Search results for: PDF to story feature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2148

Search results for: PDF to story feature

1938 Translation And Cultural Adaptation Of The Rivermead Behavioural Memory Test–3rd Edition Into the Arabic Language

Authors: Mai Alharthy, Agnes Shiel, Hynes Sinead

Abstract:

Objectives: The objectives of the study are to translate and culturally adapt the RBMT-3 to be appropriate for use within an Arabic-speaking population and to achieve maximum equivalency between the translated and original versions and to evaluate the psychometric properties of the Arabic version of the RBMT-3. Participants' numbers are 16 (10 females and 6 males). All participants are bilingual speakers of Arabic and English, above 18 years old and with no current nor past memory impairment. Methods: The study was conducted in two stages: Translation and cultural adaptation stage: Forward and backward translations were completed by professional translators. Five out of the 14 RBMT-3 subtests required cultural adaptations. Half of the faces in the face recognition subtests were replaced with Arabic faces by a professional photographer. Pictures that are irrelevant to the Arabic culture in the picture recognition subtests were replaced. Names, story and orientations subtests were also adapted to suit the Arabic culture. An expert committee was formed to compare the translated and original versions and to advise on further changes required for test materials. Validation of the Arabic RBMT-3- pilot: 16 Participants were tested on version 1 of the English version and the two versions of the Arabic RBMT-3 ( counterbalanced ). The assessment period was 6 weeks long, with two weeks gap between tests. All assessments took place in a quiet room in the National University of Ireland Galway. Two qualified occupational therapists completed the assessments. Results: Wilcox signed-rank test was used to compare between subtest scores. Significant differences were found in the story, orientation and names subtests between the English and Arabic versions. No significant differences were found in subtests from both Arabic versions except for the story subtest. Conclusion: The story and orientation subtests should be revised by the expert committee members to make further adaptations. The rest of the Arabic RBMT-3 subtests are equivalent to the subtests of the English version. The psychometric properties of the Arabic RBMT-3 will be investigated in a larger Arabic-speaking sample in Saudi Arabia. The outcome of this research is to provide clinicians and researchers with a reliable tool to assess memory problems in Arabic speaking population.

Keywords: memory impairment, neuropsychological assessment, cultural adaptation, cognitive assessment

Procedia PDF Downloads 256
1937 Formation of an Artificial Cultural and Language Environment When Teaching a Foreign Language in the Material of Original Films

Authors: Konysbek Aksaule

Abstract:

The purpose of this work is to explore new and effective ways of teaching English to students who are studying a foreign language since the timeliness of the problem disclosed in this article is due to the high level of English proficiency that potential specialists must have due to high competition in the context of global globalization. The article presents an analysis of the feasibility and effectiveness of using an authentic feature film in teaching English to students. The methodological basis of the study includes an assessment of the level of students' proficiency in a foreign language, the stage of evaluating the film, and the method of selecting the film for certain categories of students. The study also contains a list of practical tasks that can be applied in the process of viewing and perception of an original feature film in a foreign language, and which are aimed at developing language skills such as speaking and listening. The results of this study proved that teaching English to students through watching an original film is one of the most effective methods because it improves speech perception, speech reproduction ability, and also expands the vocabulary of students and makes their speech fluent. In addition, learning English through watching foreign films has a huge impact on the cultural views and knowledge of students about the country of the language being studied and the world in general. Thus, this study demonstrates the high potential of using authentic feature film in English lessons for pedagogical science and methods of teaching English in general.

Keywords: university, education, students, foreign language, feature film

Procedia PDF Downloads 149
1936 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features

Authors: Bushra Zafar, Usman Qamar

Abstract:

Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.

Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection

Procedia PDF Downloads 316
1935 Feature-Based Summarizing and Ranking from Customer Reviews

Authors: Dim En Nyaung, Thin Lai Lai Thein

Abstract:

Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.

Keywords: opinion mining, opinion summarization, sentiment analysis, text mining

Procedia PDF Downloads 332
1934 Active Features Determination: A Unified Framework

Authors: Meenal Badki

Abstract:

We address the issue of active feature determination, where the objective is to determine the set of examples on which additional data (such as lab tests) needs to be gathered, given a large number of examples with some features (such as demographics) and some examples with all the features (such as the complete Electronic Health Record). We note that certain features may be more costly, unique, or laborious to gather. Our proposal is a general active learning approach that is independent of classifiers and similarity metrics. It allows us to identify examples that differ from the full data set and obtain all the features for the examples that match. Our comprehensive evaluation shows the efficacy of this approach, which is driven by four authentic clinical tasks.

Keywords: feature determination, classification, active learning, sample-efficiency

Procedia PDF Downloads 76
1933 Seismic Retrofitting of Structures Using Steel Plate Slit Dampers Based on Genetic Algorithm

Authors: Mohamed Noureldin, Jinkoo Kim

Abstract:

In this study, a genetic algorithm was used to find out the optimum locations of the slit dampers satisfying a target displacement. A seismic retrofit scheme for a building structure was presented using steel plate slit dampers. A cyclic loading test was used to verify the energy dissipation capacity of the slit damper. The seismic retrofit of the model structure using the slit dampers was compared with the retrofit with enlarging shear walls. The capacity spectrum method was used to propose a simple damper distribution scheme proportional to the inter-story drifts. The validity of the simple story-wise damper distribution procedure was verified by comparing the results of the genetic algorithm. It was observed that the proposed simple damper distribution pattern was in a good agreement with the optimum distribution obtained from the genetic algorithm. Acknowledgment: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03032809).

Keywords: slit dampers, seismic retrofit, genetic algorithm, optimum design

Procedia PDF Downloads 223
1932 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings

Authors: Hyunchul Ahn, William X. S. Wong

Abstract:

Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.

Keywords: corporate credit rating prediction, Feature selection, genetic algorithms, instance selection, multiclass support vector machines

Procedia PDF Downloads 294
1931 Frequent Itemset Mining Using Rough-Sets

Authors: Usman Qamar, Younus Javed

Abstract:

Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and rough-sets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.

Keywords: rough-sets, classification, feature selection, entropy, outliers, frequent itemset mining

Procedia PDF Downloads 437
1930 Nanoindentation Behaviour and Microstructural Evolution of Annealed Single-Crystal Silicon

Authors: Woei-Shyan Lee, Shuo-Ling Chang

Abstract:

The nanoindentation behaviour and phase transformation of annealed single-crystal silicon wafers are examined. The silicon specimens are annealed at temperatures of 250, 350 and 450ºC, respectively, for 15 minutes and are then indented to maximum loads of 30, 50 and 70 mN. The phase changes induced in the indented specimens are observed using transmission electron microscopy (TEM) and micro-Raman scattering spectroscopy (RSS). For all annealing temperatures, an elbow feature is observed in the unloading curve following indentation to a maximum load of 30 mN. Under higher loads of 50 mN and 70 mN, respectively, the elbow feature is replaced by a pop-out event. The elbow feature reveals a complete amorphous phase transformation within the indented zone, whereas the pop-out event indicates the formation of Si XII and Si III phases. The experimental results show that the formation of these crystalline silicon phases increases with an increasing annealing temperature and indentation load. The hardness and Young’s modulus both decrease as the annealing temperature and indentation load are increased.

Keywords: nanoindentation, silicon, phase transformation, amorphous, annealing

Procedia PDF Downloads 374
1929 DMBR-Net: Deep Multiple-Resolution Bilateral Networks for Real-Time and Accurate Semantic Segmentation

Authors: Pengfei Meng, Shuangcheng Jia, Qian Li

Abstract:

We proposed a real-time high-precision semantic segmentation network based on a multi-resolution feature fusion module, the auxiliary feature extracting module, upsampling module, and atrous spatial pyramid pooling (ASPP) module. We designed a feature fusion structure, which is integrated with sufficient features of different resolutions. We also studied the effect of side-branch structure on the network and made discoveries. Based on the discoveries about the side-branch of the network structure, we used a side-branch auxiliary feature extraction layer in the network to improve the effectiveness of the network. We also designed upsampling module, which has better results than the original upsampling module. In addition, we also re-considered the locations and number of atrous spatial pyramid pooling (ASPP) modules and modified the network structure according to the experimental results to further improve the effectiveness of the network. The network presented in this paper takes the backbone network of Bisenetv2 as a basic network, based on which we constructed a network structure on which we made improvements. We named this network deep multiple-resolution bilateral networks for real-time, referred to as DMBR-Net. After experimental testing, our proposed DMBR-Net network achieved 81.2% mIoU at 119FPS on the Cityscapes validation dataset, 80.7% mIoU at 109FPS on the CamVid test dataset, 29.9% mIoU at 78FPS on the COCOStuff test dataset. Compared with all lightweight real-time semantic segmentation networks, our network achieves the highest accuracy at an appropriate speed.

Keywords: multi-resolution feature fusion, atrous convolutional, bilateral networks, pyramid pooling

Procedia PDF Downloads 154
1928 Short Text Classification Using Part of Speech Feature to Analyze Students' Feedback of Assessment Components

Authors: Zainab Mutlaq Ibrahim, Mohamed Bader-El-Den, Mihaela Cocea

Abstract:

Students' textual feedback can hold unique patterns and useful information about learning process, it can hold information about advantages and disadvantages of teaching methods, assessment components, facilities, and other aspects of teaching. The results of analysing such a feedback can form a key point for institutions’ decision makers to advance and update their systems accordingly. This paper proposes a data mining framework for analysing end of unit general textual feedback using part of speech feature (PoS) with four machine learning algorithms: support vector machines, decision tree, random forest, and naive bays. The proposed framework has two tasks: first, to use the above algorithms to build an optimal model that automatically classifies the whole data set into two subsets, one subset is tailored to assessment practices (assessment related), and the other one is the non-assessment related data. Second task to use the same algorithms to build an optimal model for whole data set, and the new data subsets to automatically detect their sentiment. The significance of this paper is to compare the performance of the above four algorithms using part of speech feature to the performance of the same algorithms using n-grams feature. The paper follows Knowledge Discovery and Data Mining (KDDM) framework to construct the classification and sentiment analysis models, which is understanding the assessment domain, cleaning and pre-processing the data set, selecting and running the data mining algorithm, interpreting mined patterns, and consolidating the discovered knowledge. The results of this paper experiments show that both models which used both features performed very well regarding first task. But regarding the second task, models that used part of speech feature has underperformed in comparison with models that used unigrams and bigrams.

Keywords: assessment, part of speech, sentiment analysis, student feedback

Procedia PDF Downloads 143
1927 Effects of Directivity and Fling Step on Buildings Equipped with J-Hook Sandwich Composite Walls and Reinforced Concrete Shear Walls

Authors: Majid Saaly, Shahriar Tavousi Tafreshi, Mehdi Nazari Afshar

Abstract:

The structural systems with the sandwich composite wall (SCSSC) are of very popular due to their ductileness and competency to swallow more energy and power than standard reinforced concrete shear walls. The purpose of this enhanced system is in high-rise building, Nuclear power plant facilities, and bridge slabs are much more. SCSSCs showed acceptable seismic performance under experimental tests and cyclic loading from the points of view of in-plane and out-of-plane shear and flexural interaction, in-plane punching shear, and compressive behavior. The use of sandwich composite walls with J-hook connectors has a significant effect on energy dissipation and reduction of dynamic responses of mid-rise and high-rise structural models. By changing the systems of the building from SW to SCWJ, the maximum inter-story drift values of ten- and fifteen-story models are reduced by up to 25% and 35%, respectively.

Keywords: J-Hook sandwich composite walls, fling step, directivity, IDA analyses, fractile curves

Procedia PDF Downloads 156
1926 Light-Weight Network for Real-Time Pose Estimation

Authors: Jianghao Hu, Hongyu Wang

Abstract:

The effective and efficient human pose estimation algorithm is an important task for real-time human pose estimation on mobile devices. This paper proposes a light-weight human key points detection algorithm, Light-Weight Network for Real-Time Pose Estimation (LWPE). LWPE uses light-weight backbone network and depthwise separable convolutions to reduce parameters and lower latency. LWPE uses the feature pyramid network (FPN) to fuse the high-resolution, semantically weak features with the low-resolution, semantically strong features. In the meantime, with multi-scale prediction, the predicted result by the low-resolution feature map is stacked to the adjacent higher-resolution feature map to intermediately monitor the network and continuously refine the results. At the last step, the key point coordinates predicted in the highest-resolution are used as the final output of the network. For the key-points that are difficult to predict, LWPE adopts the online hard key points mining strategy to focus on the key points that hard predicting. The proposed algorithm achieves excellent performance in the single-person dataset selected in the AI (artificial intelligence) challenge dataset. The algorithm maintains high-precision performance even though the model only contains 3.9M parameters, and it can run at 225 frames per second (FPS) on the generic graphics processing unit (GPU).

Keywords: depthwise separable convolutions, feature pyramid network, human pose estimation, light-weight backbone

Procedia PDF Downloads 154
1925 Pyramid Binary Pattern for Age Invariant Face Verification

Authors: Saroj Bijarnia, Preety Singh

Abstract:

We propose a simple and effective biometrics system based on face verification across aging using a new variant of texture feature, Pyramid Binary Pattern. This employs Local Binary Pattern along with its hierarchical information. Dimension reduction of generated texture feature vector is done using Principal Component Analysis. Support Vector Machine is used for classification. Our proposed method achieves an accuracy of 92:24% and can be used in an automated age-invariant face verification system.

Keywords: biometrics, age invariant, verification, support vector machine

Procedia PDF Downloads 354
1924 Source Separation for Global Multispectral Satellite Images Indexing

Authors: Aymen Bouzid, Jihen Ben Smida

Abstract:

In this paper, we propose to prove the importance of the application of blind source separation methods on remote sensing data in order to index multispectral images. The proposed method starts with Gabor Filtering and the application of a Blind Source Separation to get a more effective representation of the information contained on the observation images. After that, a feature vector is extracted from each image in order to index them. Experimental results show the superior performance of this approach.

Keywords: blind source separation, content based image retrieval, feature extraction multispectral, satellite images

Procedia PDF Downloads 403
1923 Assisted Video Colorization Using Texture Descriptors

Authors: Andre Peres Ramos, Franklin Cesar Flores

Abstract:

Colorization is the process of add colors to a monochromatic image or video. Usually, the process involves to segment the image in regions of interest and then apply colors to each one, for videos, this process is repeated for each frame, which makes it a tedious and time-consuming job. We propose a new assisted method for video colorization; the user only has to colorize one frame, and then the colors are propagated to following frames. The user can intervene at any time to correct eventual errors in color assignment. The method consists of to extract intensity and texture descriptors from the frames and then perform a feature matching to determine the best color for each segment. To reduce computation time and give a better spatial coherence we narrow the area of search and give weights for each feature to emphasize texture descriptors. To give a more natural result, we use an optimization algorithm to make the color propagation. Experimental results in several image sequences, compared to others existing methods, demonstrates that the proposed method perform a better colorization with less time and user interference.

Keywords: colorization, feature matching, texture descriptors, video segmentation

Procedia PDF Downloads 162
1922 Reduction of False Positives in Head-Shoulder Detection Based on Multi-Part Color Segmentation

Authors: Lae-Jeong Park

Abstract:

The paper presents a method that utilizes figure-ground color segmentation to extract effective global feature in terms of false positive reduction in the head-shoulder detection. Conventional detectors that rely on local features such as HOG due to real-time operation suffer from false positives. Color cue in an input image provides salient information on a global characteristic which is necessary to alleviate the false positives of the local feature based detectors. An effective approach that uses figure-ground color segmentation has been presented in an effort to reduce the false positives in object detection. In this paper, an extended version of the approach is presented that adopts separate multipart foregrounds instead of a single prior foreground and performs the figure-ground color segmentation with each of the foregrounds. The multipart foregrounds include the parts of the head-shoulder shape and additional auxiliary foregrounds being optimized by a search algorithm. A classifier is constructed with the feature that consists of a set of the multiple resulting segmentations. Experimental results show that the presented method can discriminate more false positive than the single prior shape-based classifier as well as detectors with the local features. The improvement is possible because the presented approach can reduce the false positives that have the same colors in the head and shoulder foregrounds.

Keywords: pedestrian detection, color segmentation, false positive, feature extraction

Procedia PDF Downloads 281
1921 Product Features Extraction from Opinions According to Time

Authors: Kamal Amarouche, Houda Benbrahim, Ismail Kassou

Abstract:

Nowadays, e-commerce shopping websites have experienced noticeable growth. These websites have gained consumers’ trust. After purchasing a product, many consumers share comments where opinions are usually embedded about the given product. Research on the automatic management of opinions that gives suggestions to potential consumers and portrays an image of the product to manufactures has been growing recently. After launching the product in the market, the reviews generated around it do not usually contain helpful information or generic opinions about this product (e.g. telephone: great phone...); in the sense that the product is still in the launching phase in the market. Within time, the product becomes old. Therefore, consumers perceive the advantages/ disadvantages about each specific product feature. Therefore, they will generate comments that contain their sentiments about these features. In this paper, we present an unsupervised method to extract different product features hidden in the opinions which influence its purchase, and that combines Time Weighting (TW) which depends on the time opinions were expressed with Term Frequency-Inverse Document Frequency (TF-IDF). We conduct several experiments using two different datasets about cell phones and hotels. The results show the effectiveness of our automatic feature extraction, as well as its domain independent characteristic.

Keywords: opinion mining, product feature extraction, sentiment analysis, SentiWordNet

Procedia PDF Downloads 414
1920 Attitudes Towards the Supernatural in Benjamin Britten’s The Turn of the Screw

Authors: Yaou Zhang

Abstract:

Background: Relatively little scholarly attention has been paid to the production of Benjamin Britten’s chamber opera The Turn of the Screw. As one of Britten’s most remarkable operas. The story of the libretto was from Henry James’s novella of the same name. The novella was created in 1898 and one of the primary questions addressed to people in the story is “how real the ghosts are,” which leads the story to a huge ambiguity in readers’ minds. Aims: This research focuses on the experience of seeing the opera on stage over several decades. This study of opera productions over time not only provides insight into how stage performances can alter audience members' perceptions of the opera in the present but also reveals a landscape of shifting aesthetics and receptions. Methods: To examine the hypotheses in interpretation and reception, the qualitative analysis is used to examine the figures of ghosts in different productions across the time from 1954 to 2021 in the UK: by accessing recordings, newspapers, and reviews for the productions that are sourced from online and physical archives. For instance, the field research is conducted on the topic by arranging interviews with the creative team and visiting Opera North in Leeds and Britten-Pears Foundation. The collected data reveals the “hidden identity” in creative teams’ interpretations, social preferences, and rediscover that have previously remained unseen. Results: This research presents an angle of Britten’s Screw by using the third position; it shows how the attention moved from the stage of “do the ghosts really exist” to “traumatised children.” Discussion: Critics and audiences have debated whether the governess hallucinates the ghosts in the opera for decades. While, in recent years, directors of new productions have given themselves the opportunity to go deeper into Britten's musical structure and offer the opera more space to be interpreted, rather than debating if "ghosts actually exist" or "the psychological problems of the governess." One can consider and reflect that the questionable actions of the children are because they are suffering from trauma, whether the trauma comes from the ghosts, the hallucinating governess, or some prior experiences: various interpretations cause one result that children are the recipients of trauma. Arguably, the role of the supernatural is neither simply one of the elements of a ghost story nor simply one of the parts of the ambiguity between the supernatural and the hallucination of the governess; rather, the ghosts and the hallucinating governess can exist at the same time - the combination of the supernatural’s and the governess’s behaviours on stage generates a sharper and more serious angle that draws our attention to the traumatized children.

Keywords: benjamin britten, chamber opera, production, reception, staging, the turn of the screw

Procedia PDF Downloads 108
1919 Feature Extraction and Classification Based on the Bayes Test for Minimum Error

Authors: Nasar Aldian Ambark Shashoa

Abstract:

Classification with a dimension reduction based on Bayesian approach is proposed in this paper . The first step is to generate a sample (parameter) of fault-free mode class and faulty mode class. The second, in order to obtain good classification performance, a selection of important features is done with the discrete karhunen-loeve expansion. Next, the Bayes test for minimum error is used to classify the classes. Finally, the results for simulated data demonstrate the capabilities of the proposed procedure.

Keywords: analytical redundancy, fault detection, feature extraction, Bayesian approach

Procedia PDF Downloads 528
1918 Like Life Itself: Elemental Affordances in the Creation of Transmedia Storyworlds-The Four Broken Hearts Case Study

Authors: Muhammad Babar Suleman

Abstract:

Transgressing the boundaries of the real and the virtual, the temporal and the spatial and the personal and the political, Four Broken Hearts is a hybrid storyworld encompassing film, live performance, location-based experiences and social media. The project is scheduled for launch early next year and is currently a work-in-progress undergoing initial user testing. The story of Four Broken Hearts is being told by taking each of the classic elements of fiction- character, setting, exposition, climax and denouement - and bringing them ‘to life’ in the medium that conveys them to the highest degree of mimesis: Characters are built and explored through social media, Setting is experienced through location-based storytelling, the Backstory is fleshed out using film and the Climax is performed as an immersive drama. By taking advantage of what each medium does best while complementing the other mediums, Four Broken Hearts is presented in the form of a rich transmedia experience that allows audiences to explore the story world across many different platforms while still tying it all together within a cohesive narrative. This article presents an investigation of the project’s narrative outputs produced so far.

Keywords: narratology, storyworld, transmedia, narrative, storytelling

Procedia PDF Downloads 312
1917 Vibration-Based Structural Health Monitoring of a 21-Story Building with Tuned Mass Damper in Seismic Zone

Authors: David Ugalde, Arturo Castillo, Leopoldo Breschi

Abstract:

The Tuned Mass Dampers (TMDs) are an effective system for mitigating vibrations in building structures. These dampers have traditionally focused on the protection of high-rise buildings against earthquakes and wind loads. The Camara Chilena de la Construction (CChC) building, built in 2018 in Santiago, Chile, is a 21-story RC wall building equipped with a 150-ton TMD and instrumented with six permanent accelerometers, offering an opportunity to monitor the dynamic response of this damped structure. This paper presents the system identification of the CChC building using power spectral density plots of ambient vibration and two seismic events (5.5 Mw and 6.7 Mw). Linear models of the building with and without the TMD are used to compute the theoretical natural periods through modal analysis and simulate the response of the building through response history analysis. Results show that natural periods obtained from both ambient vibrations and earthquake records are quite similar to the theoretical periods given by the modal analysis of the building model. Some of the experimental periods are noticeable by simple inspection of the earthquake records. The accelerometers in the first story better captured the modes related to the building podium while the upper accelerometers clearly captured the modes related to the tower. The earthquake simulation showed smaller accelerations in the model with TMD that are similar to that measured by the accelerometers. It is concluded that the system identification through power spectral density shows consistency with the expected dynamic properties. The structural health monitoring of the CChC building confirms the advantages of seismic protection technologies such as TMDs in seismic prone areas.

Keywords: system identification, tuned mass damper, wall buildings, seismic protection

Procedia PDF Downloads 126
1916 Effects of Damper Locations and Base Isolators on Seismic Response of a Building Frame

Authors: Azin Shakibabarough, Mojtaba Valinejadshoubi, Ashutosh Bagchi

Abstract:

Structural vibration means repetitive motion that causes fatigue and reduction of the performance of a structure. An earthquake may release high amount of energy that can have adverse effect on all components of a structure. Therefore, decreasing of vibration or maintaining performance of structures such as bridges, dams, roads and buildings is important for life safety and reducing economic loss. When earthquake or any vibration happens, investigation on parts of a structure which sustain the seismic loads is mandatory to provide a safe condition for the occupants. One of the solutions for reducing the earthquake vibration in a structure is using of vibration control devices such as dampers and base isolators. The objective of this study is to investigate the optimal positions of friction dampers and base isolators for better seismic response of 2D frame. For this purpose, a two bay and six story frame with different distribution formats was modeled and some of their responses to earthquake such as inter-story drift, max joint displacement, max axial force and max bending moment were determined and compared using non-linear dynamic analysis.

Keywords: fast nonlinear analysis, friction damper, base isolator, seismic vibration control, seismic response

Procedia PDF Downloads 321
1915 Hindi Speech Synthesis by Concatenation of Recognized Hand Written Devnagri Script Using Support Vector Machines Classifier

Authors: Saurabh Farkya, Govinda Surampudi

Abstract:

Optical Character Recognition is one of the current major research areas. This paper is focussed on recognition of Devanagari script and its sound generation. This Paper consists of two parts. First, Optical Character Recognition of Devnagari handwritten Script. Second, speech synthesis of the recognized text. This paper shows an implementation of support vector machines for the purpose of Devnagari Script recognition. The Support Vector Machines was trained with Multi Domain features; Transform Domain and Spatial Domain or Structural Domain feature. Transform Domain includes the wavelet feature of the character. Structural Domain consists of Distance Profile feature and Gradient feature. The Segmentation of the text document has been done in 3 levels-Line Segmentation, Word Segmentation, and Character Segmentation. The pre-processing of the characters has been done with the help of various Morphological operations-Otsu's Algorithm, Erosion, Dilation, Filtration and Thinning techniques. The Algorithm was tested on the self-prepared database, a collection of various handwriting. Further, Unicode was used to convert recognized Devnagari text into understandable computer document. The document so obtained is an array of codes which was used to generate digitized text and to synthesize Hindi speech. Phonemes from the self-prepared database were used to generate the speech of the scanned document using concatenation technique.

Keywords: Character Recognition (OCR), Text to Speech (TTS), Support Vector Machines (SVM), Library of Support Vector Machines (LIBSVM)

Procedia PDF Downloads 500
1914 Review on Effective Texture Classification Techniques

Authors: Sujata S. Kulkarni

Abstract:

Effective and efficient texture feature extraction and classification is an important problem in image understanding and recognition. This paper gives a review on effective texture classification method. The objective of the problem of texture representation is to reduce the amount of raw data presented by the image, while preserving the information needed for the task. Texture analysis is important in many applications of computer image analysis for classification include industrial and biomedical surface inspection, for example for defects and disease, ground classification of satellite or aerial imagery and content-based access to image databases.

Keywords: compressed sensing, feature extraction, image classification, texture analysis

Procedia PDF Downloads 435
1913 Vernacular Façade for Energy Conservation: Mashrabiya, A Reminiscent of Arab-Islamic Architecture

Authors: Balpreet Singh Madan

Abstract:

The Middle Eastern countries have preserved their heritage, tradition, and culture in their buildings by incorporating vernacular features of Arab-Islamic Architecture. The harsh sun and arid climate in the Gulf region make their buildings and infrastructure extremely hot and challenging to live in. One such iconic feature of Arab architecture is the Mashrabiya, which has been refined and updated for both functional and aesthetic purposes. This feature helps reduce the impact of solar radiation in buildings and lowers the energy requirements for creating livable conditions. The incorporation of Mashrabiya in modern buildings in the region symbolizes the amalgamation of tradition with innovation and modern technology. These buildings depict Mashrabiya with refinements for its better functional performance and aesthetic appeal to make superior built forms. This paper emphasizes the study of Mashrabiya as a vernacular feature with its adaptability for Energy Conservation and Sustainability, as seen in some of the recent iconic buildings of the Middle East, through a literature review and case studies of renowned buildings.

Keywords: energy efficiency, climate responsive, sustainability, innovation, heritage, vernacular

Procedia PDF Downloads 102
1912 Feature Analysis of Predictive Maintenance Models

Authors: Zhaoan Wang

Abstract:

Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.

Keywords: automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation

Procedia PDF Downloads 133
1911 Rewriting, Reframing, and Restructuring the Story: A Narrative and Solution Focused Therapy Approach to Family Therapy

Authors: Eman Tadros

Abstract:

Solution Focused Therapy sheds a positive light on a client’s problem(s) by instilling hope, focusing on the connection with the client, and describing the problem in a way to display change being possible. Solution focused therapists highlight clients’ positive strengths, reframe what clients say, do, or believe in a positive statement, action, or belief. Narrative Therapy focuses on the stories individuals tell about their past in which shape their current and future lives. Changing the language used aids clients in reevaluating their values and views of themselves, this then constructs a more positive way of thinking about their story. Both therapies are based on treating each client as an individual with a problem rather than that the individual is a problem and being able to give power back to the client. The purpose of these ideologies is to open a client to alternative understandings. This paper displays how clinicians can empower and identify their clients’ positive strengths and resiliency factors. Narrative and Solution-Focused Techniques will be integrated to instill positivity and empowerment in clients. Techniques such as deconstruction, collaboration, complimenting, miracle/exception/scaling questioning will be analyzed and modeled. Furthermore, bridging Solution Focused Therapy and Narrative Therapy gives a voice to unheard client(s).

Keywords: solution focused therapy, narrative therapy, empowerment, resilience

Procedia PDF Downloads 240
1910 Bag of Local Features for Person Re-Identification on Large-Scale Datasets

Authors: Yixiu Liu, Yunzhou Zhang, Jianning Chi, Hao Chu, Rui Zheng, Libo Sun, Guanghao Chen, Fangtong Zhou

Abstract:

In the last few years, large-scale person re-identification has attracted a lot of attention from video surveillance since it has a potential application prospect in public safety management. However, it is still a challenging job considering the variation in human pose, the changing illumination conditions and the lack of paired samples. Although the accuracy has been significantly improved, the data dependence of the sample training is serious. To tackle this problem, a new strategy is proposed based on bag of visual words (BoVW) model of designing the feature representation which has been widely used in the field of image retrieval. The local features are extracted, and more discriminative feature representation is obtained by cross-view dictionary learning (CDL), then the assignment map is obtained through k-means clustering. Finally, the BoVW histograms are formed which encodes the images with the statistics of the feature classes in the assignment map. Experiments conducted on the CUHK03, Market1501 and MARS datasets show that the proposed method performs favorably against existing approaches.

Keywords: bag of visual words, cross-view dictionary learning, person re-identification, reranking

Procedia PDF Downloads 196
1909 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information

Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung

Abstract:

The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.

Keywords: color moments, visual thing recognition system, SIFT, color SIFT

Procedia PDF Downloads 470