Search results for: bio-sorption heavy metals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2149

Search results for: bio-sorption heavy metals

1939 Ground Water Contamination by Tannery Effluents and Its Impact on Human Health in Peshawar, Pakistan

Authors: Fawad Ali, Muhammad Ateeq, Ikhtiar Khan

Abstract:

Ground water, a major source of drinking water supply in Peshawar has been severely contaminated by leather tanning industry. Effluents from the tanneries contain high concentration of chromium besides several other chemical species. Release of untreated effluents from the tanning industry has severely damaged surface and ground water, agriculture soil as well as vegetables and crops. Chromium is a well-known carcinogenic and mutagenic agent. Once in the human food chain, it causes multiple problems to the exposed population including various types of cancer, skin dermatitis, and DNA damage. In order to assess the extent of chromium and other heavy metals contamination, water samples were analyzed for heavy metals using Graphite Furnace Atomic Absorption Spectrometer (GFAAS, Analyst 700, Perkin Elmer). Total concentration of chromium was above the permissible limit (0.048 mg/l) in 85% of the groundwater (drinking water) samples. The concentration of cobalt, manganese, cadmium, nickel, lead, zinc and iron was also determined in the ground water, surface water, agriculture soil, and vegetables samples from the affected area.

Keywords: heavy metals, soil, groundwater, tannery effluents, food chain

Procedia PDF Downloads 316
1938 Brown Macroalgae L. hyperborea as Natural Cation Exchanger and Electron Donor for the Treatment of a Zinc and Hexavalent Chromium Containing Galvanization Wastewater

Authors: Luciana P. Mazur, Tatiana A. Pozdniakova, Rui A. R. Boaventura, Vitor J. P. Vilar

Abstract:

The electroplating industry requires a lot of process water, which generates a large volume of wastewater loaded with heavy metals. Two different wastewaters were collected in a company’s wastewater treatment plant, one after the use of zinc in the metal plating process and the other after the use of chromium. The main characteristics of the Zn(II) and Cr(VI) wastewaters are: pH = 6.7/5.9; chemical oxygen demand = 55/<5 mg/L; sodium, potassium, magnesium and calcium ions concentrations of 326/28, 4/28, 11/7 and 46/37 mg/L, respectively; zinc(II) = 11 mg/L and Cr(VI) = 39 mg/L. Batch studies showed that L. hyperborea can be established as a natural cation exchanger for heavy metals uptake mainly due to the presence of negatively charged functional groups in the surface of the biomass. Beyond that, L. hyperborea can be used as a natural electron donor for hexavalent chromium reduction to trivalent chromium at acidic medium through the oxidation of the biomass, and Cr(III) can be further bound to the negatively charged functional groups. The uptake capacity of Cr(III) by the oxidized biomass after Cr(VI) reduction was higher than by the algae in its original form. This can be attributed to the oxidation of the biomass during Cr(VI) reduction, turning other active sites available for Cr(III) binding. The brown macroalgae Laminaria hyperborea was packed in a fixed-bed column in order to evaluate the feasibility of the system for the continuous treatment of the two galvanization wastewaters. The column, with an internal diameter of 4.8 cm, was packed with 59 g of algae up to a bed height of 27 cm. The operation strategy adopted for the treatment of the two wastewaters consisted in: i) treatment of the Zn(II) wastewater in the first sorption cycle; ii) desorption of pre-loaded Zn(II) using an 1.0 M HCl solution; iii) treatment of the Cr(VI) wastewater, taking advantage of the acidic conditions of the column after the desorption cycle, for the reduction of the Cr(VI) to Cr(III), in the presence of the electrons resulting from the biomass oxidation. This cycle ends when all the oxidizing groups are used.

Keywords: biosorption, brown marine macroalgae, zinc, chromium

Procedia PDF Downloads 296
1937 Adverse Impacts of Poor Wastewater Management Practices on Water Quality in Gebeng Industrial Area, Pahang, Malaysia

Authors: I. M. Sujaul, M. A. Sobahan, A. A. Edriyana, F. M. Yahaya, R. M. Yunus

Abstract:

This study was carried out to investigate the adverse effect of industrial waste water on surface water quality in Gebeng industrial estate, Pahang, Malaysia. Surface water was collected from 6 sampling stations. Physico-chemical parameters were characterized based on in-situ and ex-situ analysis according to standard methods by American Public Health Association (APHA). Selected heavy metals were determined by using Inductively Coupled Plasma Mass Spectrometry (ICP MS). The result reveled that the concentration of heavy metals such as Pb, Cu, Cd, Cr and Hg were high in samples. The result showed that the value of Pb and Hg were higher in the wet season in comparison to dry season. According to Malaysia National Water Quality Standard (NWQS) and Water Quality Index (WQI) all the sampling station were categorized as class IV (highly polluted). The present study reveled that the adverse effects of careless disposal of wastes and directly discharge of effluents affected on surface water quality. Therefore, the authorities should implement the laws to ensure the proper practices of waste water management for environmental sustainability around the study area.

Keywords: water, heavy metals, water quality index, Gebeng

Procedia PDF Downloads 354
1936 Leaching Properties of Phosphate Rocks in the Nile River

Authors: Abdelkader T. Ahmed

Abstract:

Phosphate Rocks (PR) are natural sediment rocks. These rocks contain several chemical compositions of heavy metals and radioactive elements. Mining and transportation these rocks beside or through the natural water streams may lead to water contamination. When PR is in contact with water in the field, as a consequence of precipitation events, changes in water table or sinking in water streams, elements such as salts and heavy metals, may be released to the water. In this work, the leaching properties of PR in Nile River water was investigated by experimental lab work. The study focused on evaluating potential environmental impacts of some constituents, including phosphors, cadmium, curium and lead of PR on the water quality of Nile by applying tank leaching tests. In these tests the potential impact of changing conditions, such as phosphate content in PR, liquid to solid ratio (L/S) and pH value, was studied on the long-term release of heavy metals and salts. Experimental results showed that cadmium and lead were released in very low concentrations but curium and phosphors were in high concentrations. Results showed also that the release rate from PR for all constituents was low even in long periods.

Keywords: leaching tests, Nile river, phosphate rocks, water quality

Procedia PDF Downloads 301
1935 Soil Quality State and Trends in New Zealand’s Largest City after Fifteen Years

Authors: Fiona Curran-Cournane

Abstract:

Soil quality monitoring is a science-based soil management tool that assesses soil ecosystem health. A soil monitoring program in Auckland, New Zealand’s largest city, extends from 1995 to the present. The objective of this study was to firstly determine changes in soil parameters (basic soil properties and heavy metals) that were assessed from rural land in 1995-2000 and repeated in 2008-2012. The second objective was to determine differences in soil parameters across various land uses including native bush, rural (horticulture, pasture and plantation forestry) and urban land uses using soil data collected in more recent years (2009-2013). Across rural land, mean concentrations of Olsen P had significantly increased in the second sampling period and was identified as the indicator of most concern, followed by soil macroporosity, particularly for horticultural and pastoral land. Mean concentrations of Cd were also greatest for pastoral and horticultural land and a positive correlation existed between these two parameters, which highlights the importance of analysing basic soil parameters in conjunction with heavy metals. In contrast, mean concentrations of As, Cr, Pb, Ni and Zn were greatest for urban sites. Native bush sites had the lowest concentrations of heavy metals and were used to calculate a ‘pollution index’ (PI). The mean PI was classified as high (PI > 3) for Cd and Ni and moderate for Pb, Zn, Cr, Cu, As, and Hg, indicating high levels of heavy metal pollution across both rural and urban soils. From a land use perspective, the mean ‘integrated pollution index’ was highest for urban sites at 2.9 followed by pasture, horticulture and plantation forests at 2.7, 2.6, and 0.9, respectively. It is recommended that soil sampling continues over time because a longer spanning record will allow further identification of where soil problems exist and where resources need to be targeted in the future. Findings from this study will also inform policy and science direction in regional councils.

Keywords: heavy metals, pollution index, rural and urban land use, soil quality

Procedia PDF Downloads 353
1934 Selection and Identification of Some Spontaneous Plant Species Having the Ability to Grow Naturally on Crude Oil Contaminated Soil for a Possible Approach to Decontaminate and Rehabilitate an Industrial Area

Authors: Salima Agoun-Bahar, Ouzna Abrous-Belbachir, Souad Amelal

Abstract:

Industrial areas generally contain heavy metals; thus, negative consequences can appear in the medium and long term on the fauna and flora, but also on the food chain, which man constitutes the final link. The SONATRACH Company has become aware of the importance of environmental protection by setting up a rehabilitation program for polluted sites in order to avoid major ecological disasters and find both curative and preventive solutions. The aim of this work consists to study industrial pollution located around a crude oil storage tank in the Algiers refinery of Sidi R'cine and to select the plants which accumulate the most heavy metals for possible use in phytotechnology. Sampling of whole plants with their soil clod was realized around the pollution source at a depth of twenty centimeters, then transported to the laboratory to identify them. The quantification of heavy metals, lead, zinc, copper, and nickel was carried out by atomic absorption spectrophotometry with flame in the soil and at the level of the aerial and underground parts of the plants. Ten plant species were recorded in the polluted site, three of them belonging to the grass family with a dominance percentage higher than 50%, followed by three other species belonging to the Composite family represented by 12% and one species for each of the families Linaceae, Plantaginaceae, Papilionaceae, and Boraginaceae. Koeleria phleoïdes L. and Avena sterilis L. of the grass family seem to be the dominant plants, although they are quite far from the pollution source. Lead pollution of soils is the most pronounced for all stations, with values varying from 237.5 to 2682.5 µg.g⁻¹. Other peaks are observed for zinc (1177 µg.g⁻¹) and copper (635 µg.g⁻¹) at station 8 and nickel (1800 µg.g⁻¹) at station 10. Among the inventoried plants, some species accumulate a significant amount of metals: Trifolium sp and K.phleoides for lead and zinc, P.lanceolata and G.tomentosa for nickel, and A.clavatus for zinc. K.phloides is a very interesting species because it accumulates an important quantity of heavy metals, especially in its aerial part. This can be explained by its use of the phytoextraction technique, which will facilitate the recovery of the pollutants by the simple removal of shoots.

Keywords: heavy metals, industrial pollution, phytotechnology, rehabilitation

Procedia PDF Downloads 41
1933 Functionalized Mesoporous Silica: Absorbents for Water Purification

Authors: Saima Nasreen, Uzaira Rafique, Shery Ehrman, Muhammad Aqeel Ashraf

Abstract:

The release of heavy metals into the environment is a potential threat to water and soil quality as well as to plant, animal and human health. In current research work, organically functionalized mesoporous silicates (MSU-H) were prepared by the co-condensation between sodium silicate and oregano alkoxysilanes in the presence of the nonionic surfactant triblock copolymer P104. The surfactant was used as a template for improving the porosity of the hybrid gels. Synthesized materials were characterized by TEM, FT-IR, SEM/EDX, TG, surface area analysis. The surface morphology and textural properties of such materials varied with various kinds of groups in the channels. In this study, removal of some heavy metals ions from aqueous solution by adsorption process was investigated. Batch adsorption studies show that the adsorption capacity of metal ions on the functionalized silicates is more than that on pure MSU-H. Data shows adsorption on synthesized materials is a time efficient process, suggesting adsorption on external surface as well as the mesoporous process. Adsorption models of Langmuir, Freundlich, and Temkin depicted equal goodness for all adsorbents, whereas pseudo 2nd order kinetics is in best agreement with experimental data.

Keywords: heavy metals, mesoporous silica, hybrid, adsorption, freundlich, langmuir, temkin

Procedia PDF Downloads 246
1932 Biosorption of Fluoride from Aqueous Solutions by Tinospora Cordifolia Leaves

Authors: Srinivasulu Dasaiah, Kalyan Yakkala, Gangadhar Battala, Pavan Kumar Pindi, Ramakrishna Naidu Gurijala

Abstract:

Tinospora cordifolia leaves biomass used for the removal fluoride from aqueous solutions. Batch biosorption technique was applied, pH, contact time, biosorbent dose and initial fluoride concentration was studied. The Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) techniques used to study the surface characteristics and the presence of chemical functional groups on the biosorbent. Biosorption isotherm models and kinetic models were applied to understand the sorption mechanism. Results revealed that pH, contact time, biosorbent dose and initial fluoride concentration played a significant effect on fluoride removal from aqueous solutions. The developed biosorbent derived from Tinospora cordifolia leaves biomass found to be a low-cost biosorbent and could be used for the effective removal of fluoride in synthetic as well as real water samples.

Keywords: biosorption, contact time, fluoride, isotherms

Procedia PDF Downloads 151
1931 Nagabhasma Preparation and Its Effect on Kidneys: A Histopathological Study

Authors: Lydia Andrade, Kumar M. R. Bhat

Abstract:

Heavy metals, especially lead, is considered to be a multi-organ toxicant. However, such heavy metals, are used in the preparation of traditional medicines. Nagabhasma is one of the traditional medicines. Lead is the metal used in its preparation. Lead is converted into a health beneficial, organometallic compound, when subjected to various traditional methods of purification. Therefore, this study is designed to evaluate the effect of such processed lead in various stages of traditionally prepared Nagabhasma on the histological structure of kidneys. Using the human equivalent doses of Nagabhasma, various stages of its preparation were fed orally for 30 days and 60 days (short term and long term). The treated and untreated rats were then sacrificed for the collection of kidneys. The kidneys were processed for histopathological study. The results show severe changes in the histological structure of kidneys. The animals treated with lead acetate showed changes in the epithelial cells lining the bowman’s capsule. The proximal and distal convoluted tubules were dilated leading to atrophy of their epithelial cells. The amount of inflammatory infiltrates was more in this group. A few groups also showed pockets of inter-tubular hemorrhage. These changes, however, were minimized as the stages progressed form stages 1 to 4 of Nagabhasma preparation. Therefore, it is necessary to stringently monitor the processing of lead acetate during the preparation of Nagabhasma.

Keywords: heavy metals, kidneys, lead acetate, Nagabhasma

Procedia PDF Downloads 123
1930 Spatial Variability of Soil Pollution and Health Risks Due to Long-Term Wastewater Irrigation in Egypt

Authors: Mohamed Eladham Fadl M. E. Fadl

Abstract:

In Egypt, wastewater has been used for irrigation in areas with fresh water scarcity. However, continuous applications may cause potential risks. Thus, the current study aims at screening the impacts of long-term wastewater irrigation on soil pollution and human health due to the exposure of heavy metals. Soils of nine sites in Al-Qalyubiyah Governorate, Egypt were sampled and analyzed for different properties. Wastewater resulted in a build-up of metals in soils. The pollution index (PI) showed the order of Cd > Pb > Ni > Zn. The integrated pollution index of Nemerow’s (IPIN) exceeded the safe limit of 0.7. The enrichment factor (EF) surpassed 1.0 value proving anthropogenic effects. The geo-accumulation index (Igeo) indicated that Pb, Ni, and Zn-induced none to moderate pollution, while high threats were associated with Cd. The calculated hazard index proved a potential health risk for humans, particularly children. It is recommended to perform a treatment to the wastewater used in irrigation to avoid such threats.

Keywords: pollution, health risks, heavy metals, effluent, irrigation, GIS techniques

Procedia PDF Downloads 316
1929 Gradations in Concentration of Heavy and Mineral Elements with Distance and Depth of Soil in the Vicinity of Auto Mechanic Workshops in Sabon Gari, Kaduna State, Nigeria

Authors: E. D. Paul, H. Otanwa, O. F. Paul, A. J. Salifu, J. E. Toryila, C. E. Gimba

Abstract:

The concentration levels of six heavy metals (Cd, Cr, Fe, Ni, Pb, and Zn) and two mineral elements (Ca and Mg) were determined in soil samples collected from the vicinity of two auto mechanic workshops in Sabon-Gari, Kaduna state, Nigeria, using Atomic Absorption Spectrometry (AAS), in order to compare the gradation of their concentrations with distance and depth of soil from the workshop sites. At site 1, concentrations of lead, chromium, iron, and zinc were generally found to be above the World Health Organization limits, while those of Nickel and Cadmium fell within the limits. Iron had the highest concentration with a range of 176.274 ppm to 489.127 ppm at depths of 5 cm to 15 cm and a distance range of 5 m to 15 m, while the concentration of cadmium was least with a range of 0.001 ppm to 0.008 ppm at similar depth and distance ranges. In addition, there was more of calcium (11.521 ppm to 121.709 ppm), in all the samples, than magnesium (11.293 ppm to 21.635 ppm). Similar results were obtained for site II. The concentrations of all the metals analyzed showed a downward gradient with an increase in depth and distance from both workshop sites except for iron and zinc at site 2. The immediate and remote implications of these findings on the biota are discussed.

Keywords: AAS, heavy metals, mechanic workshops, soil, variation

Procedia PDF Downloads 471
1928 Recovery of Heavy Metals by Ion Exchange on the Zeolite Materials

Authors: K. Menad, A. Faddeg

Abstract:

Zeolites are a family of mineral compounds. With special properties that have led to several important industrial applications. Ion exchange has enabled the first industrial application in the field of water treatment. The exchange by aqueous pathway is the method most used in the case of such microporous materials and this technique will be used in this work. The objective of this work is to find performance materials for the recovery of heavy metals such as cadmium. The study is to compare the properties of different ion exchange zeolite Na-X, Na-A, their physical mixture and the composite A (LTA) / X (FAU). After the synthesis of various zeolites X and A, it was designed a model Core-Shell to form a composite zeolite A on zeolite X. Finally, ion exchange studies were performed on these zeolite materials. The cation is exclusively tested for cadmium, a toxic element and is harmful to health and the environment.

Keywords: zeolite A, zeolite X, ion exchange, water treatment

Procedia PDF Downloads 410
1927 Bacteriological Screening and Antibiotic – Heavy Metal Resistance Profile of the Bacteria Isolated from Some Amphibian and Reptile Species of the Biga Stream in Turkey

Authors: Nurcihan Hacioglu, Cigdem Gul, Murat Tosunoglu

Abstract:

In this article, the antibiogram and heavy metal resistance profile of the bacteria isolated from total 34 studied animals (Pelophylax ridibundus = 12, Mauremys rivulata = 14, Natrix natrix = 8) captured around the Biga Stream, are described. There was no database information on antibiogram and heavy metal resistance profile of bacteria from these area’s amphibians and reptiles. In this study, a total of 200 bacteria were successfully isolated from cloaca and oral samples of the aquatic amphibians and reptiles as well as from the water sample. According to Jaccard’s similarity index, the degree of similarity in the bacterial flora was quite high among the amphibian and reptile species under examination, whereas it was different from the bacterial diversity in the water sample. The most frequent isolates were A. hydrophila (31.5%), B. pseudomallei (8.5%), and C. freundii (7%). The total numbers of bacteria obtained were as follows: 45 in P. ridibundus, 45 in N. natrix 30 in M. rivulata, and 80 in the water sample. The result showed that cefmetazole was the most effective antibiotic to control the bacteria isolated in this study and that approximately 93.33% of the bacterial isolates were sensitive to this antibiotic. The Multiple Antibiotic Resistances (MAR) index indicated that P. ridibundus (0.95) > N. natrix (0.89) > M. rivulata (0.39). Furthermore, all the tested heavy metals (Pb+2, Cu+2, Cr+3, and Mn+2) inhibit the growth of the bacterial isolates at different rates. Therefore, it indicated that the water source of the animals was contaminated with both antibiotic residues and heavy metals.

Keywords: bacteriological quality, amphibian, reptile, antibiotic, heavy metal resistance

Procedia PDF Downloads 355
1926 Assessment of Fermentative Activity in Heavy Metal Polluted Soils in Alaverdi Region, Armenia

Authors: V. M. Varagyan, G. A. Gevorgyan, K. V. Grigoryan, A. L. Varagyan

Abstract:

Alaverdi region is situated in the northern part of the Republic of Armenia. Previous studies (1989) in Alaverdi region showed that due to soil irrigation with the highly polluted waters of the Debed and Shnogh rivers, the content of heavy metals in the brown forest steppe soils was significantly higher than the maximum permissible concentration as a result of which the fermentative activity in all the layers of the soils was stressed. Compared to the non-polluted soils, the activity of ferments in the plough layers of the highly polluted soils decreased by 44 - 68% (invertase – 60%, phosphatase – 44%, urease – 66%, catalase – 68%). In case of the soil irrigation with the polluted waters, a decrease in the intensity of fermentative reactions was conditioned by the high content of heavy metals in the soils and changes in chemical composition, physical and physicochemical properties. 20-year changes in the fermentative activity in the brown forest steppe soils in Alaverdi region were investigated. The activity of extracellular ferments in the soils was determined by the unification methods. The study has confirmed that self-recovery process occurs in soils previously polluted with heavy metals which can be revealed by fermentative activity. The investigations revealed that during 1989 – 2009, the activity of ferments in the plough layers of the medium and highly polluted soils increased by 31.2 – 52.6% (invertase – 31.2%, urease – 52.6%, phosphatase – 33.3%, catalase – 41.8%) and 24.1 – 87.0% (invertase – 40.4%, urease – 76.9%, phosphatase – 24.1%, catalase – 87.0%) respectively which indicated that the dynamic properties of the soils, which had been broken due to heavy metal pollution, were improved. In 1989, the activity of the Alaverdi copper smelting plant was temporarily stopped due to financial problems caused by the economic crisis and the absence of market, and the factory again started operation in 1997 and isn’t currently running at full capacity. As a result, the Debed river water has obtained a new chemical composition and comparatively good irrigation properties. Due to irrigation with this water, the gradually recovery of the soil dynamic properties, which had been broken due to irrigation with the waters polluted with heavy metals, was occurred. This is also explained by the fact that in case of irrigation with the partially cleaned water, the soil protective function against pollutants rose due to a content increase in humus and silt fractions. It is supposed that in case of the soil irrigation with the partially cleaned water, the intensity of fermentative reactions wasn’t directly affected by heavy metals.

Keywords: alaverdi region, heavy metal pollution, self-recovery, soil fermentative activity

Procedia PDF Downloads 274
1925 Assessment of Different Industrial Wastewater Quality in the Most Common Industries in Kuwait

Authors: Mariam Aljumaa

Abstract:

Industrial wastewater has been increased rapidly in the last decades, however, the generated wastewater is not treated properly on site before transfer it to the treatment plant. In this study, the most common industries (dairy, soft drinks, detergent, and petrochemical) has been studied in term of wastewater quality. The main aim of this study is to characterize and evaluate the quality of the most common industrial wastewater in Kuwait. Industrial wastewater samples were collected from detergents, dairy, beverage, and petrochemical factories. The collected wastewater samples were analyzed for temperature, EC, pH, DO, BOD, COD, TOC, TS, TSS, volatile suspended solids (VSS), total volatile solids (TVS), NO2, NO3, NH3, N, P, K, CaCO3, heavy metals, Total coliform, Fecal coliform, and E.coli bacteria. The results showed that petrochemical industry has the highest concentration of organic and nutrients, followed by detergents wastewater, then dairy, and finally, soft drink wastewater. Regarding the heavy metals, the results showed that dairy wastewater had the highest concentration, specifically in Zinc, Arsenic, and Cadmium. In term of biological analysis, the dairy industry had the highest concentration of total coliform, followed by soft drinks industry, then shampoo industry, and finally petrochemical industry.

Keywords: industrial wastewater, characterization, heavy metals, wastewater quality

Procedia PDF Downloads 63
1924 Effect of Halloysite on Heavy Metals Fate during Solid Waste Pyrolysis: A Combinatorial Experimental/Computational Study

Authors: Tengfei He, Mengjie Zhang, Baosheng Jin

Abstract:

In this study, the low-cost halloysite (Hal) was utilized for the first time to enhance the solid-phase enrichment and stability of heavy metals (HMs) during solid waste pyrolysis through experimental and theoretical methods, and compared with kaolinite (Kao). Experimental results demonstrated that Hal was superior to Kao in improving the solid-phase enrichment of HMs. Adding Hal reduced the proportion of HMs in the unstable fraction (F1+F2), consequently lowering the environmental risk of biochar and the extractable state of HMs. Through Grand canonical Monte Carlo and Density Functional Theory (DFT) simulations, the adsorption amounts and adsorption mechanisms of Cd/Pb compound on Hal/Kao surfaces were analyzed. The adsorption amounts of HMs by Hal were significantly higher than Kao and decreased with increasing temperature, and the difference in adsorption performance caused by structural bending was negligible. The DFT results indicated that Cd/Pb monomers were stabilized by establishing covalent bonds with OH or reactive O atoms on the Al-(0 0 1) surface, whereas the covalent bonds with ionic bonding properties formed between Cl atoms and unsaturated Al atoms played a crucial role in stabilizing HM chlorides. This study highlights the potential of Hal in stabilizing HMs during pyrolysis without requiring any modifications.

Keywords: heavy metals, halloysite, density functional theory, grand canonical Monte Carlo

Procedia PDF Downloads 51
1923 Synthesis of NiO and ZnO Nanoparticles and Charactiration for the Eradication of Lead (Pb) from Wastewater

Authors: Sadia Ata, Anila Tabassum, Samina ghafoor, Ijaz ul Mohsin, Azam Muktar

Abstract:

Heavy metal ions such as Pb2+, Cd2+, Zn2+, Ni2+ and Hg2+, in wastewater are considered as the serious environmental problem. Among these heavy metals, Lead or Pb (II) is the most toxic heavy metal. Exposure to lead causes damage of nervous system, mental retardation, renal kidney disease, anemia and cancer in human beings. Adsorption is the most widely used method to remove metal ions based on the physical interaction between metal ions and sorbents. With the development of nanotechnology, nano-sized materials are proved to be effective sorbents for the removal of heavy metal ions from wastewater due to their unique structural properties. The present work mainly focuses on the synthesis of NiO and ZnO nanoparticles for the removal of Lead ions, their preparation, characterization by XRD, FTIR, SEM, and TEM, adsorption characteristics and mechanism, along with adsorption isotherm model and adsorption kinetics to understand the adsorption procedure.

Keywords: heavy metal, adsorption isotherms, nanoparticles, wastewater

Procedia PDF Downloads 556
1922 Application of Recycled Paper Mill Sludge on the Growth of Khaya Senegalensis and Its Effect on Soil Properties, Nutrients and Heavy Metals

Authors: A. Rosazlin Abdullah, I. Che Fauziah, K. Wan Rasidah, A. B. Rosenani

Abstract:

The paper industry performs an essential role in the global economy of the world. A study was conducted on the paper mill sludge that is applied on the Khaya senegalensis for 1 year planning period at University Agriculture Park, Puchong, Selangor, Malaysia to determine the growth of Khaya senegalensis, soil properties, nutrients concentrations and effects on the status of heavy metals. Paper Mill Sludge (PMS) and composted Recycled Paper Mill Sludge (RPMS) were used with different rates of nitrogen (0, 150, 300 and 600 kg ha-1) at the ratio of 1:1 (Recycled Paper Mill Sludge (RPMS) : Empty Fruit Brunch (EFB). The growth parameters were measured twice a month for 1 year. Plant nutrients and heavy metal uptake were determined. The paper mill sludge has the potential to be a supplementary N fertilizer as well as a soil amendment. The application of RPMS with N, significantly contributed to the improvement in plant growth parameters such as plant height (4.24 m), basal diameter (10.30 cm), total plant biomass and improved soil physical and chemical properties. The pH, EC, available P and total C in soil were varied among the treatments during the planting period. The treatments with raw and RPM compost had higher pH values than those applied with inorganic fertilizer and control. Nevertheless, there was no salinity problem recorded during the planting period and available P in soil treated with raw and RPMS compost was higher than the control plots that reflects the mineralization of organic P from the decomposition of pulp sludge. The weight of the free and occluded light fractions of carbon concentration was significantly higher in the soils treated with raw and RPMS compost. The application of raw and composted RPMS gave significantly higher concentration of the heavy metals, but the total concentrations of heavy metals in the soils were below the critical values. Hence, the paper mill sludge can be successfully used as soil amendment in acidic soil without any serious threat. The use of paper mill sludge for the soil fertility, shows improvement in land application signifies a unique opportunity to recycle sludge back to the land to alleviate the potential waste management problem.

Keywords: growth, heavy metals, nutrients uptake, production, waste management

Procedia PDF Downloads 344
1921 Electrochemical Treatment and Chemical Analyses of Tannery Wastewater Using Sacrificial Aluminum Electrode, Ethiopia

Authors: Dessie Tibebe, Muluken Asmare, Marye Mulugeta, Yezbie Kassa, Zerubabel Moges, Dereje Yenealem, Tarekegn Fentie, Agmas Amare

Abstract:

The performance of electrocoagulation (EC) using Aluminium electrodes for the treatment of effluent-containing chromium metal using a fixed bed electrochemical batch reactor was studied. In the present work, the efficiency evaluation of EC in removing physicochemical and heavy metals from real industrial tannery wastewater in the Amhara region, collected from Bahirdar, Debre Brihan, and Haik, was investigated. The treated and untreated samples were determined by AAS and ICP OES spectrophotometers. The results indicated that selected heavy metals were removed in all experiments with high removal percentages. The optimal results were obtained regarding both cost and electrocoagulation efficiency with initial pH = 3, initial concentration = 40 mg/L, electrolysis time = 30 min, current density = 40 mA/cm2, and temperature = 25oC favored metal removal. The maximum removal percentages of selected metals obtained were 84.42% for Haik, 92.64% for Bahir Dar and 94.90% for Debre Brihan. The sacrificial electrode and sludge were characterized by FT-IR, SEM and XRD. After treatment, some metals like chromium will be used again as a tanning agent in leather processing to promote a circular economy.

Keywords: electrochemical, treatment, aluminum, tannery effluent

Procedia PDF Downloads 68
1920 Phytoremediation of Chromium Using Vigna mungo, Vigna radiata and Cicer arietinum

Authors: Swarna Shikha, Pammi Gauba

Abstract:

Heavy metal pollution in water bodies and soil is a major and ever increasing environmental issue nowadays, and most conventional remediation approaches do not provide appropriate solutions. By using specially selected and engineered metal-accumulating plants for environmental clean-up is an emerging technology called as phytoremediation. The aim of this study was to find the effect of phytoextraction of Chromium in hydroponics culture by using Vigna mungo, Vigna radiata and Cicer arietinum. The plants were allowed to grow in static hydroponic culture at 0, 50, 250, 500 and 750 ppm concentrations of Chromium dichromate. The germination percentage was determined. It was found that the germination percentage of the seeds decreased with an increase in the concentration of the heavy metals. The maximum permissible limit of Cr for Vigna radiate and Cicer arietinum was 500 ppm and toxicity was observed whereas at even at 750 ppm no toxicity was observed in Vigna mungo. The main aim of our experiment was to study the impact of Chromium on all the three selected plants.

Keywords: phytoremediation, phytoextraction metal-accumulation, heavy metals, pollutants

Procedia PDF Downloads 319
1919 Chromium Reduction Using Bacteria: Bioremediation Technologies

Authors: Baljeet Singh Saharan

Abstract:

Bioremediation is the demand of the day. Tannery and textile effluents/waste waters have lots of pollution due to presence of hexavalent Chromium. Methodologies used in the present investigations include isolation, cultivation and purification of bacterial strain. Further characterization techniques and 16S rRNA sequencing were performed. Efficient bacterial strain capable of reducing hexavalent chromium was obtained. The strain can be used for bioremediation of industrial effluents containing hexavalent Cr. A gram negative, rod shaped and yellowish pigment producing bacterial strain from tannery effluent was isolated using nutrient agar. The 16S rRNA gene sequence similarity indicated that isolate SA13A is associated with genus Luteimonas (99%). This isolate has been found to reduce 100% of hexavalent chromium Cr (VI) (100 mg L-1) 100% in 16 h. Growth conditions were optimized for Cr (VI) reduction. Maximum reduction was observed at a temperature of 37 °C and pH 8.0. Additionally, Luteimonas aestuarii SA13A showed resistance against various heavy metals like Cr+6, Cr+3, Cu+2, Zn+2, Co+2, Ni+2 and Cd+2 . Hence, Luteimonas aestuarii SA13A could be used as potent Cr (VI) reducing strain as well as significant bioremediator in heavy metal contaminated sites.

Keywords: bioremediation, chromium, eco-friendly, heavy metals

Procedia PDF Downloads 441
1918 Evaluation and Risk Assessment of Heavy Metals Pollution Using Edible Crabs, Based on Food Intended for Human Consumption

Authors: Nayab Kanwal, Noor Us Saher

Abstract:

The management and utilization of food resources is becoming a big issue due to rapid urbanization, wastage and non-sustainable use of food, especially in developing countries. Therefore, the use of seafood as alternative sources is strongly promoted worldwide. Marine pollution strongly affects marine organisms, which ultimately decreases their export quality. The monitoring of contamination in marine organisms is a good indicator of the environmental quality as well as seafood quality. Monitoring the accumulation of chemical elements within various tissues of organisms has become a useful tool to survey current or chronic levels of heavy metal exposure within an environment. In this perspective, this study was carried out to compare the previous and current levels (Year 2012 and 2014) of heavy metals (Cd, Pb, Cr, Cu and Zn) in crabs marketed in Karachi and to estimate the toxicological risk associated with their intake. The accumulation of metals in marine organisms, both essential (Cu and Zn) and toxic (Pb, Cd and Cr), natural and anthropogenic, is an actual food safety issue. Significant (p>0.05) variations in metal concentrations were found in all crab species between the two years, with most of the metals showing high accumulation in 2012. For toxicological risk assessment, EWI (Estimated weekly intake), Target Hazard quotient (THQ) and cancer risk (CR) were also assessed and high EWI, Non- cancer risk (THQ < 1) showed that there is no serious threat associated with the consumption of shellfish species on Karachi coast. The Cancer risk showed the highest risk from Cd and Pb pollution if consumed in excess. We summarize key environmental health research on health effects associated with exposure to contaminated seafood. It could be concluded that considering the Pakistan coast, these edible species may be sensitive and vulnerable to the adverse effects of environmental contaminants; more attention should be paid to the Pb and Cd metal bioaccumulation and to toxicological risks to seafood and consumers.

Keywords: cancer risk, edible crabs, heavy metals pollution, risk assessment

Procedia PDF Downloads 354
1917 A Soft Computing Approach Monitoring of Heavy Metals in Soil and Vegetables in the Republic of Macedonia

Authors: Vesna Karapetkovska Hristova, M. Ayaz Ahmad, Julijana Tomovska, Biljana Bogdanova Popov, Blagojce Najdovski

Abstract:

The average total concentrations of heavy metals; (cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn]) were analyzed in soil and vegetables samples collected from the different region of Macedonia during the years 2010-2012. Basic soil properties such as pH, organic matter and clay content were also included in the study. The average concentrations of Cd, Cu, Ni, Pb, Zn in the A horizon (0-30 cm) of agricultural soils were as follows, respectively: 0.25, 5.3, 6.9, 15.2, 26.3 mg kg-1 of soil. We have found that neural networking model can be considered as a tool for prediction and spatial analysis of the processes controlling the metal transfer within the soil-and vegetables. The predictive ability of such models is well over 80% as compared to 20% for typical regression models. A radial basic function network reflects good predicting accuracy and correlation coefficients between soil properties and metal content in vegetables much better than the back-propagation method. Neural Networking / soft computing can support the decision-making processes at different levels, including agro ecology, to improve crop management based on monitoring data and risk assessment of metal transfer from soils to vegetables.

Keywords: soft computing approach, total concentrations, heavy metals, agricultural soils

Procedia PDF Downloads 335
1916 Chemical Speciation and Bioavailability of Some Essential Metal Ions In Different Fish Organs at Lake Chamo, Ethiopia

Authors: Adane Gebresilassie Hailemariam, Belete Yilma Hirpaye

Abstract:

The enhanced concentrations of heavy metals, especially in sediments, may indicate human-induced perturbations rather than natural enrichment through geological weathering. Heavy metals are non-biodegradable, persist in the environment, and are concentrated up to the food chain, leading to enhanced levels in the liver and muscle tissues of fishes, aquatic bryophytes, and aquatic biota. Marine organisms, in general fish in particular, accumulate metals to concentrations many times higher than present in water or sediment as they can take up metals in their organs and concentrate at different levels. Thus, metals acquired through the food chain due to pollution are potential chemical hazards, threatening consumers. The Nile tilapia (oreochromic niloticus), catfish (clarius garpinus), and water samples were collected from five sampling sites, namely, inlet-1, inlet-2, center, outlet-1 and outlet-2 of Lake Chamo. The concentration of major and trace metals Na, K, Mg, Ca, Cr, Co, Ni, Mn and Cu in the two fish muscles, gill and liver, was determined using an atomic absorption spectrometer (AAS) and flame photometer (FP). Metal concentrations in the water have also been evaluated within the two consecutive seasons, winter (dry) and spring (wet). The results revealed that the concentration of those metals in Tilapia’s (O. niloticus) muscle, gill, and liver were Na 44.5, 35.1, 28, Mg 2.8, 8.41, 4.61, K 43, 32, 30, Ca 1.5, 6.0, 5.5, Cr 0.91, 1.2, 3.5, Co 3.0, 2.89, 2.62, Ni 0.94, 1.99, 2.2, Mn 1.23, 1.51, 1.6 and Cu 1.1, 1.99, 3.5 mg kg-1 respectively and in catfish’s muscle, gill and liver Na 25, 39, 41.5, Mg 4.8, 2.87, 6, K 29, 38, 40, Ca 2.5, 8.10, 3.0, Cr 0.65, 3.5, 5.0, Co 2.62, 1.86, 1.73, Ni 1.10, 2.3, 3.1, Mn 1.54, 1.57, 1.59 and Cu 1.01, 1.10, 3.70 mg kg-1 respectively. The highest accumulation of Na and K were observed for tilapia muscle and catfish gill, Mg and Ca got higher in tilapia gill and catfish liver, while Co is higher in muscle of the two fish. The Cr, Ni, Mn and Cu levels were higher in the livers of the two fish species. In conculusion, metal toxicity through food chain is the current dangerous issue for human and othe animals. This needs deep focus to promot the health of living animals. The Details of the work are going to be discussed at the conference.

Keywords: bioaccumulation, catfish, essential metals, nile tilapia

Procedia PDF Downloads 49
1915 Heavy Metal Contamination and Environmental Risk in Surface Sediments along the Coasts of Suez and Aqaba Gulfs, Egypt

Authors: Alaa M. Younis, Ismail S. Ismail, Lamiaa I. Mohamedein, Shimaa F. Ahmed

Abstract:

Sandy surface sediments collected from fourteen sites along the gulfs of Suez and Aqaba coasts, Egypt were analyzed for heavy metals including Iron, Manganese, Zinc, Chromium, Nickel, Lead, Copper and Cadmium in order to evaluate the pollution status and environmental risk assessment of the study area. The obtained results showed that the concentrations of investigated metals are represented in the following sequence; For Gulf of Aqaba sediments Fe > Mn > Zn > Pb > Cr > Ni > Cu > Cd. While for Gulf of Suez Sediments Fe > Mn > Pb > Zn > Cu > Cr > Ni > Cd. The degree of surface sediment contamination using Geo-accumulation index (I geo) and Metal Pollution Index (MPI) was computed. Higher MPI values were observed at the sites III (Nama Bay) and VIII (Rex Beach). According to Sediment quality guidelines (SQGs) approach, Pb and Cu in the gulf of Suez at station IX (Kabanon Beach) had probably adverse ecological effects to marine organisms.

Keywords: heavy metal, environmental risk, Suez gulf, Aqaba gulf

Procedia PDF Downloads 412
1914 Effect of Concentration Level and Moisture Content on the Detection and Quantification of Nickel in Clay Agricultural Soil in Lebanon

Authors: Layan Moussa, Darine Salam, Samir Mustapha

Abstract:

Heavy metal contamination in agricultural soils in Lebanon poses serious environmental and health problems. Intensive efforts are employed to improve existing quantification methods of heavy metals in contaminated environments since conventional detection techniques have shown to be time-consuming, tedious, and costly. The implication of hyperspectral remote sensing in this field is possible and promising. However, factors impacting the efficiency of hyperspectral imaging in detecting and quantifying heavy metals in agricultural soils were not thoroughly studied. This study proposes to assess the use of hyperspectral imaging for the detection of Ni in agricultural clay soil collected from the Bekaa Valley, a major agricultural area in Lebanon, under different contamination levels and soil moisture content. Soil samples were contaminated with Ni, with concentrations ranging from 150 mg/kg to 4000 mg/kg. On the other hand, soil with background contamination was subjected to increased moisture levels varying from 5 to 75%. Hyperspectral imaging was used to detect and quantify Ni contamination in the soil at different contamination levels and moisture content. IBM SPSS statistical software was used to develop models that predict the concentration of Ni and moisture content in agricultural soil. The models were constructed using linear regression algorithms. The spectral curves obtained reflected an inverse correlation between both Ni concentration and moisture content with respect to reflectance. On the other hand, the models developed resulted in high values of predicted R2 of 0.763 for Ni concentration and 0.854 for moisture content. Those predictions stated that Ni presence was well expressed near 2200 nm and that of moisture was at 1900 nm. The results from this study would allow us to define the potential of using the hyperspectral imaging (HSI) technique as a reliable and cost-effective alternative for heavy metal pollution detection in contaminated soils and soil moisture prediction.

Keywords: heavy metals, hyperspectral imaging, moisture content, soil contamination

Procedia PDF Downloads 72
1913 Natural and Construction/Demolition Waste Aggregates: A Comparative Study

Authors: Debora C. Mendes, Matthias Eckert, Claudia S. Moço, Helio Martins, Jean-Pierre Gonçalves, Miguel Oliveira, Jose P. Da Silva

Abstract:

Disposal of construction and demolition waste (C&DW) in embankments in the periphery of cities causes both environmental and social problems. To achieve the management of C&DW, a detailed analysis of the properties of these materials should be done. In this work we report a comparative study of the physical, chemical and environmental properties of natural and C&DW aggregates from 25 different origins. Assays were performed according to European Standards. Analysis of heavy metals and organic compounds, namely polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were performed. Finally, properties of concrete prepared with C&DW aggregates are reported. Physical analyses of C&DW aggregates indicated lower quality properties than natural aggregates, particularly for concrete preparation and unbound layers of road pavements. Chemical properties showed that most samples (80%) meet the values required by European regulations for concrete and unbound layers of road pavements. Analyses of heavy metals Cd, Cr, Cu, Pb, Ni, Mo and Zn in the C&DW leachates showed levels below the limits established by the Council Decision of 19 December 2002. Identification and quantification of PCBs and PAHs indicated that few samples shows the presence of these compounds. The measured levels of PCBs and PAHs are also below the limits. Other compounds identified in the C&DW leachates include phthalates and diphenylmethanol. The characterized C&DW aggregates show lower quality properties than natural aggregates but most samples showed to be environmentally safe. A continuous monitoring of the presence of heavy metals and organic compounds should be made to trial safe C&DW aggregates. C&DW aggregates provide a good economic and environmental alternative to natural aggregates.

Keywords: concrete preparation, construction and demolition waste, heavy metals, organic pollutants

Procedia PDF Downloads 330
1912 Risk Assessment of Contamination by Heavy Metals in Sarcheshmeh Copper Complex of Iran Using Topsis Method

Authors: Hossein Hassani, Ali Rezaei

Abstract:

In recent years, the study of soil contamination problems surrounding mines and smelting plants has attracted some serious attention of the environmental experts. These elements due to the non- chemical disintegration and nature are counted as environmental stable and durable contaminants. Variability of these contaminants in the soil and the time and financial limitation for the favorable environmental application, in order to reduce the risk of their irreparable negative consequences on environment, caused to apply the favorable grading of these contaminant for the further success of the risk management processes. In this study, we use the contaminants factor risk indices, average concentration, enrichment factor and geoaccumulation indices for evaluating the metal contaminant of including Pb, Ni, Se, Mo and Zn in the soil of Sarcheshmeh copper mine area. For this purpose, 120 surface soil samples up to the depth of 30 cm have been provided from the study area. And the metals have been analyzed using ICP-MS method. Comparison of the heavy and potentially toxic elements concentration in the soil samples with the world average value of the uncontaminated soil and shale average indicates that the value of Zn, Pb, Ni, Se and Mo is higher than the world average value and only the Ni element shows the lower value than the shale average. Expert opinions on the relative importance of each indicators were used to assign a final weighting of the metals and the heavy metals were ranked using the TOPSIS approach. This allows us to carry out efficient environmental proceedings, leading to the reduction of environmental ricks form the contaminants. According to the results, Ni, Pb, Mo, Zn, and Se have the highest rate of risk contamination in the soil samples of the study area.

Keywords: contamination coefficient, geoaccumulation factor, TOPSIS techniques, Sarcheshmeh copper complex

Procedia PDF Downloads 253
1911 Colloids and Heavy Metals in Groundwaters: Tangential Flow Filtration Method for Study of Metal Distribution on Different Sizes of Colloids

Authors: Jiancheng Zheng

Abstract:

When metals are released into water from mining activities, they undergo changes chemically, physically and biologically and then may become more mobile and transportable along the waterway from their original sites. Natural colloids, including both organic and inorganic entities, are naturally occurring in any aquatic environment with sizes in the nanometer range. Natural colloids in a water system play an important role, quite often a key role, in binding and transporting compounds. When assessing and evaluating metals in natural waters, their sources, mobility, fate, and distribution patterns in the system are the major concerns from the point of view of assessing environmental contamination and pollution during resource development. There are a few ways to quantify colloids and accordingly study how metals distribute on different sizes of colloids. Current research results show that the presence of colloids can enhance the transport of some heavy metals in water, while heavy metals may also have an influence on the transport of colloids when cations in the water system change colloids and/or the ion strength of the water system changes. Therefore, studies into the relationship between different sizes of colloids and different metals in a water system are necessary and needed as natural colloids in water systems are complex mixtures of both organic and inorganic as well as biological materials. Their stability could be sensitive to changes in their shapes, phases, hardness and functionalities due to coagulation and deposition et al. and chemical, physical, and biological reactions. Because metal contaminants’ adsorption on surfaces of colloids is closely related to colloid properties, it is desired to fraction water samples as soon as possible after a sample is taken in the natural environment in order to avoid changes to water samples during transportation and storage. For this reason, this study carried out groundwater sample processing in the field, using Prep/Scale tangential flow filtration systems with 3-level cartridges (1 kDa, 10 kDa and 100 kDa). Groundwater samples from seven sites at Fort MacMurray, Alberta, Canada, were fractionated during the 2015 field sampling season. All samples were processed within 3 hours after samples were taken. Preliminary results show that although the distribution pattern of metals on colloids may vary with different samples taken from different sites, some elements often tend to larger colloids (such as Fe and Re), some to finer colloids (such as Sb and Zn), while some of them mainly in the dissolved form (such as Mo and Be). This information is useful to evaluate and project the fate and mobility of different metals in the groundwaters and possibly in environmental water systems.

Keywords: metal, colloid, groundwater, mobility, fractionation, sorption

Procedia PDF Downloads 321
1910 The Study of Effective Microorganism's Biopreperation for Wastewater Treatment

Authors: Batsukh Chultem, Oyunbileg Natsagdorj, Namsrai Steyrmunkh

Abstract:

Many industries, tourist camps and houses, discharge aqueous effluents containing relatively high levels of heavy metals, harmful organic compounds water. Untreated effluent from these manufacturing processes has an adverse impact on the environment. A specific problem associated with waste water in the environment is accumulation in the food chain and persistence in the environment. The screening of microorganisms resistant to pollution and able to detoxification them is essential for the development of clean-up technologies. The purpose of this study is to use advanced microbiological technology products for oxidizing organic and heavy metals pollutants as a biological treatment, to reduce water pollution, which arise as a result of waste water due to day-to-day operations of industries and houses of Ulaanbaatar city and tourist camps located around the lake Hovsgol, in Hovsgol province of Mongolia. By comparing the results from tests of effective microorganism’s bio-preparation treated sewage samples and not treated sewage samples shows that the treated sewage samples pollution decreased defending on treatment period and ratio. Treated water analyses show that: the suspended solids 352 mg/l, pH 5.85-7.95, ammonium nitrate 81.25-221.2 mg NH₄/l, nitrite 0.088-0.227 mg NO₂/l, nitrate 8.5-11.5 mg NO₃/l, and orthophosphate 1.06-15.46 mg PO₄/l. Also, heavy metals were decreased and microbiological test results defined parameters, respectively show the waste water pollution was reduced.

Keywords: effective microorganims, environment, pollution, treatment

Procedia PDF Downloads 99