoon, Chawisa Wejjakul

Abstract:

Many factors initiate mammary gland tumor in female dogs such as age, breed, sex, estrous cycle, birth control and pseudopregnancy. Those factors are mostly associated with canine sex hormone. In this study, questionnaires and direct interviews were used to collect information from owners of female dogs that had been diagnosed as mammary tumors at our veterinary teaching hospital, during January 2015 to October 2016 to compare the prevalence of mammary tumor between nulliparous and multiparous female dogs. 200 dogs (from all 212 mammary tumor patients, some were excluded because of inadequate information) were included in the study, 72.5% were nulliparous and 27.5% were multiparous. The results revealed that breed, age, birth control age and birth control methods were not different in both groups; most dogs in both groups were various purebreds, geriatric age, and low incidence of hormonal contraception while 100% of multiparous dogs and 83.7% of nulliparous dogs had been neutered at over two years old. The significant differences between two groups were the frequency of pseudopregnancy and estrus which were much higher in nulliparous female dogs. It can be concluded from our study that nulliparous dogs may be more likely at higher risk of mammary tumor compared to multiparous dogs from various factors especially, the frequency of estrus and the occurrence of pseudopregnancy which related to more times of sex hormonal contact. This study was a preliminary data for further studies to determine the other risk factors of mammary gland tumors in dogs, and to our knowledge, it is the first report on a significantly higher prevalence of mammary tumor in nulliparous female dogs than that in multiparous dogs. This finding corresponds with the study of breast cancer in women but may be from different causes and factors due to the differences in estrous physiology.

Keywords: canine, female dogs, nulliparous, multiparous, mammary tumor, prevalence

Procedia PDF Downloads 470
2045 Reduction of False Positives in Head-Shoulder Detection Based on Multi-Part Color Segmentation

Authors: Lae-Jeong Park

Abstract:

The paper presents a method that utilizes figure-ground color segmentation to extract effective global feature in terms of false positive reduction in the head-shoulder detection. Conventional detectors that rely on local features such as HOG due to real-time operation suffer from false positives. Color cue in an input image provides salient information on a global characteristic which is necessary to alleviate the false positives of the local feature based detectors. An effective approach that uses figure-ground color segmentation has been presented in an effort to reduce the false positives in object detection. In this paper, an extended version of the approach is presented that adopts separate multipart foregrounds instead of a single prior foreground and performs the figure-ground color segmentation with each of the foregrounds. The multipart foregrounds include the parts of the head-shoulder shape and additional auxiliary foregrounds being optimized by a search algorithm. A classifier is constructed with the feature that consists of a set of the multiple resulting segmentations. Experimental results show that the presented method can discriminate more false positive than the single prior shape-based classifier as well as detectors with the local features. The improvement is possible because the presented approach can reduce the false positives that have the same colors in the head and shoulder foregrounds.

Keywords: pedestrian detection, color segmentation, false positive, feature extraction

Procedia PDF Downloads 278
2044 Market-Driven Process of Brain Circulation in Knowledge Services Industry in Sri Lanka

Authors: Panagodage Janaka Sampath Fernando

Abstract:

Brain circulation has become a buzzword in the skilled migration literature. However, promoting brain circulation; returning of skilled migrants is challenging. Success stories in Asia, for instances, Taiwan, and China, are results of rigorous policy interventions of the respective governments. Nonetheless, the same policy mix has failed in other countries making it skeptical to attribute the success of brain circulation to the policy interventions per se. The paper seeks to answer whether the success of brain circulation within the Knowledge Services Industry (KSI) in Sri Lanka is a policy driven or a market driven process. Mixed method approach, which is a combination of case study and survey methods, was employed. Qualitative data derived from ten case studies of returned entrepreneurs whereas quantitative data generated from a self-administered survey of 205 returned skilled migrants (returned skilled employees and entrepreneurs) within KSI. The pull factors have driven the current flow of brain circulation within KSI but to a lesser extent, push factors also have influenced. The founding stone of the industry has been laid by a group of returned entrepreneurs, and the subsequent growth of the industry has attracted returning skilled employees. Sri Lankan government has not actively implemented the reverse brain drain model, however, has played a passive role by creating a peaceful and healthy environment for the industry. Therefore, in contrast to the other stories, brain circulation within KSI has emerged as a market driven process with minimal government interventions. Entrepreneurs play the main role in a market-driven process of brain circulation, and it is free from the inherent limitations of the reverse brain drain model such as discriminating non-migrants and generating a sudden flow of low-skilled migrants. Thus, to experience a successful brain circulation, developing countries should promote returned entrepreneurs by creating opportunities in knowledge-based industries.

Keywords: brain circulation, knowledge services industry, return migration, Sri Lanka

Procedia PDF Downloads 279
2043 Training a Neural Network to Segment, Detect and Recognize Numbers

Authors: Abhisek Dash

Abstract:

This study had three neural networks, one for number segmentation, one for number detection and one for number recognition all of which are coupled to one another. All networks were trained on the MNIST dataset and were convolutional. It was assumed that the images had lighter background and darker foreground. The segmentation network took 28x28 images as input and had sixteen outputs. Segmentation training starts when a dark pixel is encountered. Taking a window(7x7) over that pixel as focus, the eight neighborhood of the focus was checked for further dark pixels. The segmentation network was then trained to move in those directions which had dark pixels. To this end the segmentation network had 16 outputs. They were arranged as “go east”, ”don’t go east ”, “go south east”, “don’t go south east”, “go south”, “don’t go south” and so on w.r.t focus window. The focus window was resized into a 28x28 image and the network was trained to consider those neighborhoods which had dark pixels. The neighborhoods which had dark pixels were pushed into a queue in a particular order. The neighborhoods were then popped one at a time stitched to the existing partial image of the number one at a time and trained on which neighborhoods to consider when the new partial image was presented. The above process was repeated until the image was fully covered by the 7x7 neighborhoods and there were no more uncovered black pixels. During testing the network scans and looks for the first dark pixel. From here on the network predicts which neighborhoods to consider and segments the image. After this step the group of neighborhoods are passed into the detection network. The detection network took 28x28 images as input and had two outputs denoting whether a number was detected or not. Since the ground truth of the bounds of a number was known during training the detection network outputted in favor of number not found until the bounds were not met and vice versa. The recognition network was a standard CNN that also took 28x28 images and had 10 outputs for recognition of numbers from 0 to 9. This network was activated only when the detection network votes in favor of number detected. The above methodology could segment connected and overlapping numbers. Additionally the recognition unit was only invoked when a number was detected which minimized false positives. It also eliminated the need for rules of thumb as segmentation is learned. The strategy can also be extended to other characters as well.

Keywords: convolutional neural networks, OCR, text detection, text segmentation

Procedia PDF Downloads 159
2042 A Technique for Image Segmentation Using K-Means Clustering Classification

Authors: Sadia Basar, Naila Habib, Awais Adnan

Abstract:

The paper presents the Technique for Image Segmentation Using K-Means Clustering Classification. The presented algorithms were specific, however, missed the neighboring information and required high-speed computerized machines to run the segmentation algorithms. Clustering is the process of partitioning a group of data points into a small number of clusters. The proposed method is content-aware and feature extraction method which is able to run on low-end computerized machines, simple algorithm, required low-quality streaming, efficient and used for security purpose. It has the capability to highlight the boundary and the object. At first, the user enters the data in the representation of the input. Then in the next step, the digital image is converted into groups clusters. Clusters are divided into many regions. The same categories with same features of clusters are assembled within a group and different clusters are placed in other groups. Finally, the clusters are combined with respect to similar features and then represented in the form of segments. The clustered image depicts the clear representation of the digital image in order to highlight the regions and boundaries of the image. At last, the final image is presented in the form of segments. All colors of the image are separated in clusters.

Keywords: clustering, image segmentation, K-means function, local and global minimum, region

Procedia PDF Downloads 371
2041 Base Deficit Profiling in Patients with Isolated Blunt Traumatic Brain Injury – Correlation with Severity and Outcomes

Authors: Shahan Waheed, Muhammad Waqas, Asher Feroz

Abstract:

Objectives: To determine the utility of base deficit in traumatic brain injury in assessing the severity and to correlate with the conventional computed tomography scales in grading the severity of head injury. Methodology: Observational cross-sectional study conducted in a tertiary care facility from 1st January 2010 to 31st December 2012. All patients with isolated traumatic brain injury presenting within 24 hours of the injury to the emergency department were included in the study. Initial Glasgow Coma Scale and base deficit values were taken at presentation, the patients were followed during their hospital stay and CT scan brain findings were recorded and graded as per the Rotterdam scale, the findings were cross-checked by a radiologist, Glasgow Outcome Scale was taken on last follow up. Outcomes were dichotomized into favorable and unfavorable outcomes. Continuous variables with normal and non-normal distributions are reported as mean ± SD. Categorical variables are presented as frequencies and percentages. Relationship of the base deficit with GCS, GOS, CT scan brain and length of stay was calculated using Spearman`s correlation. Results: 154 patients were enrolled in the study. Mean age of the patients were 30 years and 137 were males. The severity of brain injuries as per the GCS was 34 moderate and 109 severe respectively. 34 percent of the total has an unfavorable outcome with a mean of 18±14. The correlation was significant at the 0.01 level with GCS on presentation and the base deficit 0.004. The correlation was not significant between the Rotterdam CT scan brain findings, length of stay and the base deficit. Conclusion: The base deficit was found to be a good predictor of severity of brain injury. There was no association of the severity of injuries on the CT scan brain as per the Rotterdam scale and the base deficit. Further studies with large sample size are needed to further evaluate the associations.

Keywords: base deficit, traumatic brain injury, Rotterdam, GCS

Procedia PDF Downloads 440
2040 Liver Lesion Extraction with Fuzzy Thresholding in Contrast Enhanced Ultrasound Images

Authors: Abder-Rahman Ali, Adélaïde Albouy-Kissi, Manuel Grand-Brochier, Viviane Ladan-Marcus, Christine Hoeffl, Claude Marcus, Antoine Vacavant, Jean-Yves Boire

Abstract:

In this paper, we present a new segmentation approach for focal liver lesions in contrast enhanced ultrasound imaging. This approach, based on a two-cluster Fuzzy C-Means methodology, considers type-II fuzzy sets to handle uncertainty due to the image modality (presence of speckle noise, low contrast, etc.), and to calculate the optimum inter-cluster threshold. Fine boundaries are detected by a local recursive merging of ambiguous pixels. The method has been tested on a representative database. Compared to both Otsu and type-I Fuzzy C-Means techniques, the proposed method significantly reduces the segmentation errors.

Keywords: defuzzification, fuzzy clustering, image segmentation, type-II fuzzy sets

Procedia PDF Downloads 484
2039 A Review of Brain Implant Device: Current Developments and Applications

Authors: Ardiansyah I. Ryan, Ashsholih K. R., Fathurrohman G. R., Kurniadi M. R., Huda P. A

Abstract:

The burden of brain-related disease is very high. There are a lot of brain-related diseases with limited treatment result and thus raise the burden more. The Parkinson Disease (PD), Mental Health Problem, or Paralysis of extremities treatments had risen concern, as the patients for those diseases usually had a low quality of life and low chance to recover fully. There are also many other brain or related neural diseases with the similar condition, mainly the treatments for those conditions are still limited as our understanding of the brain function is insufficient. Brain Implant Technology had given hope to help in treating this condition. In this paper, we examine the current update of the brain implant technology. Neurotechnology is growing very rapidly worldwide. The United States Food and Drug Administration (FDA) has approved the use of Deep Brain Stimulation (DBS) as a brain implant in humans. As for neural implant both the cochlear implant and retinal implant are approved by FDA too. All of them had shown a promising result. DBS worked by stimulating a specific region in the brain with electricity. This device is planted surgically into a very specific region of the brain. This device consists of 3 main parts: Lead (thin wire inserted into the brain), neurostimulator (pacemaker-like device, planted surgically in the chest) and an external controller (to turn on/off the device by patient/programmer). FDA had approved DBS for the treatment of PD, Pain Management, Epilepsy and Obsessive Compulsive Disorder (OCD). The target treatment of DBS in PD is to reduce the tremor and dystonia symptoms. DBS has been showing the promising result in animal and limited human trial for other conditions such as Alzheimer, Mental Health Problem (Major Depression, Tourette Syndrome), etc. Every surgery has risks of complications, although in DBS the chance is very low. DBS itself had a very satisfying result as long as the subject criteria to be implanted this device based on indication and strictly selection. Other than DBS, there are several brain implant devices that still under development. It was included (not limited to) implant to treat paralysis (In Spinal Cord Injury/Amyotrophic Lateral Sclerosis), enhance brain memory, reduce obesity, treat mental health problem and treat epilepsy. The potential of neurotechnology is unlimited. When brain function and brain implant were fully developed, it may be one of the major breakthroughs in human history like when human find ‘fire’ for the first time. Support from every sector for further research is very needed to develop and unveil the true potential of this technology.

Keywords: brain implant, deep brain stimulation (DBS), deep brain stimulation, Parkinson

Procedia PDF Downloads 154
2038 Exploring Nanoformulations for Therapeutic Induction of Necroptosis

Authors: Tianjiao Chu, Carla Rios Luci, Christy Maksoudian, Ara Sargsian, Bella B. Manshian, Stefaan J. Soenen

Abstract:

Nanomaterials have gained high interest in their use as potent anticancer agents. Apart from delivering chemotherapeutic agents in order to reduce off-target effects, molecular agents have also been widely explored. The advances in our understanding of cell biology and cell death mechanisms1 has generated a broad library of potential therapeutic targets by siRNA, mRNA, or pDNA complexes. In the present study, we explore the ability of pDNA-polyplexes to induce tumor-specific necroptosis. This results in a cascade of effects, where immunogenic cell death potentiates anti-tumor immune responses and results in an influx of dendritic cells and cytotoxic T cells, rendering the tumor more amenable to immune checkpoint inhibition. This study aims to explore whether the induction of necroptosis in a subpopulation of tumor cells can be used to potentiate immune checkpoint inhibition studies.

Keywords: nanoparticle, MLKL, necroptosis, immunotherapy

Procedia PDF Downloads 136
2037 Towards Long-Range Pixels Connection for Context-Aware Semantic Segmentation

Authors: Muhammad Zubair Khan, Yugyung Lee

Abstract:

Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with bi-directional LSTM embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization for reducing internal covariate shift in data distributions. The empirical evidence shows a promising response to our method compared with other semantic segmentation techniques.

Keywords: deep learning, semantic segmentation, image analysis, pixels connection, convolution neural network

Procedia PDF Downloads 101
2036 Comparison of Stereotactic Craniotomy for Brain Metastasis, as Compared to Stereotactic Radiosurgery

Authors: Mostafa El Khashab

Abstract:

Our experience with 50 patients with metastatic tumors located in different locations of the brain by a stereotactic-guided craniotomy and total microsurgical resection. Patients ranged in age from 36 to 73 years. There were 28 women and 22 men. Thirty-four patients presented with hemiparesis and 6 with aphasia and the remaining presented with psychological manifestations and memory issues. Gross total resection was accomplished in all cases, with postoperative imaging confirmation of complete removal. Forty patients were subjected to whole brain irradiation. One patient developed a stroke postoperatively and another one had a flap infection. 4 patients developed different postoperative but unrelated morbidities, including pneumonia and DVT. No mortality was encountered. We believe that with the assistance of stereotactic localization, metastases in vital regions of the brain can be removed with very low neurologic morbidity and that, in comparison to other modalities, they fare better regarding their long-term outcome.

Keywords: stereotactic, craniotomy, radiosurgery, patient

Procedia PDF Downloads 90
2035 Uterine Cervical Cancer; Early Treatment Assessment with T2- And Diffusion-Weighted MRI

Authors: Susanne Fridsten, Kristina Hellman, Anders Sundin, Lennart Blomqvist

Abstract:

Background: Patients diagnosed with locally advanced cervical carcinoma are treated with definitive concomitant chemo-radiotherapy. Treatment failure occurs in 30-50% of patients with very poor prognoses. The treatment is standardized with risk for both over-and undertreatment. Consequently, there is a great need for biomarkers able to predict therapy outcomes to allow for individualized treatment. Aim: To explore the role of T2- and diffusion-weighted magnetic resonance imaging (MRI) for early prediction of therapy outcome and the optimal time point for assessment. Methods: A pilot study including 15 patients with cervical carcinoma stage IIB-IIIB (FIGO 2009) undergoing definitive chemoradiotherapy. All patients underwent MRI four times, at baseline, 3 weeks, 5 weeks, and 12 weeks after treatment started. Tumour size, size change (∆size), visibility on diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC) and change of ADC (∆ADC) at the different time points were recorded. Results: 7/15 patients relapsed during the study period, referred to as "poor prognosis", PP, and the remaining eight patients are referred to "good prognosis", GP. The tumor size was larger at all time points for PP than for GP. The ∆size between any of the four-time points was the same for PP and GP patients. The sensitivity and specificity to predict prognostic group depending on a remaining tumor on DWI were highest at 5 weeks and 83% (5/6) and 63% (5/8), respectively. The combination of tumor size at baseline and remaining tumor on DWI at 5 weeks in ROC analysis reached an area under the curve (AUC) of 0.83. After 12 weeks, no remaining tumor was seen on DWI among patients with GP, as opposed to 2/7 PP patients. Adding ADC to the tumor size measurements did not improve the predictive value at any time point. Conclusion: A large tumor at baseline MRI combined with a remaining tumor on DWI at 5 weeks predicted a poor prognosis.

Keywords: chemoradiotherapy, diffusion-weighted imaging, magnetic resonance imaging, uterine cervical carcinoma

Procedia PDF Downloads 139
2034 Place of Radiotherapy in the Treatment of Intracranial Meningiomas: Experience of the Cancer Center Emir Abdelkader of Oran Algeria

Authors: Taleb L., Benarbia M., Boutira F. M., Allam H., Boukerche A.

Abstract:

Introduction and purpose of the study: Meningiomas are the most common non-glial intracranial tumors in adults, accounting for approximately 30% of all central nervous system tumors. The aim of our study is to determine the epidemiological, clinical, therapeutic, and evolutionary characteristics of a cohort of patients with intracranial meningioma treated with radiotherapy at the Emir Abdelkader Cancer Center in Oran. Material and methods: This is a retrospective study of 44 patients during the period from 2014 to 2020. The overall survival and relapse-free survival curves were calculated using the Kaplan-Meier method. Results and statistical analysis: The median age of the patients was 49 years [21-76 years] with a clear female predominance (sex ratio=2.4). The average diagnostic delay was seven months [2 to 24 months], the circumstances of the discovery of which were dominated by headaches in 54.5% of cases (n=24), visual disturbances in 40.9% (n=18), and motor disorders in 15.9% (n=7). The seat of the tumor was essentially at the level of the base of the skull in 52.3% of patients (n=23), including 29.5% (n=13) at the level of the cavernous sinus, 27.3% (n=12) at the parasagittal level and 20.5% (n=9) at the convexity. The diagnosis was confirmed surgically in 36 patients (81.8%) whose anatomopathological study returned in favor of grades I, II, and III in respectively 40.9%, 29.5%, and 11.4% of the cases. Radiotherapy was indicated postoperatively in 45.5% of patients (n=20), exclusive in 27.3% (n=12) and after tumor recurrence in 27.3% of cases (n=18). The irradiation doses delivered were as follows: 50 Gy (20.5%), 54 Gy (65.9%), and 60 Gy (13.6%). With a median follow-up of 69 months, the probabilities of relapse-free survival and overall survival at three years are 93.2% and 95.4%, respectively, whereas they are 71.2% and 80.7% at five years. Conclusion: Meningiomas are common primary brain tumors. Most often benign but can also progress aggressively. Their treatment is essentially surgical, but radiotherapy retains its place in specific situations, allowing good tumor control and overall survival.

Keywords: diagnosis, meningioma, surgery, radiotherapy, survival

Procedia PDF Downloads 98
2033 Computer Aided Analysis of Breast Based Diagnostic Problems from Mammograms Using Image Processing and Deep Learning Methods

Authors: Ali Berkan Ural

Abstract:

This paper presents the analysis, evaluation, and pre-diagnosis of early stage breast based diagnostic problems (breast cancer, nodulesorlumps) by Computer Aided Diagnosing (CAD) system from mammogram radiological images. According to the statistics, the time factor is crucial to discover the disease in the patient (especially in women) as possible as early and fast. In the study, a new algorithm is developed using advanced image processing and deep learning method to detect and classify the problem at earlystagewithmoreaccuracy. This system first works with image processing methods (Image acquisition, Noiseremoval, Region Growing Segmentation, Morphological Operations, Breast BorderExtraction, Advanced Segmentation, ObtainingRegion Of Interests (ROIs), etc.) and segments the area of interest of the breast and then analyzes these partly obtained area for cancer detection/lumps in order to diagnosis the disease. After segmentation, with using the Spectrogramimages, 5 different deep learning based methods (specified Convolutional Neural Network (CNN) basedAlexNet, ResNet50, VGG16, DenseNet, Xception) are applied to classify the breast based problems.

Keywords: computer aided diagnosis, breast cancer, region growing, segmentation, deep learning

Procedia PDF Downloads 93