Search results for: outward approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14028

Search results for: outward approach

11688 An Integrated Approach to the Carbonate Reservoir Modeling: Case Study of the Eastern Siberia Field

Authors: Yana Snegireva

Abstract:

Carbonate reservoirs are known for their heterogeneity, resulting from various geological processes such as diagenesis and fracturing. These complexities may cause great challenges in understanding fluid flow behavior and predicting the production performance of naturally fractured reservoirs. The investigation of carbonate reservoirs is crucial, as many petroleum reservoirs are naturally fractured, which can be difficult due to the complexity of their fracture networks. This can lead to geological uncertainties, which are important for global petroleum reserves. The problem outlines the key challenges in carbonate reservoir modeling, including the accurate representation of fractures and their connectivity, as well as capturing the impact of fractures on fluid flow and production. Traditional reservoir modeling techniques often oversimplify fracture networks, leading to inaccurate predictions. Therefore, there is a need for a modern approach that can capture the complexities of carbonate reservoirs and provide reliable predictions for effective reservoir management and production optimization. The modern approach to carbonate reservoir modeling involves the utilization of the hybrid fracture modeling approach, including the discrete fracture network (DFN) method and implicit fracture network, which offer enhanced accuracy and reliability in characterizing complex fracture systems within these reservoirs. This study focuses on the application of the hybrid method in the Nepsko-Botuobinskaya anticline of the Eastern Siberia field, aiming to prove the appropriateness of this method in these geological conditions. The DFN method is adopted to model the fracture network within the carbonate reservoir. This method considers fractures as discrete entities, capturing their geometry, orientation, and connectivity. But the method has significant disadvantages since the number of fractures in the field can be very high. Due to limitations in the amount of main memory, it is very difficult to represent these fractures explicitly. By integrating data from image logs (formation micro imager), core data, and fracture density logs, a discrete fracture network (DFN) model can be constructed to represent fracture characteristics for hydraulically relevant fractures. The results obtained from the DFN modeling approaches provide valuable insights into the East Siberia field's carbonate reservoir behavior. The DFN model accurately captures the fracture system, allowing for a better understanding of fluid flow pathways, connectivity, and potential production zones. The analysis of simulation results enables the identification of zones of increased fracturing and optimization opportunities for reservoir development with the potential application of enhanced oil recovery techniques, which were considered in further simulations on the dual porosity and dual permeability models. This approach considers fractures as separate, interconnected flow paths within the reservoir matrix, allowing for the characterization of dual-porosity media. The case study of the East Siberia field demonstrates the effectiveness of the hybrid model method in accurately representing fracture systems and predicting reservoir behavior. The findings from this study contribute to improved reservoir management and production optimization in carbonate reservoirs with the use of enhanced and improved oil recovery methods.

Keywords: carbonate reservoir, discrete fracture network, fracture modeling, dual porosity, enhanced oil recovery, implicit fracture model, hybrid fracture model

Procedia PDF Downloads 81
11687 Understanding of Corporate Social Responsibility and Non-Governmental Organizations

Authors: Abdul Ghafar, Malini Nair

Abstract:

Non-governmental organizations have been seemed to struggle the battle of balancing many concerns with corporates which may impact on their financial solvency. Some of these concerns relates to uphold the relationship where weighing up the impacts of their involvement with corporates takes priority over the main purpose of creating valuable impacts for communities. To some extent, it can be argued that NGOs are influenced by corporates’ power to tackle contemporary issues rather than eradicating the root causes of such issues and transform the results into more sustainable manner. NGOs spend massive amount of energy, time and resources in order to move some corporates to embrace their social responsibilities. It has become a norm, where an active NGO that is becoming more successful on building partnerships with corporates is perceived to be more socially responsible. In contrast to this, as some researchers argue that the social responsibility for NGOs is not a voluntary act; they must exhibit the core values in all their practices require much attention to address. This article stresses the need of understanding ‘Social Responsibility’ of NGOs that stem from an argument that NGOs tend to act on narrow mandate rather than considering broader outcomes of their CSR initiatives. This paper argues that NGOs must focus on building capabilities of the recipients from CSR initiatives which should serve as a core value of partnerships mandate between NGOs, Corporates and Governments. We argue that SEN’s Capabilities Approach can further enhance the mainstream CSR agenda of NGOs which seems to incline more towards providing palliative solutions to social issues.

Keywords: non-profit organization, corporate social responsibility, partnerships, capabilities approach

Procedia PDF Downloads 237
11686 Reconstructed Phase Space Features for Estimating Post Traumatic Stress Disorder

Authors: Andre Wittenborn, Jarek Krajewski

Abstract:

Trauma-related sadness in speech can alter the voice in several ways. The generation of non-linear aerodynamic phenomena within the vocal tract is crucial when analyzing trauma-influenced speech production. They include non-laminar flow and formation of jets rather than well-behaved laminar flow aspects. Especially state-space reconstruction methods based on chaotic dynamics and fractal theory have been suggested to describe these aerodynamic turbulence-related phenomena of the speech production system. To extract the non-linear properties of the speech signal, we used the time delay embedding method to reconstruct from a scalar time series (reconstructed phase space, RPS). This approach results in the extraction of 7238 Features per .wav file (N= 47, 32 m, 15 f). The speech material was prompted by telling about autobiographical related sadness-inducing experiences (sampling rate 16 kHz, 8-bit resolution). After combining these features in a support vector machine based machine learning approach (leave-one-sample out validation), we achieved a correlation of r = .41 with the well-established, self-report ground truth measure (RATS) of post-traumatic stress disorder (PTSD).

Keywords: non-linear dynamics features, post traumatic stress disorder, reconstructed phase space, support vector machine

Procedia PDF Downloads 107
11685 A Framework for Designing Complex Product-Service Systems with a Multi-Domain Matrix

Authors: Yoonjung An, Yongtae Park

Abstract:

Offering a Product-Service System (PSS) is a well-accepted strategy that companies may adopt to provide a set of systemic solutions to customers. PSSs were initially provided in a simple form but now take diversified and complex forms involving multiple services, products and technologies. With the growing interest in the PSS, frameworks for the PSS development have been introduced by many researchers. However, most of the existing frameworks fail to examine various relations existing in a complex PSS. Since designing a complex PSS involves full integration of multiple products and services, it is essential to identify not only product-service relations but also product-product/ service-service relations. It is also equally important to specify how they are related for better understanding of the system. Moreover, as customers tend to view their purchase from a more holistic perspective, a PSS should be developed based on the whole system’s requirements, rather than focusing only on the product requirements or service requirements. Thus, we propose a framework to develop a complex PSS that is coordinated fully with the requirements of both worlds. Specifically, our approach adopts a multi-domain matrix (MDM). A MDM identifies not only inter-domain relations but also intra-domain relations so that it helps to design a PSS that includes highly desired and closely related core functions/ features. Also, various dependency types and rating schemes proposed in our approach would help the integration process.

Keywords: inter-domain relations, intra-domain relations, multi-domain matrix, product-service system design

Procedia PDF Downloads 645
11684 Evaluation of the Effect of Auriculotherapy on Pain Control and Sleep Quality in Chronic Patients

Authors: Fagner Luiz P. Salles, Janaina C. Oliveira, Ivair P. Cesar

Abstract:

Statement of the Problem: Auriculotherapy (AT) is a TCM technique, which uses seeds instead of needles, based physiologically on the mechanical stimulation of the cranial nerves. In the context of understanding the new concept of health of the WHO, the AT is an integrative approach for achieving Global Health Care so as to achieve the global health care concerns. This study aimed to evaluate the effect of auriculotherapy on pain and sleep quality in patients with chronic pain. Methodology and Theoretical Orientation: This study was performed between February and March 2017 at the Faculdade Estácio de Sá de Vitória, Brazil. The pain evaluation was through VAS in 4 periods: maximum, minimum, average and at the time of evaluation; the evaluation of sleep quality was used the Pittsburgh Sleep Quality Index. Socio-demographic data included: gender, age, use of medication and BMI. All data are presented as mean (standard deviation), Teste Mann-Whitney and T-student with P-values < 0.05 were regarded as significant. Findings: Participated in this study thirty-two individuals with age (M = 43.18, SD = 17.86), the time with pain in years (M = 3.67, SD = 3.68), 81.7% were female, 75% of the individuals used medication and BMI (M = 26.67; SD = 6.20). The pain presented improvement in the maximum level and the average of the pain and sleep quality before did not have statistically significant results. Conclusion and Significance: This study showed that TA is efficacy for reduction levels of pain. However, AT was not effective in improving sleep quality.

Keywords: auriculotherapy, chronic pain, sleep quality, integrative approach

Procedia PDF Downloads 209
11683 Knowledge Loss Risk Assessment for Departing Employees: An Exploratory Study

Authors: Muhammad Saleem Ullah Khan Sumbal, Eric Tsui, Ricky Cheong, Eric See To

Abstract:

Organizations are posed to a threat of valuable knowledge loss when employees leave either due to retirement, resignation, job change or because of disabilities e.g. death, etc. Due to changing economic conditions, globalization, and aging workforce, organizations are facing challenges regarding retention of valuable knowledge. On the one hand, large number of employees are going to retire in the organizations whereas on the other hand, younger generation does not want to work in a company for a long time and there is an increasing trend of frequent job change among the new generation. Because of these factors, organizations need to make sure that they capture the knowledge of employee before (s)he walks out of the door. The first step in this process is to know what type of knowledge employee possesses and whether this knowledge is important for the organization. Researchers reveal in the literature that despite the serious consequences of knowledge loss in terms of organizational productivity and competitive advantage, there has not been much work done in the area of knowledge loss assessment of departing employees. An important step in the knowledge retention process is to determine the critical ‘at risk’ knowledge. Thus, knowledge loss risk assessment is a process by which organizations can gauge the importance of knowledge of the departing employee. The purpose of this study is to explore this topic of knowledge loss risk assessment by conducting a qualitative study in oil and gas sector. By engaging in dialogues with managers and executives of the organizations through in-depth interviews and adopting a grounded methodology approach, the research will explore; i) Are there any measures adopted by organizations to assess the risk of knowledge loss from departing employees? ii) Which factors are crucial for knowledge loss assessment in the organizations? iii) How can we prioritize the employees for knowledge retention according to their criticality? Grounded theory approach is used when there is not much knowledge available in the area under research and thus new knowledge is generated about the topic through an in-depth exploration of the topic by using methods such as interviews and using a systematic approach to analyze the data. The outcome of the study will generate a model for the risk of knowledge loss through factors such as the likelihood of knowledge loss, the consequence/impact of knowledge loss and quality of the knowledge loss of departing employees. Initial results show that knowledge loss assessment is quite crucial for the organizations and it helps in determining what types of knowledge employees possess e.g. organizations knowledge, subject matter expertise or relationships knowledge. Based on that, it can be assessed which employee is more important for the organizations and how to prioritize the knowledge retention process for departing employees.

Keywords: knowledge loss, risk assessment, departing employees, Hong Kong organizations

Procedia PDF Downloads 412
11682 Segmentation of the Liver and Spleen From Abdominal CT Images Using Watershed Approach

Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid

Abstract:

The phase of segmentation is an important step in the processing and interpretation of medical images. In this paper, we focus on the segmentation of liver and spleen from the abdomen computed tomography (CT) images. The importance of our study comes from the fact that the segmentation of ROI from CT images is usually a difficult task. This difficulty is the gray’s level of which is similar to the other organ also the ROI are connected to the ribs, heart, kidneys, etc. Our proposed method is based on the anatomical information and mathematical morphology tools used in the image processing field. At first, we try to remove the surrounding and connected organs and tissues by applying morphological filters. This first step makes the extraction of interest regions easier. The second step consists of improving the quality of the image gradient. In this step, we propose a method for improving the image gradient to reduce these deficiencies by applying the spatial filters followed by the morphological filters. Thereafter we proceed to the segmentation of the liver, spleen. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.The system has been evaluated by computing the sensitivity and specificity between the semi-automatically segmented (liver and spleen) contour and the manually contour traced by radiological experts.

Keywords: CT images, liver and spleen segmentation, anisotropic diffusion filter, morphological filters, watershed algorithm

Procedia PDF Downloads 497
11681 Developing a Systemic Monoclonal Antibody Therapy for the Treatment of Large Burn Injuries

Authors: Alireza Hassanshahi, Xanthe Strudwick, Zlatko Kopecki, Allison J Cowin

Abstract:

Studies have shown that Flightless (Flii) is elevated in human wounds, including burns, and reducing the level of Flii is a promising approach for improving wound repair and reducing scar formation. The most effective approach has been to neutralise Flii activity using localized, intradermal application of function blocking monoclonal antibodies. However, large surface area burns are difficult to treat by intradermal injection of therapeutics, so the aim of this study was to investigate if a systemic injection of a monoclonal antibody against Flii could improve healing in mice following burn injury. Flii neutralizing antibodies (FnAbs) were labelled with Alxa-Fluor-680 for biodistribution studies and the healing effects of systemically administered FnAbs to mice with burn injuries. A partial thickness, 7% (70mm2) total body surface area scald burn injury was created on the dorsal surface of mice (n=10/group), and 100µL of Alexa-Flour-680-labeled FnAbs were injected into the intraperitoneal cavity (IP) at time of injury. The burns were imaged on days 0, 1, 2, 3, 4, and 7 using IVIS Lumina S5 Imaging System, and healing was assessed macroscopically, histologically, and using immunohistochemistry. Fluorescent radiance efficiency measurements showed that IP injected Alexa-Fluor-680-FnAbs localized at the site of burn injury from day 1, remaining there for the whole 7-day study. The burns treated with FnAbs showed a reduction in macroscopic wound area and an increased rate of epithelialization compared to controls. Immunohistochemistry for NIMP-R14 showed a reduction in the inflammatory infiltrate, while CD31/VEGF staining showed improved angiogenesis post-systemic FnAb treatment. These results suggest that systemically administered FnAbs are active within the burn site and can improve healing outcomes. The clinical application of systemically injected Flii monoclonal antibodies could therefore be a potential approach for promoting the healing of large surface area burns immediately after injury.

Keywords: biodistribution, burn, flightless, systemic, fnAbs

Procedia PDF Downloads 179
11680 Dynamic Modeling of Energy Systems Adapted to Low Energy Buildings in Lebanon

Authors: Nadine Yehya, Chantal Maatouk

Abstract:

Low energy buildings have been developed to achieve global climate commitments in reducing energy consumption. They comprise energy efficient buildings, zero energy buildings, positive buildings and passive house buildings. The reduced energy demands in Low Energy buildings call for advanced building energy modeling that focuses on studying active building systems such as heating, cooling and ventilation, improvement of systems performances, and development of control systems. Modeling and building simulation have expanded to cover different modeling approach i.e.: detailed physical model, dynamic empirical models, and hybrid approaches, which are adopted by various simulation tools. This paper uses DesignBuilder with EnergyPlus simulation engine in order to; First, study the impact of efficiency measures on building energy behavior by comparing Low energy residential model to a conventional one in Beirut-Lebanon. Second, choose the appropriate energy systems for the studied case characterized by an important cooling demand. Third, study dynamic modeling of Variable Refrigerant Flow (VRF) system in EnergyPlus that is chosen due to its advantages over other systems and its availability in the Lebanese market. Finally, simulation of different energy systems models with different modeling approaches is necessary to confront the different modeling approaches and to investigate the interaction between energy systems and building envelope that affects the total energy consumption of Low Energy buildings.

Keywords: physical model, variable refrigerant flow heat pump, dynamic modeling, EnergyPlus, the modeling approach

Procedia PDF Downloads 224
11679 Recognizing Customer Preferences Using Review Documents: A Hybrid Text and Data Mining Approach

Authors: Oshin Anand, Atanu Rakshit

Abstract:

The vast increment in the e-commerce ventures makes this area a prominent research stream. Besides several quantified parameters, the textual content of reviews is a storehouse of many information that can educate companies and help them earn profit. This study is an attempt in this direction. The article attempts to categorize data based on a computed metric that quantifies the influencing capacity of reviews rendering two categories of high and low influential reviews. Further, each of these document is studied to conclude several product feature categories. Each of these categories along with the computed metric is converted to linguistic identifiers and are used in an association mining model. The article makes a novel attempt to combine feature attraction with quantified metric to categorize review text and finally provide frequent patterns that depict customer preferences. Frequent mentions in a highly influential score depict customer likes or preferred features in the product whereas prominent pattern in low influencing reviews highlights what is not important for customers. This is achieved using a hybrid approach of text mining for feature and term extraction, sentiment analysis, multicriteria decision-making technique and association mining model.

Keywords: association mining, customer preference, frequent pattern, online reviews, text mining

Procedia PDF Downloads 393
11678 Investigation on Ultrahigh Heat Flux of Nanoporous Membrane Evaporation Using Dimensionless Lattice Boltzmann Method

Authors: W. H. Zheng, J. Li, F. J. Hong

Abstract:

Thin liquid film evaporation in ultrathin nanoporous membranes, which reduce the viscous resistance while still maintaining high capillary pressure and efficient liquid delivery, is a promising thermal management approach for high-power electronic devices cooling. Given the challenges and technical limitations of experimental studies for accurate interface temperature sensing, complex manufacturing process, and short duration of membranes, a dimensionless lattice Boltzmann method capable of restoring thermophysical properties of working fluid is particularly derived. The evaporation of R134a to its pure vapour ambient in nanoporous membranes with the pore diameter of 80nm, thickness of 472nm, and three porosities of 0.25, 0.33 and 0.5 are numerically simulated. The numerical results indicate that the highest heat transfer coefficient is about 1740kW/m²·K; the highest heat flux is about 1.49kW/cm² with only about the wall superheat of 8.59K in the case of porosity equals to 0.5. The dissipated heat flux scaled with porosity because of the increasing effective evaporative area. Additionally, the self-regulation of the shape and curvature of the meniscus under different operating conditions is also observed. This work shows a promising approach to forecast the membrane performance for different geometry and working fluids.

Keywords: high heat flux, ultrathin nanoporous membrane, thin film evaporation, lattice Boltzmann method

Procedia PDF Downloads 166
11677 Going beyond Stakeholder Participation

Authors: Florian Engel

Abstract:

Only with a radical change to an intrinsically motivated project team, through giving the employees the freedom for autonomy, mastery and purpose, it is then possible to develop excellent products. With these changes, combined with using a rapid application development approach, the group of users serves as an important indicator to test the market needs, rather than only as the stakeholders for requirements.

Keywords: intrinsic motivation, requirements elicitation, self-directed work, stakeholder participation

Procedia PDF Downloads 344
11676 Statistical Pattern Recognition for Biotechnological Process Characterization Based on High Resolution Mass Spectrometry

Authors: S. Fröhlich, M. Herold, M. Allmer

Abstract:

Early stage quantitative analysis of host cell protein (HCP) variations is challenging yet necessary for comprehensive bioprocess development. High resolution mass spectrometry (HRMS) provides a high-end technology for accurate identification alongside with quantitative information. Hereby we describe a flexible HRMS assay platform to quantify HCPs relevant in microbial expression systems such as E. Coli in both up and downstream development by means of MVDA tools. Cell pellets were lysed and proteins extracted, purified samples not further treated before applying the SMART tryptic digest kit. Peptides separation was optimized using an RP-UHPLC separation platform. HRMS-MSMS analysis was conducted on an Orbitrap Velos Elite applying CID. Quantification was performed label-free taking into account ionization properties and physicochemical peptide similarities. Results were analyzed using SIEVE 2.0 (Thermo Fisher Scientific) and SIMCA (Umetrics AG). The developed HRMS platform was applied to an E. Coli expression set with varying productivity and the corresponding downstream process. Selected HCPs were successfully quantified within the fmol range. Analysing HCP networks based on pattern analysis facilitated low level quantification and enhanced validity. This approach is of high relevance for high-throughput screening experiments during upstream development, e.g. for titer determination, dynamic HCP network analysis or product characterization. Considering the downstream purification process, physicochemical clustering of identified HCPs is of relevance to adjust buffer conditions accordingly. However, the technology provides an innovative approach for label-free MS based quantification relying on statistical pattern analysis and comparison. Absolute quantification based on physicochemical properties and peptide similarity score provides a technological approach without the need of sophisticated sample preparation strategies and is therefore proven to be straightforward, sensitive and highly reproducible in terms of product characterization.

Keywords: process analytical technology, mass spectrometry, process characterization, MVDA, pattern recognition

Procedia PDF Downloads 256
11675 Comparison of Number of Waves Surfed and Duration Using Global Positioning System and Inertial Sensors

Authors: João Madureira, Ricardo Lagido, Inês Sousa, Fraunhofer Portugal

Abstract:

Surf is an increasingly popular sport and its performance evaluation is often qualitative. This work aims at using a smartphone to collect and analyze the GPS and inertial sensors data in order to obtain quantitative metrics of the surfing performance. Two approaches are compared for detection of wave rides, computing the number of waves rode in a surfing session, the starting time of each wave and its duration. The first approach is based on computing the velocity from the Global Positioning System (GPS) signal and finding the velocity thresholds that allow identifying the start and end of each wave ride. The second approach adds information from the Inertial Measurement Unit (IMU) of the smartphone, to the velocity thresholds obtained from the GPS unit, to determine the start and end of each wave ride. The two methods were evaluated using GPS and IMU data from two surfing sessions and validated with similar metrics extracted from video data collected from the beach. The second method, combining GPS and IMU data, was found to be more accurate in determining the number of waves, start time and duration. This paper shows that it is feasible to use smartphones for quantification of performance metrics during surfing. In particular, detection of the waves rode and their duration can be accurately determined using the smartphone GPS and IMU.

Keywords: inertial measurement unit (IMU), global positioning system (GPS), smartphone, surfing performance

Procedia PDF Downloads 404
11674 Phytoremediation Waste Processing of Coffee in Various Concentration of Organic Materials Plant Using Kiambang

Authors: Siti Aminatu Zuhria

Abstract:

On wet coffee processing can improve the quality of coffee, but the coffee liquid waste that can pollute the environment. Liquid waste a lot of coffee resulting from the stripping and washing the coffee. This research will be carried out the process of handling liquid waste stripping coffee from the coffee skin with media phytoremediation using plants kiambang. The purpose of this study was to determine the characteristics of the coffee liquid waste and plant phytoremediation kiambang as agent in various concentrations of liquid waste coffee as well as determining the most optimal concentration in the improved quality of waste water quality standard approach. This research will be conducted through two stages, namely the preliminary study and the main study. In a preliminary study aims to determine the ability of the plant life kiambang as phytoremediation agent in the media well water, distilled water and liquid waste coffee. The main study will be conducted wastewater dilution and coffee will be obtained COD concentration variations. Results are expected at this research that can determine the ability of plants kiambang as an agent for phytoremediation in wastewater treatment with various concentrations of waste and the most optimal concentration in the improved quality of waste water quality standard approach.

Keywords: wet coffee processing, phytoremediation, Kiambang plant, variation concentration liquid waste

Procedia PDF Downloads 309
11673 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm

Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn

Abstract:

Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.

Keywords: binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct

Procedia PDF Downloads 232
11672 Aspiring to Achieve a Fairer Society

Authors: Bintou Jobe

Abstract:

Background: The research is focused on the concept of equality, diversity, and inclusion (EDI) and the need to achieve equity by treating individuals according to their circumstances and needs. The research is rooted in the UK Equality Act 2010, which emphasizes the importance of equal opportunities for all individuals regardless of their background and social life. However, inequality persists in society, particularly for those from minority backgrounds who face discrimination. Research Aim: The aim of this research is to promote equality, diversity, and inclusion by encouraging the regeneration of minds and the eradication of stereotypes. The focus is on promoting good Equality, Diversity and Inclusion practices in various settings, including schools, colleges, universities, and workplaces, to create environments where every individual feels a sense of belonging. Methodology: The research utilises a literature review approach to gather information on promoting inclusivity, diversity, and inclusion. Findings: The research highlights the significance of promoting equality, diversity, and inclusion practices to ensure that individuals receive the respect and dignity they deserve. It emphasises the importance of treating individuals based on their unique circumstances and needs rather than relying on stereotypes. The research also emphasises the benefits of diversity and inclusion in enhancing innovation, creativity, and productivity. The theoretical importance of this research is to raise awareness about the importance of regenerating minds, challenging stereotypes, and promoting equality, diversity, and inclusion. The emphasis is on treating individuals based on their circumstances and needs rather than relying on generalizations. Diversity and inclusion are beneficial in different settings, as highlighted by the research. By raising awareness about the importance of mind regeneration, eradicating stereotypes, and promoting equality, diversity, and inclusion, this research makes a significant contribution to the subject area. It emphasizes the necessity of treating individuals based on their unique circumstances instead of relying on generalizations. However, the methodology could be strengthened by incorporating primary research to complement the literature review approach. Data Collection and Analysis Procedures: The research utilised a literature review approach to gather relevant information on promoting inclusivity, diversity, and inclusion. NVivo software application was used to analysed and synthesize the findings to identify themes and support the research aim and objectives. Question Addressed: This research addresses the question of how to promote inclusivity, diversity, and inclusion and reduce the prevalence of stereotypes and prejudice. It explores the need to treat individuals based on their unique circumstances and needs rather than relying on generic assumptions. Encourage individuals to adopt a more inclusive approach. Provide managers with responsibility and training that helps them understand the importance of their roles in shaping the workplace culture. Have an equality, diversity, and inclusion manager from a majority background at the senior level who can speak up for underrepresented groups and flag any issues that need addressing. Conclusion: The research emphasizes the importance of promoting equality, diversity, and inclusion practices to create a fairer society. It highlights the need to challenge stereotypes, treat individuals according to their circumstances and needs, and promote a culture of respect and dignity.

Keywords: equality, fairer society, inclusion, diversity

Procedia PDF Downloads 51
11671 Automated Evaluation Approach for Time-Dependent Question Answering Pairs on Web Crawler Based Question Answering System

Authors: Shraddha Chaudhary, Raksha Agarwal, Niladri Chatterjee

Abstract:

This work demonstrates a web crawler-based generalized end-to-end open domain Question Answering (QA) system. An efficient QA system requires a significant amount of domain knowledge to answer any question with the aim to find an exact and correct answer in the form of a number, a noun, a short phrase, or a brief piece of text for the user's questions. Analysis of the question, searching the relevant document, and choosing an answer are three important steps in a QA system. This work uses a web scraper (Beautiful Soup) to extract K-documents from the web. The value of K can be calibrated on the basis of a trade-off between time and accuracy. This is followed by a passage ranking process using the MS-Marco dataset trained on 500K queries to extract the most relevant text passage, to shorten the lengthy documents. Further, a QA system is used to extract the answers from the shortened documents based on the query and return the top 3 answers. For evaluation of such systems, accuracy is judged by the exact match between predicted answers and gold answers. But automatic evaluation methods fail due to the linguistic ambiguities inherent in the questions. Moreover, reference answers are often not exhaustive or are out of date. Hence correct answers predicted by the system are often judged incorrect according to the automated metrics. One such scenario arises from the original Google Natural Question (GNQ) dataset which was collected and made available in the year 2016. Use of any such dataset proves to be inefficient with respect to any questions that have time-varying answers. For illustration, if the query is where will be the next Olympics? Gold Answer for the above query as given in the GNQ dataset is “Tokyo”. Since the dataset was collected in the year 2016, and the next Olympics after 2016 were in 2020 that was in Tokyo which is absolutely correct. But if the same question is asked in 2022 then the answer is “Paris, 2024”. Consequently, any evaluation based on the GNQ dataset will be incorrect. Such erroneous predictions are usually given to human evaluators for further validation which is quite expensive and time-consuming. To address this erroneous evaluation, the present work proposes an automated approach for evaluating time-dependent question-answer pairs. In particular, it proposes a metric using the current timestamp along with top-n predicted answers from a given QA system. To test the proposed approach GNQ dataset has been used and the system achieved an accuracy of 78% for a test dataset comprising 100 QA pairs. This test data was automatically extracted using an analysis-based approach from 10K QA pairs of the GNQ dataset. The results obtained are encouraging. The proposed technique appears to have the possibility of developing into a useful scheme for gathering precise, reliable, and specific information in a real-time and efficient manner. Our subsequent experiments will be guided towards establishing the efficacy of the above system for a larger set of time-dependent QA pairs.

Keywords: web-based information retrieval, open domain question answering system, time-varying QA, QA evaluation

Procedia PDF Downloads 104
11670 Consent and the Construction of Unlawfulness

Authors: Susanna Menis

Abstract:

The context of this study revolves around the theme of consent and the construction of unlawfulness in judicial decisions. It aims to explore the formation of societal perceptions of unlawfulness within the context of consensual sexual acts leading to harmful consequences. This study investigates how judges create legal rules that reflect social solidarity and protect against violence. Specifically, the research aims to understand the justification behind criminalising consensual sexual activity when categorised under different offences. The main question addressed in this study will evaluate the way judges create legal rules that they believe reflect social solidarity and protect against violence. The study employs a historical genealogy approach as its methodology. This approach allows for tracing back the original formation of societal perspectives on unlawfulness, thus highlighting the socially constructed nature of the present understanding. The data for this study will be collected through an extensive literature review, examining historical legal cases and documents that shape the understanding of unlawfulness. This will provide a comprehensive view of how social attitudes toward private sexual relations influenced the creation of legal rules. The theoretical importance of this research lies in its contribution to socio-legal scholarship. This study adds to the existing knowledge on the topic by exploring questions of unconscious bias and its origins. The findings shed light on how and why individuals possess unconscious biases, particularly within the judicial system. In conclusion, this study investigates judicial decisions concerning consensual sexual acts and the construction of unlawfulness. By employing a historical genealogy approach, the research sheds light on how judges create legal rules that reflect social solidarity and aim to protect against violence. The theoretical importance of this study lies in its contribution to understanding unconscious bias and its origins within the judicial system. Through data collection and analysis procedures, this study aims to provide valuable insights into the formation of social attitudes towards private sexual relations and its impact on legal rulings.

Keywords: consent, sexual offences, offences against the person, legal genealogy, social construct

Procedia PDF Downloads 71
11669 Decision Framework for Cross-Border Railway Infrastructure Projects

Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki

Abstract:

Transport infrastructure assets are key components of the national asset portfolio. The decision to invest in a new infrastructure in transports could take from a few years to some decades. This is mainly because of the need to reserve and spent many capitals, the long payback period, the number of the stakeholders involved in decision process and –many times- the investment and business risks are high. Therefore, the decision assessment framework is an essential challenge linked with the key decision factors meet the stakeholder expectations highlighting project trade-offs, financial risks, business uncertainties and market limitations. This paper examines the decision process for new transport infrastructure projects in cross border regions, where a wide range of stakeholders with different expectation is involved. According to a consequences analysis systemic approach, the relationship of transport infrastructure development, economic system development and stakeholder expectation is analyzed. Adopting the on system of system methodological approach, the decision making framework, variables, inputs and outputs are defined, highlighting the key shareholder’s role and expectations. The application provides the methodology outputs presenting the proposed decision framework for a strategic railway project in north Greece deals with the upgrade of the existing railway corridor connecting Greece, Turkey and Bulgaria.

Keywords: decision making, system of system, cross-border, infrastructure project

Procedia PDF Downloads 316
11668 From Type-I to Type-II Fuzzy System Modeling for Diagnosis of Hepatitis

Authors: Shahabeddin Sotudian, M. H. Fazel Zarandi, I. B. Turksen

Abstract:

Hepatitis is one of the most common and dangerous diseases that affects humankind, and exposes millions of people to serious health risks every year. Diagnosis of Hepatitis has always been a challenge for physicians. This paper presents an effective method for diagnosis of hepatitis based on interval Type-II fuzzy. This proposed system includes three steps: pre-processing (feature selection), Type-I and Type-II fuzzy classification, and system evaluation. KNN-FD feature selection is used as the preprocessing step in order to exclude irrelevant features and to improve classification performance and efficiency in generating the classification model. In the fuzzy classification step, an “indirect approach” is used for fuzzy system modeling by implementing the exponential compactness and separation index for determining the number of rules in the fuzzy clustering approach. Therefore, we first proposed a Type-I fuzzy system that had an accuracy of approximately 90.9%. In the proposed system, the process of diagnosis faces vagueness and uncertainty in the final decision. Thus, the imprecise knowledge was managed by using interval Type-II fuzzy logic. The results that were obtained show that interval Type-II fuzzy has the ability to diagnose hepatitis with an average accuracy of 93.94%. The classification accuracy obtained is the highest one reached thus far. The aforementioned rate of accuracy demonstrates that the Type-II fuzzy system has a better performance in comparison to Type-I and indicates a higher capability of Type-II fuzzy system for modeling uncertainty.

Keywords: hepatitis disease, medical diagnosis, type-I fuzzy logic, type-II fuzzy logic, feature selection

Procedia PDF Downloads 312
11667 Machine learning Assisted Selective Emitter design for Solar Thermophotovoltaic System

Authors: Ambali Alade Odebowale, Andargachew Mekonnen Berhe, Haroldo T. Hattori, Andrey E. Miroshnichenko

Abstract:

Solar thermophotovoltaic systems (STPV) have emerged as a promising solution to overcome the Shockley-Queisser limit, a significant impediment in the direct conversion of solar radiation into electricity using conventional solar cells. The STPV system comprises essential components such as an optical concentrator, selective emitter, and a thermophotovoltaic (TPV) cell. The pivotal element in achieving high efficiency in an STPV system lies in the design of a spectrally selective emitter or absorber. Traditional methods for designing and optimizing selective emitters are often time-consuming and may not yield highly selective emitters, posing a challenge to the overall system performance. In recent years, the application of machine learning techniques in various scientific disciplines has demonstrated significant advantages. This paper proposes a novel nanostructure composed of four-layered materials (SiC/W/SiO2/W) to function as a selective emitter in the energy conversion process of an STPV system. Unlike conventional approaches widely adopted by researchers, this study employs a machine learning-based approach for the design and optimization of the selective emitter. Specifically, a random forest algorithm (RFA) is employed for the design of the selective emitter, while the optimization process is executed using genetic algorithms. This innovative methodology holds promise in addressing the challenges posed by traditional methods, offering a more efficient and streamlined approach to selective emitter design. The utilization of a machine learning approach brings several advantages to the design and optimization of a selective emitter within the STPV system. Machine learning algorithms, such as the random forest algorithm, have the capability to analyze complex datasets and identify intricate patterns that may not be apparent through traditional methods. This allows for a more comprehensive exploration of the design space, potentially leading to highly efficient emitter configurations. Moreover, the application of genetic algorithms in the optimization process enhances the adaptability and efficiency of the overall system. Genetic algorithms mimic the principles of natural selection, enabling the exploration of a diverse range of emitter configurations and facilitating the identification of optimal solutions. This not only accelerates the design and optimization process but also increases the likelihood of discovering configurations that exhibit superior performance compared to traditional methods. In conclusion, the integration of machine learning techniques in the design and optimization of a selective emitter for solar thermophotovoltaic systems represents a groundbreaking approach. This innovative methodology not only addresses the limitations of traditional methods but also holds the potential to significantly improve the overall performance of STPV systems, paving the way for enhanced solar energy conversion efficiency.

Keywords: emitter, genetic algorithm, radiation, random forest, thermophotovoltaic

Procedia PDF Downloads 66
11666 Analysis of Crisis Management Systems of United Kingdom and Turkey

Authors: Recep Sait Arpat, Hakan Güreşci

Abstract:

Emergency, disaster and crisis management terms are generally perceived as the same processes. This conflict effects the approach and delegating policy of the political order. Crisis management starts in the aftermath of the mismanagement of disaster and emergency. In the light of the information stated above in this article Turkey and United Kingdom(UK)’s crisis management systems are analyzed. This article’s main aim is to clarify the main points of the emergency management system of United Kingdom and Turkey’s disaster management system by comparing them. To do this: A prototype model of the political decision making processes of the countries is drawn, decision making mechanisms and the planning functions are compared. As a result it’s found that emergency management policy in Turkey is reactive whereas it’s proactive in UK; as the delegating policy Turkey’s system is similar to UK; levels of emergency situations are similar but not the same; the differences are stemming from the civil order and nongovernmental organizations effectiveness; UK has a detailed government engagement model to emergencies, which shapes the doctrine of the approach to emergencies, and it’s successful in gathering and controlling the whole state’s efforts; crisis management is a sub-phase of UK emergency management whereas it’s accepted as a outmoded management perception and the focal point of crisis management perception in UK is security crisis and natural disasters while in Turkey it is natural disasters. In every anlysis proposals are given to Turkey.

Keywords: crisis management, disaster management, emergency management, turkey, united kingdom

Procedia PDF Downloads 375
11665 Computational Approach for Grp78–Nf-ΚB Binding Interactions in the Context of Neuroprotective Pathway in Brain Injuries

Authors: Janneth Gonzalez, Marco Avila, George Barreto

Abstract:

GRP78 participates in multiple functions in the cell during normal and pathological conditions, controlling calcium homeostasis, protein folding and unfolded protein response. GRP78 is located in the endoplasmic reticulum, but it can change its location under stress, hypoxic and apoptotic conditions. NF-κB represents the keystone of the inflammatory process and regulates the transcription of several genes related with apoptosis, differentiation, and cell growth. The possible relationship between GRP78-NF-κB could support and explain several mechanisms that may regulate a variety of cell functions, especially following brain injuries. Although several reports show interactions between NF-κB and heat shock proteins family members, there is a lack of information on how GRP78 may be interacting with NF-κB, and possibly regulating its downstream activation. Therefore, we assessed the computational predictions of the GRP78 (Chain A) and NF-κB complex (IkB alpha and p65) protein-protein interactions. The interaction interface of the docking model showed that the amino acids ASN 47, GLU 215, GLY 403 of GRP78 and THR 54, ASN 182 and HIS 184 of NF-κB are key residues involved in the docking. The electrostatic field between GRP78-NF-κB interfaces and molecular dynamic simulations support the possible interaction between the proteins. In conclusion, this work shed some light in the possible GRP78-NF-κB complex indicating key residues in this crosstalk, which may be used as an input for better drug design strategy targeting NF-κB downstream signaling as a new therapeutic approach following brain injuries.

Keywords: computational biology, protein interactions, Grp78, bioinformatics, molecular dynamics

Procedia PDF Downloads 345
11664 Pinch Technology for Minimization of Water Consumption at a Refinery

Authors: W. Mughees, M. Alahmad

Abstract:

Water is the most significant entity that controls local and global development. For the Gulf region, especially Saudi Arabia, with its limited potable water resources, the potential of the fresh water problem is highly considerable. In this research, the study involves the design and analysis of pinch-based water/wastewater networks. Multiple water/wastewater networks were developed using pinch analysis involving direct recycle/material recycle method. Property-integration technique was adopted to carry out direct recycle method. Particularly, a petroleum refinery was considered as a case study. In direct recycle methodology, minimum water discharge and minimum fresh water resource targets were estimated. Re-design (or retrofitting) of water allocation in the networks was undertaken. Chemical Oxygen Demand (COD) and hardness properties were taken as pollutants. This research was based on single and double contaminant approach for COD and hardness and the amount of fresh water was reduced from 340.0 m3/h to 149.0 m3/h (43.8%), 208.0 m3/h (61.18%) respectively. While regarding double contaminant approach, reduction in fresh water demand was 132.0 m3/h (38.8%). The required analysis was also carried out using mathematical programming technique. Operating software such as LINGO was used for these studies which have verified the graphical method results in a valuable and accurate way. Among the multiple water networks, the one possible water allocation network was developed based on mass exchange.

Keywords: minimization, water pinch, water management, pollution prevention

Procedia PDF Downloads 483
11663 The Impact of Mergers and Acquisitions on Financial Deepening in the Nigerian Banking Sector

Authors: Onyinyechi Joy Kingdom

Abstract:

Mergers and Acquisitions (M&A) have been proposed as a mechanism through which, problems associated with inefficiency or poor performance in financial institution could be addressed. The aim of this study is to examine the proposition that recapitalization of banks, which encouraged Mergers and Acquisitions in Nigeria banking system, would strengthen the domestic banks, improve financial deepening and the confidence of depositors. Hence, this study examines the impact of the 2005 M&A in the Nigerian-banking sector on financial deepening using mixed method (quantitative and qualitative approach). The quantitative process of this study utilised annual time series for financial deepening indicator for the period of 1997 to 2012. While, the qualitative aspect adopted semi-structured interview to collate data from three merged banks and three stand-alone banks to explore, understand and complement the quantitative results. Furthermore, a framework thematic analysis is employed to analyse the themes developed using NVivo 11 software. Using the quantitative approach, findings from the equality of mean test (EMT) used suggests that M&A have significant impact on financial deepening. However, this method is not robust enough given its weak validity as it does not control for other potential factors that may determine financial deepening. Thus, to control for other factors that may affect the level of financial deepening, a Multiple Regression Model (MRM) and Interrupted Times Series Analysis (ITSA) were applied. The coefficient for M&A dummy turned negative and insignificant using MRM. In addition, the estimated linear trend of the post intervention when ITSA was applied suggests that after M&A, the level of financial deepening decreased annually; however, this was statistically insignificant. Similarly, using the qualitative approach, the results from the interview supported the quantitative results from ITSA and MRM. The result suggests that interest rate should fall when capital base is increased to improve financial deepening. Hence, this study contributes to the existing literature the importance of other factors that may affect financial deepening and the economy when policies that will enhance bank performance and the economy are made. In addition, this study will enable the use of valuable policy instruments relevant to monetary authorities when formulating policies that will strengthen the Nigerian banking sector and the economy.

Keywords: mergers and acquisitions, recapitalization, financial deepening, efficiency, financial crisis

Procedia PDF Downloads 402
11662 FisherONE: Employing Distinct Pedagogy through Technology Integration in Senior Secondary Education

Authors: J. Kontoleon, D.Gall, M.Pidskalny

Abstract:

FisherONE offers a distinct pedagogic model for senior secondary education that integrates advanced technology to meet the learning needs of Year 11 and 12 students across Catholic schools in Queensland. As a fully online platform, FisherONE employs pedagogy that combines flexibility with personalized, data-driven learning. The model leverages tools like the MaxHub hybrid interactive system and AI-powered learning assistants to create tailored learning pathways that promote student autonomy and engagement. This paper examines FisherONE’s success in employing pedagogic strategies through technology. Initial findings suggest that students benefit from the blended approach of virtual assessments and real-time support, even as AI-assisted tools remain in the proof-of-concept phase. The study outlines how FisherONE plans to continue refining its educational methods to better serve students in distance learning environments, specifically in challenging subjects like physics. The integration of technology in FisherONE enhances the effectiveness of teaching and learning, addressing common challenges in online education by offering scalable, individualized learning experiences. This approach demonstrates the future potential of technology in education and the role it can play in fostering meaningful student outcomes.

Keywords: AI-assisted learning, innovative pedagogy, personalized learning, senior education, technology in education

Procedia PDF Downloads 21
11661 Balance Control Mechanisms in Individuals With Multiple Sclerosis in Virtual Reality Environment

Authors: Badriah Alayidi, Emad Alyahya

Abstract:

Background: Most people with Multiple Sclerosis (MS) report worsening balance as the condition progresses. Poor balance control is also well known to be a significant risk factor for both falling and fear of falling. The increased risk of falls with disease progression thus makes balance control an essential target of gait rehabilitation amongst people with MS. Intervention programs have developed various methods to improve balance control, and accumulating evidence suggests that exercise programs may help people with MS improve their balance. Among these methods, virtual reality (VR) is growing in popularity as a balance-training technique owing to its potential benefits, including better compliance and greater user happiness. However, it is not clear if a VR environment will induce different balance control mechanisms in MS as compared to healthy individuals or traditional environments. Therefore, this study aims to examine how individuals with MS control their balance in a VR setting. Methodology: The proposed study takes an empirical approach to estimate and determine the role of balance response in persons with MS using a VR environment. It will use primary data collected through patient observations, physiological and biomechanical evaluation of balance, and data analysis. Results: The preliminary systematic review and meta-analysis indicated that there was variability in terms of the outcome assessing balance response in people with MS. The preliminary results of these assessments have the potential to provide essential indicators of the progression of MS and contribute to the individualization of treatment and evaluation of the interventions’ effectiveness. The literature describes patients who have had the opportunity to experiment in VR settings and then used what they have learned in the real world, suggesting that this VR setting could be more appealing than conditional settings. The findings of the proposed study will be beneficial in estimating and determining the effect of VR on balance control in persons with MS. In previous studies, VR was shown to be an interesting approach to neurological rehabilitation, but more data are needed to support this approach in MS. Conclusions: The proposed study enables an assessment of balance and evaluations of a variety of physiological implications related to neural activity as well as biomechanical implications related to movement analysis.

Keywords: multiple sclerosis, virtual reality, postural control, balance

Procedia PDF Downloads 80
11660 Sea of Light: A Game 'Based Approach for Evidence-Centered Assessment of Collaborative Problem Solving

Authors: Svenja Pieritz, Jakab Pilaszanovich

Abstract:

Collaborative Problem Solving (CPS) is recognized as being one of the most important skills of the 21st century with having a potential impact on education, job selection, and collaborative systems design. Therefore, CPS has been adopted in several standardized tests, including the Programme for International Student Assessment (PISA) in 2015. A significant challenge of evaluating CPS is the underlying interplay of cognitive and social skills, which requires a more holistic assessment. However, the majority of the existing tests are using a questionnaire-based assessment, which oversimplifies this interplay and undermines ecological validity. Two major difficulties were identified: Firstly, the creation of a controllable, real-time environment allowing natural behaviors and communication between at least two people. Secondly, the development of an appropriate method to collect and synthesize both cognitive and social metrics of collaboration. This paper proposes a more holistic and automated approach to the assessment of CPS. To address these two difficulties, a multiplayer problem-solving game called Sea of Light was developed: An environment allowing students to deploy a variety of measurable collaborative strategies. This controlled environment enables researchers to monitor behavior through the analysis of game actions and chat. The according solution for the statistical model is a combined approach of Natural Language Processing (NLP) and Bayesian network analysis. Social exchanges via the in-game chat are analyzed through NLP and fed into the Bayesian network along with other game actions. This Bayesian network synthesizes evidence to track and update different subdimensions of CPS. Major findings focus on the correlations between the evidences collected through in- game actions, the participants’ chat features and the CPS self- evaluation metrics. These results give an indication of which game mechanics can best describe CPS evaluation. Overall, Sea of Light gives test administrators control over different problem-solving scenarios and difficulties while keeping the student engaged. It enables a more complete assessment based on complex, socio-cognitive information on actions and communication. This tool permits further investigations of the effects of group constellations and personality in collaborative problem-solving.

Keywords: bayesian network, collaborative problem solving, game-based assessment, natural language processing

Procedia PDF Downloads 136
11659 Abandoning 'One-Time' Optional Information Literacy Workshops for Year 1 Medical Students and Gearing towards an 'Embedded Librarianship' Approach

Authors: R. L. David, E. C. P. Tan, M. A. Ferenczi

Abstract:

This study aimed to investigate the effect of a 'one-time' optional Information Literacy (IL) workshop to enhance Year 1 medical students' literature search, writing, and citation management skills as directed by a customized five-year IL framework developed for LKC Medicine students. At the end of the IL workshop, the overall rated 'somewhat difficult' when finding, citing, and using information from sources. The study method is experimental using a standardized IL test to study the cohort effect of a 'one-time' optional IL workshop on Year 1 students; experimental group in comparison to Year 2 students; control group. Test scores from both groups were compared and analyzed using mean scores and one-way analysis of variance (ANOVA). Unexpectedly, there were no statistically significant differences between group means as determined by One-Way ANOVA (F₁,₁₉₃ = 3.37, p = 0.068, ηp² = 0.017). Challenges and shortfalls posed by 'one-time' interventions raised a rich discussion to adopt an 'embedded librarianship' approach, which shifts the medial librarians' role into the curriculum and uses Team Based Learning to teach IL skills to medical students. The customized five-year IL framework developed for LKC Medicine students becomes a useful librarian-faculty model for embedding and bringing IL into the classroom.

Keywords: information literacy, 'one-time' interventions, medical students, standardized tests, embedded librarianship, curriculum, medical librarians

Procedia PDF Downloads 115