Search results for: network restructuring
2536 Analyzing the Street Pattern Characteristics on Young People’s Choice to Walk or Not: A Study Based on Accelerometer and Global Positioning Systems Data
Authors: Ebru Cubukcu, Gozde Eksioglu Cetintahra, Burcin Hepguzel Hatip, Mert Cubukcu
Abstract:
Obesity and overweight cause serious health problems. Public and private organizations aim to encourage walking in various ways in order to cope with the problem of obesity and overweight. This study aims to understand how the spatial characteristics of urban street pattern, connectivity and complexity influence young people’s choice to walk or not. 185 public university students in Izmir, the third largest city in Turkey, participated in the study. Each participant had worn an accelerometer and a global positioning (GPS) device for a week. The accelerometer device records data on the intensity of the participant’s activity at a specified time interval, and the GPS device on the activities’ locations. Combining the two datasets, activity maps are derived. These maps are then used to differentiate the participants’ walk trips and motor vehicle trips. Given that, the frequency of walk and motor vehicle trips are calculated at the street segment level, and the street segments are then categorized into two as ‘preferred by pedestrians’ and ‘preferred by motor vehicles’. Graph Theory-based accessibility indices are calculated to quantify the spatial characteristics of the streets in the sample. Six different indices are used: (I) edge density, (II) edge sinuosity, (III) eta index, (IV) node density, (V) order of a node, and (VI) beta index. T-tests show that the index values for the ‘preferred by pedestrians’ and ‘preferred by motor vehicles’ are significantly different. The findings indicate that the spatial characteristics of the street network have a measurable effect on young people’s choice to walk or not. Policy implications are discussed. This study is funded by the Scientific and Technological Research Council of Turkey, Project No: 116K358.Keywords: graph theory, walkability, accessibility, street network
Procedia PDF Downloads 2262535 The Optimal Irrigation in the Mitidja Plain
Authors: Gherbi Khadidja
Abstract:
In the Mediterranean region, water resources are limited and very unevenly distributed in space and time. The main objective of this project is the development of a wireless network for the management of water resources in northern Algeria, the Mitidja plain, which helps farmers to irrigate in the most optimized way and solve the problem of water shortage in the region. Therefore, we will develop an aid tool that can modernize and replace some traditional techniques, according to the real needs of the crops and according to the soil conditions as well as the climatic conditions (soil moisture, precipitation, characteristics of the unsaturated zone), These data are collected in real-time by sensors and analyzed by an algorithm and displayed on a mobile application and the website. The results are essential information and alerts with recommendations for action to farmers to ensure the sustainability of the agricultural sector under water shortage conditions. In the first part: We want to set up a wireless sensor network, for precise management of water resources, by presenting another type of equipment that allows us to measure the water content of the soil, such as the Watermark probe connected to the sensor via the acquisition card and an Arduino Uno, which allows collecting the captured data and then program them transmitted via a GSM module that will send these data to a web site and store them in a database for a later study. In a second part: We want to display the results on a website or a mobile application using the database to remotely manage our smart irrigation system, which allows the farmer to use this technology and offers the possibility to the growers to access remotely via wireless communication to see the field conditions and the irrigation operation, at home or at the office. The tool to be developed will be based on satellite imagery as regards land use and soil moisture. These tools will make it possible to follow the evolution of the needs of the cultures in time, but also to time, and also to predict the impact on water resources. According to the references consulted, if such a tool is used, it can reduce irrigation volumes by up to up to 40%, which represents more than 100 million m3 of savings per year for the Mitidja. This volume is equivalent to a medium-size dam.Keywords: optimal irrigation, soil moisture, smart irrigation, water management
Procedia PDF Downloads 1092534 Cryptography Based Authentication Methods
Authors: Mohammad A. Alia, Abdelfatah Aref Tamimi, Omaima N. A. Al-Allaf
Abstract:
This paper reviews a comparison study on the most common used authentication methods. Some of these methods are actually based on cryptography. In this study, we show the main cryptographic services. Also, this study presents a specific discussion about authentication service, since the authentication service is classified into several categorizes according to their methods. However, this study gives more about the real life example for each of the authentication methods. It talks about the simplest authentication methods as well about the available biometric authentication methods such as voice, iris, fingerprint, and face authentication.Keywords: information security, cryptography, system access control, authentication, network security
Procedia PDF Downloads 4712533 Collective Actions of the Women in Black of the Gaza Strip
Authors: Lina Fernanda González
Abstract:
Through this essay, an attempt will be made to make visible the work of the international network of the Women in Black (henceforth WB), on the one hand. On the other hand, the work of Women International Courts as a political practice will be showed as well, focusing their work into generating a collective identity - becoming thusly a peace building space, rescuing in this way the symbolic value of their practices consisting in peaceful resistance as political scenarios, that serve, too, a pedagogical and healing purposes.Keywords: collective actions, women, peace, human rights and humanitarian international law
Procedia PDF Downloads 3962532 True Detective as a Southern Gothic: A Study of Its Music-Lyrics
Authors: Divya Sharma
Abstract:
Nic Pizzolatto’s True Detective offers profound mythological and philosophical ramblings for audiences with literary sensibilities. An American Sothern Gothic with its bayon landscape of the Gulf Coast of Louisiana, where two detectives Rustin Cohle and Martin Hart begin investigating the isolated murder of Dora Lange, only to discover an entrenched network of perversion and corruption, offers an existential outlook. The proposed research paper shall attempt to investigate the pervasive themes of gothic and existentialism in the music of the first season of the series.Keywords: gothic, music, existentialism, mythology, philosophy
Procedia PDF Downloads 5102531 Delineating Floodplain along the Nasia River in Northern Ghana Using HAND Contour
Authors: Benjamin K. Ghansah, Richard K. Appoh, Iliya Nababa, Eric K. Forkuo
Abstract:
The Nasia River is an important source of water for domestic and agricultural purposes to the inhabitants of its catchment. Major farming activities takes place within the floodplain of the river and its network of tributaries. The actual inundation extent of the river system is; however, unknown. Reasons for this lack of information include financial constraints and inadequate human resources as flood modelling is becoming increasingly complex by the day. Knowledge of the inundation extent will help in the assessment of risk posed by the annual flooding of the river, and help in the planning of flood recession agricultural activities. This study used a simple terrain based algorithm, Height Above Nearest Drainage (HAND), to delineate the floodplain of the Nasia River and its tributaries. The HAND model is a drainage normalized digital elevation model, which has its height reference based on the local drainage systems rather than the average mean sea level (AMSL). The underlying principle guiding the development of the HAND model is that hillslope flow paths behave differently when the reference gradient is to the local drainage network as compared to the seaward gradient. The new terrain model of the catchment was created using the NASA’s SRTM Digital Elevation Model (DEM) 30m as the only data input. Contours (HAND Contour) were then generated from the normalized DEM. Based on field flood inundation survey, historical information of flooding of the area as well as satellite images, a HAND Contour of 2m was found to best correlates with the flood inundation extent of the river and its tributaries. A percentage accuracy of 75% was obtained when the surface area created by the 2m contour was compared with surface area of the floodplain computed from a satellite image captured during the peak flooding season in September 2016. It was estimated that the flooding of the Nasia River and its tributaries created a floodplain area of 1011 km².Keywords: digital elevation model, floodplain, HAND contour, inundation extent, Nasia River
Procedia PDF Downloads 4572530 Artificial Neural Networks and Hidden Markov Model in Landslides Prediction
Authors: C. S. Subhashini, H. L. Premaratne
Abstract:
Landslides are the most recurrent and prominent disaster in Sri Lanka. Sri Lanka has been subjected to a number of extreme landslide disasters that resulted in a significant loss of life, material damage, and distress. It is required to explore a solution towards preparedness and mitigation to reduce recurrent losses associated with landslides. Artificial Neural Networks (ANNs) and Hidden Markov Model (HMMs) are now widely used in many computer applications spanning multiple domains. This research examines the effectiveness of using Artificial Neural Networks and Hidden Markov Model in landslides predictions and the possibility of applying the modern technology to predict landslides in a prominent geographical area in Sri Lanka. A thorough survey was conducted with the participation of resource persons from several national universities in Sri Lanka to identify and rank the influencing factors for landslides. A landslide database was created using existing topographic; soil, drainage, land cover maps and historical data. The landslide related factors which include external factors (Rainfall and Number of Previous Occurrences) and internal factors (Soil Material, Geology, Land Use, Curvature, Soil Texture, Slope, Aspect, Soil Drainage, and Soil Effective Thickness) are extracted from the landslide database. These factors are used to recognize the possibility to occur landslides by using an ANN and HMM. The model acquires the relationship between the factors of landslide and its hazard index during the training session. These models with landslide related factors as the inputs will be trained to predict three classes namely, ‘landslide occurs’, ‘landslide does not occur’ and ‘landslide likely to occur’. Once trained, the models will be able to predict the most likely class for the prevailing data. Finally compared two models with regards to prediction accuracy, False Acceptance Rates and False Rejection rates and This research indicates that the Artificial Neural Network could be used as a strong decision support system to predict landslides efficiently and effectively than Hidden Markov Model.Keywords: landslides, influencing factors, neural network model, hidden markov model
Procedia PDF Downloads 3842529 Identifying Patterns of Seeking and Providing Help Online among Adolescents in Israel
Authors: Gali Pesin, Yuliya Lipshits-Braziler, Sima Amram-Vaknin, Moshe Tatar
Abstract:
The present study introduces four different patterns of seeking and providing help online among adolescents: (I) ‘Transceivers’ - adolescents who both seek as well as provide help online; (II) ‘Receivers’ - adolescents who seek help online, yet don’t provide it; (III) ‘Transmitters’ - adolescents who provide help online, yet don’t seek it; and (IV) ‘Idles’ - adolescents who refrain from seeking and providing help online. The study examined differences in seeking and providing help online between possible combinations of the four patterns, as well as gender differences within each pattern. Data was collected from 528 adolescents in Israel (59% were girls). Findings revealed that Transceivers are the largest group (45%) in this study, with higher representation of girls (65%). These adolescents seek help mainly around social difficulties, and they turn to peers who are both known and unknown to them. In addition, their preferred way to seek and provide help is through social network sites. Moreover, they often accept and give others emotional support. Receivers are the smallest group (5%) in this study. They turn to both known and unknown professionals more often than to friends and family. In addition, they seek help mostly around health and nutrition issues, and they usually receive instrumental support. For Receivers, the most important factor for seeking help online is anonymity, and the least important factor is familiarity with the help giver. Transmitters represent 16% of the adolescents in this study, with a greater representation of boys (52%). Their main reason to refrain from seeking help online is self-reliance. Nevertheless, these adolescents provide help to others online, mainly to those known to them through posting or responding to posts on social network sites. Idles represent 34% of the adolescents in this study. They refrain from seeking help online mainly due to their preference to seek help face to face, and due to their lack of trust in the internet or those using it. Idles and Transmitters are willing to seek help online mostly from friends and family. In addition, they are willing seek help online mainly regarding questions concerning military or civil service. They consider the most important facilitators for seeking help online as confidentiality and reliability. The present study’s main contribution is exploring the role of providing online help in understanding the adolescent behavior of seeking help online. In addition, the results of the present study have practical implications for the work of mental health providers, such as counseling psychologists and online mental health support.Keywords: adolescents, counseling, online help-seeking, online help-providing
Procedia PDF Downloads 1632528 Hamiltonian Paths and Cycles Passing through Prescribed Edges in the Balanced Hypercubes
Authors: Dongqin Cheng
Abstract:
The n-dimensional balanced hypercube BHn (n ≥ 1) has been proved to be a bipartite graph. Let P be a set of edges whose induced subgraph consists of pairwise vertex-disjoint paths. For any two vertices u, v from different partite sets of V (BHn). In this paper, we prove that if |P| ≤ 2n − 2 and the subgraph induced by P has neither u nor v as internal vertices, or both of u and v as end-vertices, then BHn contains a Hamiltonian path joining u and v passing through P. As a corollary, if |P| ≤ 2n−1, then the BHn contains a Hamiltonian cycle passing through P.Keywords: interconnection network, balanced hypercube, Hamiltonian cycle, prescribed edges
Procedia PDF Downloads 2052527 Long-Term Subcentimeter-Accuracy Landslide Monitoring Using a Cost-Effective Global Navigation Satellite System Rover Network: Case Study
Authors: Vincent Schlageter, Maroua Mestiri, Florian Denzinger, Hugo Raetzo, Michel Demierre
Abstract:
Precise landslide monitoring with differential global navigation satellite system (GNSS) is well known, but technical or economic reasons limit its application by geotechnical companies. This study demonstrates the reliability and the usefulness of Geomon (Infrasurvey Sàrl, Switzerland), a stand-alone and cost-effective rover network. The system permits deploying up to 15 rovers, plus one reference station for differential GNSS. A dedicated radio communication links all the modules to a base station, where an embedded computer automatically provides all the relative positions (L1 phase, open-source RTKLib software) and populates an Internet server. Each measure also contains information from an internal inclinometer, battery level, and position quality indices. Contrary to standard GNSS survey systems, which suffer from a limited number of beacons that must be placed in areas with good GSM signal, Geomon offers greater flexibility and permits a real overview of the whole landslide with good spatial resolution. Each module is powered with solar panels, ensuring autonomous long-term recordings. In this study, we have tested the system on several sites in the Swiss mountains, setting up to 7 rovers per site, for an 18 month-long survey. The aim was to assess the robustness and the accuracy of the system in different environmental conditions. In one case, we ran forced blind tests (vertical movements of a given amplitude) and compared various session parameters (duration from 10 to 90 minutes). Then the other cases were a survey of real landslides sites using fixed optimized parameters. Sub centimetric-accuracy with few outliers was obtained using the best parameters (session duration of 60 minutes, baseline 1 km or less), with the noise level on the horizontal component half that of the vertical one. The performance (percent of aborting solutions, outliers) was reduced with sessions shorter than 30 minutes. The environment also had a strong influence on the percent of aborting solutions (ambiguity search problem), due to multiple reflections or satellites obstructed by trees and mountains. The length of the baseline (distance reference-rover, single baseline processing) reduced the accuracy above 1 km but had no significant effect below this limit. In critical weather conditions, the system’s robustness was limited: snow, avalanche, and frost-covered some rovers, including the antenna and vertically oriented solar panels, leading to data interruption; and strong wind damaged a reference station. The possibility of changing the sessions’ parameters remotely was very useful. In conclusion, the rover network tested provided the foreseen sub-centimetric-accuracy while providing a dense spatial resolution landslide survey. The ease of implementation and the fully automatic long-term survey were timesaving. Performance strongly depends on surrounding conditions, but short pre-measures should allow moving a rover to a better final placement. The system offers a promising hazard mitigation technique. Improvements could include data post-processing for alerts and automatic modification of the duration and numbers of sessions based on battery level and rover displacement velocity.Keywords: GNSS, GSM, landslide, long-term, network, solar, spatial resolution, sub-centimeter.
Procedia PDF Downloads 1112526 Present Status, Driving Forces and Pattern Optimization of Territory in Hubei Province, China
Abstract:
“National Territorial Planning (2016-2030)” was issued by the State Council of China in 2017. As an important initiative of putting it into effect, territorial planning at provincial level makes overall arrangement of territorial development, resources and environment protection, comprehensive renovation and security system construction. Hubei province, as the pivot of the “Rise of Central China” national strategy, is now confronted with great opportunities and challenges in territorial development, protection, and renovation. Territorial spatial pattern experiences long time evolution, influenced by multiple internal and external driving forces. It is not clear what are the main causes of its formation and what are effective ways of optimizing it. By analyzing land use data in 2016, this paper reveals present status of territory in Hubei. Combined with economic and social data and construction information, driving forces of territorial spatial pattern are then analyzed. Research demonstrates that the three types of territorial space aggregate distinctively. The four aspects of driving forces include natural background which sets the stage for main functions, population and economic factors which generate agglomeration effect, transportation infrastructure construction which leads to axial expansion and significant provincial strategies which encourage the established path. On this basis, targeted strategies for optimizing territory spatial pattern are then put forward. Hierarchical protection pattern should be established based on development intensity control as respect for nature. By optimizing the layout of population and industry and improving the transportation network, polycentric network-based development pattern could be established. These findings provide basis for Hubei Territorial Planning, and reference for future territorial planning in other provinces.Keywords: driving forces, Hubei, optimizing strategies, spatial pattern, territory
Procedia PDF Downloads 1052525 Adaptive Routing in NoC-Based Heterogeneous MPSoCs
Authors: M. K. Benhaoua, A. E. H. Benyamina, T. Djeradi, P. Boulet
Abstract:
In this paper, we propose adaptive routing that considers the routing of communications in order to optimize the overall performance. The routing technique uses a newly proposed Algorithm to route communications between the tasks. The routing we propose of the communications leads to a better optimization of several performance metrics (time and energy consumption). Experimental results show that the proposed routing approach provides significant performance improvements when compared to those using static routing.Keywords: multi-processor systems-on-chip (mpsocs), network-on-chip (noc), heterogeneous architectures, adaptive routin
Procedia PDF Downloads 3752524 Gender Justice and Feminist Self-Management Practices in the Solidarity Economy: A Quantitative Analysis of the Factors that Impact Enterprises Formed by Women in Brazil
Authors: Maria de Nazaré Moraes Soares, Silvia Maria Dias Pedro Rebouças, José Carlos Lázaro
Abstract:
The Solidarity Economy (SE) acts in the re-articulation of the economic field to the other spheres of social action. The significant participation of women in SE resulted in the formation of a national network of self-managed enterprises in Brazil: The Solidarity and Feminist Economy Network (SFEN). The objective of the research is to identify factors of gender justice and feminist self-management practices that adhere to the reality of women in SE enterprises. The conceptual apparatus related to feminist studies in this research covers Nancy Fraser approaches on gender justice, and Patricia Yancey Martin approaches on feminist management practices, and authors of postcolonial feminism such as Mohanty and Maria Lugones, who lead the discussion to peripheral contexts, a necessary perspective when observing the women’s movement in SE. The research has a quantitative nature in the phases of data collection and analysis. The data collection was performed through two data sources: the database mapped in Brazil in 2010-2013 by the National Information System in Solidary Economy and 150 questionnaires with women from 16 enterprises in SFEN, in a state of Brazilian northeast. The data were analyzed using the multivariate statistical technique of Factor Analysis. The results show that the factors that define gender justice and feminist self-management practices in SE are interrelated in several levels, proving statistically the intersectional condition of the issue of women. The evidence from the quantitative analysis allowed us to understand the dimensions of gender justice and feminist management practices intersectionality; in this sense, the non-distribution of domestic work interferes in non-representation of women in public spaces, especially in peripheral contexts. The study contributes with important reflections to the studies of this area and can be complemented in the future with a qualitative research that approaches the perspective of women in the context of the SE self-management paradigm.Keywords: feminist management practices, gender justice, self-management, solidarity economy
Procedia PDF Downloads 1292523 Investigation of Processing Conditions on Rheological Features of Emulsion Gels and Oleogels Stabilized by Biopolymers
Authors: M. Sarraf, J. E. Moros, M. C. Sánchez
Abstract:
Oleogels are self-standing systems that are able to trap edible liquid oil into a tridimensional network and also help to use less fat by forming crystallization oleogelators. There are different ways to generate oleogelation and oil structuring, including direct dispersion, structured biphasic systems, oil sorption, and indirect method (emulsion-template). The selection of processing conditions as well as the composition of the oleogels is essential to obtain a stable oleogel with characteristics suitable for its purpose. In this sense, one of the ingredients widely used in food products to produce oleogels and emulsions is polysaccharides. Basil seed gum (BSG), with the scientific name Ocimum basilicum, is a new native polysaccharide with high viscosity and pseudoplastic behavior because of its high molecular weight in the food industry. Also, proteins can stabilize oil in water due to the presence of amino and carboxyl moieties that result in surface activity. Whey proteins are widely used in the food industry due to available, cheap ingredients, nutritional and functional characteristics such as emulsifier and a gelling agent, thickening, and water-binding capacity. In general, the interaction of protein and polysaccharides has a significant effect on the food structures and their stability, like the texture of dairy products, by controlling the interactions in macromolecular systems. Using edible oleogels as oil structuring helps for targeted delivery of a component trapped in a structural network. Therefore, the development of efficient oleogel is essential in the food industry. A complete understanding of the important points, such as the ratio oil phase, processing conditions, and concentrations of biopolymers that affect the formation and stability of the emulsion, can result in crucial information in the production of a suitable oleogel. In this research, the effects of oil concentration and pressure used in the manufacture of the emulsion prior to obtaining the oleogel have been evaluated through the analysis of droplet size and rheological properties of obtained emulsions and oleogels. The results show that the emulsion prepared in the high-pressure homogenizer (HPH) at higher pressure values has smaller droplet sizes and a higher uniformity in the size distribution curve. On the other hand, in relation to the rheological characteristics of the emulsions and oleogels obtained, the predominantly elastic character of the systems must be noted, as they present values of the storage modulus higher than those of losses, also showing an important plateau zone, typical of structured systems. In the same way, if steady-state viscous flow tests have been analyzed on both emulsions and oleogels, the result is that, once again, the pressure used in the homogenizer is an important factor for obtaining emulsions with adequate droplet size and the subsequent oleogel. Thus, various routes for trapping oil inside a biopolymer matrix with adjustable mechanical properties could be applied for the creation of the three-dimensional network in order to the oil absorption and creating oleogel.Keywords: basil seed gum, particle size, viscoelastic properties, whey protein
Procedia PDF Downloads 662522 Synthesis and Characterization of PH Sensitive Hydrogel and Its Application in Controlled Drug Release of Tramadol
Authors: Naima Bouslah, Leila Bounabi, Farid Ouazib, Nabila Haddadine
Abstract:
Conventional release dosage forms are known to provide an immediate release of the drug. Controlling the rate of drug release from polymeric matrices is very important for a number of applications, particularly in the pharmaceutical area. Hydrogels are polymers in three-dimensional network arrangement, which can absorb and retain large amounts of water without dissolution. They have been frequently used to develop controlled released formulations for oral administration because they can extend the duration of drug release and thus reduce dose to be administrated improving patient compliance. Tramadol is an opioid pain medication used to treat moderate to moderately severe pain. When taken as an immediate-release oral formulation, the onset of pain relief usually occurs within about an hour. In the present work, we synthesized pH-responsive hydrogels of (hydroxyl ethyl methacrylate-co-acrylic acid), (HEMA-AA) for control drug delivery of tramadol in the gastro-intestinal tractus. The hydrogels with different acrylic acid content, were synthesized by free radical polymerization and characterized by FTIR spectroscopy, X ray diffraction analysis (XRD), differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). FTIR spectroscopy has shown specific hydrogen bonding interactions between the carbonyl groups of the hydrogels and hydroxyl groups of tramadol. Both the XRD and DSC studies revealed that the introduction of tramadol in the hydrogel network induced the amorphization of the drug. The swelling behaviour, absorptive kinetics and the release kinetics of tramadol in simulated gastric fluid (pH 1.2) and in simulated intestinal fluid (pH 7.4) were also investigated. The hydrogels exhibited pH-responsive behavior in the swelling study. The (HEMA-AA) hydrogel swelling was much higher in pH =7.4 medium. The tramadol release was significantly increased when pH of the medium was changed from simulated gastric fluid (pH 1.2) to simulated intestinal fluid (pH 7.4). Using suitable mathematical models, the apparent diffusional coefficients and the corresponding kinetic parameters have been calculated.Keywords: biopolymres, drug delivery, hydrogels, tramadol
Procedia PDF Downloads 3582521 Distant Speech Recognition Using Laser Doppler Vibrometer
Authors: Yunbin Deng
Abstract:
Most existing applications of automatic speech recognition relies on cooperative subjects at a short distance to a microphone. Standoff speech recognition using microphone arrays can extend the subject to sensor distance somewhat, but it is still limited to only a few feet. As such, most deployed applications of standoff speech recognitions are limited to indoor use at short range. Moreover, these applications require air passway between the subject and the sensor to achieve reasonable signal to noise ratio. This study reports long range (50 feet) automatic speech recognition experiments using a Laser Doppler Vibrometer (LDV) sensor. This study shows that the LDV sensor modality can extend the speech acquisition standoff distance far beyond microphone arrays to hundreds of feet. In addition, LDV enables 'listening' through the windows for uncooperative subjects. This enables new capabilities in automatic audio and speech intelligence, surveillance, and reconnaissance (ISR) for law enforcement, homeland security and counter terrorism applications. The Polytec LDV model OFV-505 is used in this study. To investigate the impact of different vibrating materials, five parallel LDV speech corpora, each consisting of 630 speakers, are collected from the vibrations of a glass window, a metal plate, a plastic box, a wood slate, and a concrete wall. These are the common materials the application could encounter in a daily life. These data were compared with the microphone counterpart to manifest the impact of various materials on the spectrum of the LDV speech signal. State of the art deep neural network modeling approaches is used to conduct continuous speaker independent speech recognition on these LDV speech datasets. Preliminary phoneme recognition results using time-delay neural network, bi-directional long short term memory, and model fusion shows great promise of using LDV for long range speech recognition. To author’s best knowledge, this is the first time an LDV is reported for long distance speech recognition application.Keywords: covert speech acquisition, distant speech recognition, DSR, laser Doppler vibrometer, LDV, speech intelligence surveillance and reconnaissance, ISR
Procedia PDF Downloads 1792520 Three-Dimensional Carbon Foam Based Asymmetric Assembly of Metal Oxides Electrodes for High-Performance Solid-State Micro-Supercapacitor
Authors: Sumana Kumar, Abha Misra
Abstract:
Micro-supercapacitors hold great attention as one of the promising energy storage devices satisfying the increasing quest for miniaturized and portable devices. Despite having impressive power density, superior cyclic lifetime, and high charge-discharge rates, micro-supercapacitors still suffer from low energy density, which limits their practical application. The energy density (E=1/2CV²) can be increased either by increasing specific capacitance (C) or voltage range (V). Asymmetric micro-supercapacitors have attracted great attention by using two different electrode materials to expand the voltage window and thus increase the energy density. Currently, versatile fabrication technologies such as inkjet printing, lithography, laser scribing, etc., are used to directly or indirectly pattern the electrode material; these techniques still suffer from scalable production and cost inefficiency. Here, we demonstrate the scalable production of a three-dimensional (3D) carbon foam (CF) based asymmetric micro-supercapacitor by spray printing technique on an array of interdigital electrodes. The solid-state asymmetric micro-supercapacitor comprised of CF-MnO positive electrode and CF-Fe₂O₃ negative electrode achieves a high areal capacitance of 18.4 mF/cm² (2326.8 mF/cm³) at 5 mV/s and a wider potential window of 1.4 V. Consequently, a superior energy density of 5 µWh/cm² is obtained, and high cyclic stability is confirmed with retention of the initial capacitance by 86.1% after 10000 electrochemical cycles. The optimized decoration of pseudocapacitive metal oxides in the 3D carbon network helps in high electrochemical utilization of materials where the 3D interconnected network of carbon provides overall electrical conductivity and structural integrity. The research provides a simple and scalable spray printing method to fabricate an asymmetric micro-supercapacitor using a custom-made mask that can be integrated on a large scale.Keywords: asymmetric micro-supercapacitors, high energy-density, hybrid materials, three-dimensional carbon-foam
Procedia PDF Downloads 1152519 Landslide Susceptibility Mapping Using Soft Computing in Amhara Saint
Authors: Semachew M. Kassa, Africa M Geremew, Tezera F. Azmatch, Nandyala Darga Kumar
Abstract:
Frequency ratio (FR) and analytical hierarchy process (AHP) methods are developed based on past landslide failure points to identify the landslide susceptibility mapping because landslides can seriously harm both the environment and society. However, it is still difficult to select the most efficient method and correctly identify the main driving factors for particular regions. In this study, we used fourteen landslide conditioning factors (LCFs) and five soft computing algorithms, including Random Forest (RF), Support Vector Machine (SVM), Logistic Regression (LR), Artificial Neural Network (ANN), and Naïve Bayes (NB), to predict the landslide susceptibility at 12.5 m spatial scale. The performance of the RF (F1-score: 0.88, AUC: 0.94), ANN (F1-score: 0.85, AUC: 0.92), and SVM (F1-score: 0.82, AUC: 0.86) methods was significantly better than the LR (F1-score: 0.75, AUC: 0.76) and NB (F1-score: 0.73, AUC: 0.75) method, according to the classification results based on inventory landslide points. The findings also showed that around 35% of the study region was made up of places with high and very high landslide risk (susceptibility greater than 0.5). The very high-risk locations were primarily found in the western and southeastern regions, and all five models showed good agreement and similar geographic distribution patterns in landslide susceptibility. The towns with the highest landslide risk include Amhara Saint Town's western part, the Northern part, and St. Gebreal Church villages, with mean susceptibility values greater than 0.5. However, rainfall, distance to road, and slope were typically among the top leading factors for most villages. The primary contributing factors to landslide vulnerability were slightly varied for the five models. Decision-makers and policy planners can use the information from our study to make informed decisions and establish policies. It also suggests that various places should take different safeguards to reduce or prevent serious damage from landslide events.Keywords: artificial neural network, logistic regression, landslide susceptibility, naïve Bayes, random forest, support vector machine
Procedia PDF Downloads 822518 The Lessons Learned from Managing Malignant Melanoma During COVID-19 in a Plastic Surgery Unit in Ireland
Authors: Amenah Dhannoon, Ciaran Martin Hurley, Laura Wrafter, Podraic J. Regan
Abstract:
Introduction: The COVID-19 pandemic continues to present unprecedented challenges for healthcare systems. This has resulted in the pragmatic shift in the practice of plastic surgery units worldwide. During this period, many units reported a significant fall in urgent melanoma referrals, leading to patients presenting with advanced disease requiring more extensive surgery and inferior outcomes. Our objective was to evaluate our unit's experience with both non-invasive and invasive melanoma during the COVID-19 pandemic and characterize our experience and contrast it to that experienced by our neighbors in the UK, mainland Europe and North America. Methods: a retrospective chart review was performed on all patients diagnosed with invasive and non-invasive cutaneous melanoma between March to December of 2019 (control) compared to 2020 (COVID-19 pandemic) in a single plastic surgery unit in Ireland. Patient demographics, referral source, surgical procedures, tumour characteristics, radiological findings, oncological therapies and follow-up were recorded. All data were anonymized and stored in Microsoft Excel. Results: A total of 589 patients were included in the study. Of these, 314 (53%) with invasive melanoma, compared to 275 (47%) with the non-invasive disease. Overall, more patients were diagnosed with both invasive and non-invasive melanoma in 2020 than in 2019 (p<0.05). However, significantly longer waiting times in 2020 (64 days) compared to 2019 (28 days) (p<0.05), with the majority of the referral being from GP in 2019 (83%) compared to 61% in 2020. Positive sentinel lymph node were higher in 2019 at 56% (n=28) compared to 24% (n=22) in 2020. There was no statistically significant difference in the tutor characteristics or metastasis status. Discussion: While other countries have noticed a fall in the melanoma diagnosis. Our units experienced a higher number of disease diagnoses. This can be due to multiple reasons. In Ireland, the government reached an early agreement with the private sector to continue elective surgery on an urgent basis in private hospitals. This allowed access to local anesthetic procedures and local skin cancer cases were triaged to non-COVID-19 provider centers. Our unit also adapted a fast, effective and minimal patient contact strategy for triaging skin cancer based on telemedicine. Thirdly, a skin cancer nurse specialist maintained patient follow-ups and triaging a dedicated email service. Finally, our plastic surgery service continued to maintain a virtual complex skin cancer multidisciplinary team meeting during the pandemic, ensuring local clinical governance has adhered to each clinical case. Conclusion: Our study highlights that with the prompt efficient restructuring of services, we could reserve successful management of skin cancer even in the most devastating times. It is important to reflect on the success during the pandemic and emphasize the importance of preparation for a potentially difficult futureKeywords: malignant melanoma, skin cancer, COVID-19, triage
Procedia PDF Downloads 1722517 A Study of Resin-Dye Fixation on Dyeing Properties of Cotton Fabrics Using Melamine Based Resins and a Reactive Dye
Authors: Nurudeen Ayeni, Kasali Bello, Ovi Abayeh
Abstract:
Study of the effect of dye–resin complexation on the degree of dye absorption were carried out using Procion Blue MX-R to dye cotton fabric in the presence hexamethylol melamine (MR 6) and its phosphate derivative (MPR 4) for resination. The highest degree of dye exhaustion was obtained at 400 C for 1 hour with the resinated fabric showing more affinity for the dye than the ordinary fiber. Improved fastness properties was recorded which show a relatively higher stability of dye–resin–cellulose network formed.Keywords: cotton fabric, reactive dye, dyeing, resination
Procedia PDF Downloads 4082516 Designing Intelligent Adaptive Controller for Nonlinear Pendulum Dynamical System
Authors: R. Ghasemi, M. R. Rahimi Khoygani
Abstract:
This paper proposes the designing direct adaptive neural controller to apply for a class of a nonlinear pendulum dynamic system. The radial basis function (RBF) neural adaptive controller is robust in presence of external and internal uncertainties. Both the effectiveness of the controller and robustness against disturbances are importance of this paper. The simulation results show the promising performance of the proposed controller.Keywords: adaptive neural controller, nonlinear dynamical, neural network, RBF, driven pendulum, position control
Procedia PDF Downloads 4822515 Family Firm Internationalization: Identification of Alternative Success Pathways
Authors: Sascha Kraus, Wolfgang Hora, Philipp Stieg, Thomas Niemand, Ferdinand Thies, Matthias Filser
Abstract:
In most countries, small and medium-sized enterprises (SME) are the backbone of the economy due to their impact on job creation, innovation and wealth creation. Moreover, the ongoing globalization makes it inevitable – even for SME that traditionally focused on their domestic markets – to internationalize their business activities to realize further growth and survive in international markets. Thus, internationalization has become one of the most common growth strategies for SME and has received increasing scholarly attention over the last two decades. One the downside internationalization can be also regarded as the most complex strategy that a firm can undertake. Particularly for family firms, that are often characterized by limited financial capital, a risk-averse nature and limited growth aspirations, it could be argued that family firms are more likely to face greater challenges when taking the pathway to internationalization. Especially the triangulation of family, ownership, and management (so-called ‘familiness’) manifests in a unique behavior and decision-making process which is often characterized by the importance given to noneconomic goals and distinguishes a family firm from other businesses. Taking this into account, the concept of socio-emotional wealth (SEW) has been evolved to describe the behavior of family firms. In order to investigate how different internal and external firm characteristics shape internationalization success of family firms, we drew on a sample consisting of 297 small and medium-sized family firms from Germany, Austria, Switzerland, and Liechtenstein. Thus, we include SEW as essential family firm characteristic and added the two major intra-organizational characteristics, entrepreneurial orientation (EO), absorptive capacity (AC) as well as collaboration intensity (CI) and relational knowledge (RK) as two major external network characteristics. Based on previous research we assume that these characteristics are important to explain internationalization success of family firm SME. Regarding the data analysis, we applied a Fuzzy Set Qualitative Comparative Analysis (fsQCA), an approach that allows identifying configurations of firm characteristics, specifically used to study complex causal relationships where traditional regression techniques reach their limits. Results indicate that several combinations of these family firm characteristics can lead to international success, with no permanently required key characteristic. Instead, there are many roads to walk down for family firms to achieve internationalization success. Consequently, our data states that family owned SME are heterogeneous and internationalization is a complex and dynamic process. Results further show that network related characteristics occur in all sets, thus represent an essential element in the internationalization process of family owned SME. The contribution of our study is twofold, as we investigate different forms of international expansion for family firms and how to improve them. First, we are able to broaden the understanding of the intersection between family firm and SME internationalization with respect to major intra-organizational and network-related variables. Second, from a practical perspective, we offer family firm owners a basis for setting up internal capabilities to achieve international success.Keywords: entrepreneurial orientation, family firm, fsQCA, internationalization, socio-emotional wealth
Procedia PDF Downloads 2412514 ANDASA: A Web Environment for Artistic and Cultural Data Representation
Authors: Carole Salis, Marie F. Wilson, Fabrizio Murgia, Cristian Lai, Franco Atzori, Giulia M. Orrù
Abstract:
ANDASA is a knowledge management platform for the capitalization of knowledge and cultural assets for the artistic and cultural sectors. It was built based on the priorities expressed by the participating artists. Through mapping artistic activities and specificities, it enables to highlight various aspects of the artistic research and production. Such instrument will contribute to create networks and partnerships, as it enables to evidentiate who does what, in what field, using which methodology. The platform is accessible to network participants and to the general public.Keywords: cultural promotion, knowledge representation, cultural maping, ICT
Procedia PDF Downloads 4262513 Non-Invasive Characterization of the Mechanical Properties of Arterial Walls
Authors: Bruno RamaëL, GwenaëL Page, Catherine Knopf-Lenoir, Olivier Baledent, Anne-Virginie Salsac
Abstract:
No routine technique currently exists for clinicians to measure the mechanical properties of vascular walls non-invasively. Most of the data available in the literature come from traction or dilatation tests conducted ex vivo on native blood vessels. The objective of the study is to develop a non-invasive characterization technique based on Magnetic Resonance Imaging (MRI) measurements of the deformation of vascular walls under pulsating blood flow conditions. The goal is to determine the mechanical properties of the vessels by inverse analysis, coupling imaging measurements and numerical simulations of the fluid-structure interactions. The hyperelastic properties are identified using Solidworks and Ansys workbench (ANSYS Inc.) solving an optimization technique. The vessel of interest targeted in the study is the common carotid artery. In vivo MRI measurements of the vessel anatomy and inlet velocity profiles was acquired along the facial vascular network on a cohort of 30 healthy volunteers: - The time-evolution of the blood vessel contours and, thus, of the cross-section surface area was measured by 3D imaging angiography sequences of phase-contrast MRI. - The blood flow velocity was measured using a 2D CINE MRI phase contrast (PC-MRI) method. Reference arterial pressure waveforms were simultaneously measured in the brachial artery using a sphygmomanometer. The three-dimensional (3D) geometry of the arterial network was reconstructed by first creating an STL file from the raw MRI data using the open source imaging software ITK-SNAP. The resulting geometry was then transformed with Solidworks into volumes that are compatible with Ansys softwares. Tetrahedral meshes of the wall and fluid domains were built using the ANSYS Meshing software, with a near-wall mesh refinement method in the case of the fluid domain to improve the accuracy of the fluid flow calculations. Ansys Structural was used for the numerical simulation of the vessel deformation and Ansys CFX for the simulation of the blood flow. The fluid structure interaction simulations showed that the systolic and diastolic blood pressures of the common carotid artery could be taken as reference pressures to identify the mechanical properties of the different arteries of the network. The coefficients of the hyperelastic law were identified using Ansys Design model for the common carotid. Under large deformations, a stiffness of 800 kPa is measured, which is of the same order of magnitude as the Young modulus of collagen fibers. Areas of maximum deformations were highlighted near bifurcations. This study is a first step towards patient-specific characterization of the mechanical properties of the facial vessels. The method is currently applied on patients suffering from facial vascular malformations and on patients scheduled for facial reconstruction. Information on the blood flow velocity as well as on the vessel anatomy and deformability will be key to improve surgical planning in the case of such vascular pathologies.Keywords: identification, mechanical properties, arterial walls, MRI measurements, numerical simulations
Procedia PDF Downloads 3192512 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction
Abstract:
Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.
Procedia PDF Downloads 892511 Computational Linguistic Implications of Gender Bias: Machines Reflect Misogyny in Society
Authors: Irene Yi
Abstract:
Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Computational linguistics is a growing field dealing with such issues of data collection for technological development. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Computational analysis on such linguistic data is used to find patterns of misogyny. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.Keywords: computational analysis, gendered grammar, misogynistic language, neural networks
Procedia PDF Downloads 1192510 Development of an Improved Paradigm for the Tourism Sector in the Department of Huila, Colombia: A Theoretical and Empirical Approach
Authors: Laura N. Bolivar T.
Abstract:
The tourism importance for regional development is mainly highlighted by the collaborative, cooperating and competitive relationships of the involved agents. The fostering of associativity processes, in particular, the cluster approach emphasizes the beneficial outcomes from the concentration of enterprises, where innovation and entrepreneurship flourish and shape the dynamics for tourism empowerment. Considering the department of Huila, it is located in the south-west of Colombia and holds the biggest coffee production in the country, although it barely contributes to the national GDP. Hence, its economic development strategy is looking for more dynamism and Huila could be consolidated as a leading destination for cultural, ecological and heritage tourism, if at least the public policy making processes for the tourism management of La Tatacoa Desert, San Agustin Park and Bambuco’s National Festival, were implemented in a more efficient manner. In this order of ideas, this study attempts to address the potential restrictions and beneficial factors for the consolidation of the tourism sector of Huila-Colombia as a cluster and how could it impact its regional development. Therefore, a set of theoretical frameworks such as the Tourism Routes Approach, the Tourism Breeding Environment, the Community-based Tourism Method, among others, but also a collection of international experiences describing tourism clustering processes and most outstanding problematics, is analyzed to draw up learning points, structure of proceedings and success-driven factors to be contrasted with the local characteristics in Huila, as the region under study. This characterization involves primary and secondary information collection methods and comprises the South American and Colombian context together with the identification of involved actors and their roles, main interactions among them, major tourism products and their infrastructure, the visitors’ perspective on the situation and a recap of the related needs and benefits regarding the host community. Considering the umbrella concepts, the theoretical and the empirical approaches, and their comparison with the local specificities of the tourism sector in Huila, an array of shortcomings is analytically constructed and a series of guidelines are proposed as a way to overcome them and simultaneously, raise economic development and positively impact Huila’s well-being. This non-exhaustive bundle of guidelines is focused on fostering cooperating linkages in the actors’ network, dealing with Information and Communication Technologies’ innovations, reinforcing the supporting infrastructure, promoting the destinations considering the less known places as well, designing an information system enabling the tourism network to assess the situation based on reliable data, increasing competitiveness, developing participative public policy-making processes and empowering the host community about the touristic richness. According to this, cluster dynamics would drive the tourism sector to meet articulation and joint effort, then involved agents and local particularities would be adequately assisted to cope with the current changing environment of globalization and competition.Keywords: innovative strategy, local development, network of tourism actors, tourism cluster
Procedia PDF Downloads 1412509 An ANOVA-based Sequential Forward Channel Selection Framework for Brain-Computer Interface Application based on EEG Signals Driven by Motor Imagery
Authors: Forouzan Salehi Fergeni
Abstract:
Converting the movement intents of a person into commands for action employing brain signals like electroencephalogram signals is a brain-computer interface (BCI) system. When left or right-hand motions are imagined, different patterns of brain activity appear, which can be employed as BCI signals for control. To make better the brain-computer interface (BCI) structures, effective and accurate techniques for increasing the classifying precision of motor imagery (MI) based on electroencephalography (EEG) are greatly needed. Subject dependency and non-stationary are two features of EEG signals. So, EEG signals must be effectively processed before being used in BCI applications. In the present study, after applying an 8 to 30 band-pass filter, a car spatial filter is rendered for the purpose of denoising, and then, a method of analysis of variance is used to select more appropriate and informative channels from a category of a large number of different channels. After ordering channels based on their efficiencies, a sequential forward channel selection is employed to choose just a few reliable ones. Features from two domains of time and wavelet are extracted and shortlisted with the help of a statistical technique, namely the t-test. Finally, the selected features are classified with different machine learning and neural network classifiers being k-nearest neighbor, Probabilistic neural network, support-vector-machine, Extreme learning machine, decision tree, Multi-layer perceptron, and linear discriminant analysis with the purpose of comparing their performance in this application. Utilizing a ten-fold cross-validation approach, tests are performed on a motor imagery dataset found in the BCI competition III. Outcomes demonstrated that the SVM classifier got the greatest classification precision of 97% when compared to the other available approaches. The entire investigative findings confirm that the suggested framework is reliable and computationally effective for the construction of BCI systems and surpasses the existing methods.Keywords: brain-computer interface, channel selection, motor imagery, support-vector-machine
Procedia PDF Downloads 512508 Forest Fire Burnt Area Assessment in a Part of West Himalayan Region Using Differenced Normalized Burnt Ratio and Neural Network Approach
Authors: Sunil Chandra, Himanshu Rawat, Vikas Gusain, Triparna Barman
Abstract:
Forest fires are a recurrent phenomenon in the Himalayan region owing to the presence of vulnerable forest types, topographical gradients, climatic weather conditions, and anthropogenic pressure. The present study focuses on the identification of forest fire-affected areas in a small part of the West Himalayan region using a differential normalized burnt ratio method and spectral unmixing methods. The study area has a rugged terrain with the presence of sub-tropical pine forest, montane temperate forest, and sub-alpine forest and scrub. The major reason for fires in this region is anthropogenic in nature, with the practice of human-induced fires for getting fresh leaves, scaring wild animals to protect agricultural crops, grazing practices within reserved forests, and igniting fires for cooking and other reasons. The fires caused by the above reasons affect a large area on the ground, necessitating its precise estimation for further management and policy making. In the present study, two approaches have been used for carrying out a burnt area analysis. The first approach followed for burnt area analysis uses a differenced normalized burnt ratio (dNBR) index approach that uses the burnt ratio values generated using the Short-Wave Infrared (SWIR) band and Near Infrared (NIR) bands of the Sentinel-2 image. The results of the dNBR have been compared with the outputs of the spectral mixing methods. It has been found that the dNBR is able to create good results in fire-affected areas having homogenous forest stratum and with slope degree <5 degrees. However, in a rugged terrain where the landscape is largely influenced by the topographical variations, vegetation types, tree density, the results may be largely influenced by the effects of topography, complexity in tree composition, fuel load composition, and soil moisture. Hence, such variations in the factors influencing burnt area assessment may not be effectively carried out using a dNBR approach which is commonly followed for burnt area assessment over a large area. Hence, another approach that has been attempted in the present study utilizes a spectral mixing method where the individual pixel is tested before assigning an information class to it. The method uses a neural network approach utilizing Sentinel-2 bands. The training and testing data are generated from the Sentinel-2 data and the national field inventory, which is further used for generating outputs using ML tools. The analysis of the results indicates that the fire-affected regions and their severity can be better estimated using spectral unmixing methods, which have the capability to resolve the noise in the data and can classify the individual pixel to the precise burnt/unburnt class.Keywords: categorical data, log linear modeling, neural network, shifting cultivation
Procedia PDF Downloads 542507 High-Fidelity Materials Screening with a Multi-Fidelity Graph Neural Network and Semi-Supervised Learning
Authors: Akeel A. Shah, Tong Zhang
Abstract:
Computational approaches to learning the properties of materials are commonplace, motivated by the need to screen or design materials for a given application, e.g., semiconductors and energy storage. Experimental approaches can be both time consuming and costly. Unfortunately, computational approaches such as ab-initio electronic structure calculations and classical or ab-initio molecular dynamics are themselves can be too slow for the rapid evaluation of materials, often involving thousands to hundreds of thousands of candidates. Machine learning assisted approaches have been developed to overcome the time limitations of purely physics-based approaches. These approaches, on the other hand, require large volumes of data for training (hundreds of thousands on many standard data sets such as QM7b). This means that they are limited by how quickly such a large data set of physics-based simulations can be established. At high fidelity, such as configuration interaction, composite methods such as G4, and coupled cluster theory, gathering such a large data set can become infeasible, which can compromise the accuracy of the predictions - many applications require high accuracy, for example band structures and energy levels in semiconductor materials and the energetics of charge transfer in energy storage materials. In order to circumvent this problem, multi-fidelity approaches can be adopted, for example the Δ-ML method, which learns a high-fidelity output from a low-fidelity result such as Hartree-Fock or density functional theory (DFT). The general strategy is to learn a map between the low and high fidelity outputs, so that the high-fidelity output is obtained a simple sum of the physics-based low-fidelity and correction, Although this requires a low-fidelity calculation, it typically requires far fewer high-fidelity results to learn the correction map, and furthermore, the low-fidelity result, such as Hartree-Fock or semi-empirical ZINDO, is typically quick to obtain, For high-fidelity outputs the result can be an order of magnitude or more in speed up. In this work, a new multi-fidelity approach is developed, based on a graph convolutional network (GCN) combined with semi-supervised learning. The GCN allows for the material or molecule to be represented as a graph, which is known to improve accuracy, for example SchNet and MEGNET. The graph incorporates information regarding the numbers of, types and properties of atoms; the types of bonds; and bond angles. They key to the accuracy in multi-fidelity methods, however, is the incorporation of low-fidelity output to learn the high-fidelity equivalent, in this case by learning their difference. Semi-supervised learning is employed to allow for different numbers of low and high-fidelity training points, by using an additional GCN-based low-fidelity map to predict high fidelity outputs. It is shown on 4 different data sets that a significant (at least one order of magnitude) increase in accuracy is obtained, using one to two orders of magnitude fewer low and high fidelity training points. One of the data sets is developed in this work, pertaining to 1000 simulations of quinone molecules (up to 24 atoms) at 5 different levels of fidelity, furnishing the energy, dipole moment and HOMO/LUMO.Keywords: .materials screening, computational materials, machine learning, multi-fidelity, graph convolutional network, semi-supervised learning
Procedia PDF Downloads 41