Search results for: intelligent distribution grids
3659 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.Keywords: deep learning, artificial neural networks, energy price forecasting, turkey
Procedia PDF Downloads 2923658 Effect of Zinc Additions on the Microstructure and Mechanical Properties of Mg-3Al Alloy
Authors: Erkan Koç, Mehmet Ünal, Ercan Candan
Abstract:
In this study, the effect of zinc content (0.5-3.0 wt.%) in as-cast Mg-3Al alloy which were fabricated with high-purity raw materials towards the microstructure and mechanical properties was studied. Microstructure results showed that increase in zinc content changed the secondary phase distribution of the alloys. Mechanical test results demonstrate that with the increasing Zn addition the enhancement of the hardness value by 29%, ultimate tensile strength by 16% and yield strength by 15% can be achieved as well as decreasing of elongation by 33%. The improvement in mechanical properties for Mg-Al–Zn alloys with increasing Zn content up to 3% of weight may be ascribed to second phase strengthening.Keywords: magnesium, zinc, mechanical properties, Mg17Al12
Procedia PDF Downloads 4223657 Flora of Seaweeds and the Preliminary Screening of the Fungal Endophytes
Authors: Nur Farah Ain Zainee, Ahmad Ismail, Nazlina Ibrahim, Asmida Ismail
Abstract:
Seaweeds are economically important as they have the potential of being utilized, the capabilities and opportunities for further expansion as well as the availability of other species for future development. Hence, research on the diversity and distribution of seaweeds have to be expanded whilst the seaweeds are one of the Malaysian marine valuable heritage. The study on the distribution of seaweeds at Pengerang, Johor was carried out between February and November 2015 at Kampung Jawa Darat and Kampung Sungai Buntu. The study sites are located at the south-southeast of Peninsular Malaysia where the Petronas Refinery and Petrochemicals Integrated Project Development (RAPID) are in progress. In future, the richness of seaweeds in Pengerang will vanish soon due to the loss of habitat prior to RAPID project. The research was completed to study the diversity of seaweed and to determine the present of fungal endophyte isolated from the seaweed. The sample was calculated by using quadrat with 25-meter line transect by 3 replication for each site. The specimen were preserved, identified, processed in the laboratory and kept as herbarium specimen in Algae Herbarium, Universiti Kebangsaan Malaysia. The complete thallus specimens for fungal endophyte screening were chosen meticulously, transferred into sterile zip-lock plastic bag and kept in the freezer for further process. A total of 29 species has been identified including 12 species of Chlorophyta, 2 species of Phaeophyta and 14 species of Rhodophyta. From February to November 2015, the number of species highly varied and there was a significant change in community structure of seaweeds. Kampung Sungai Buntu shows the highest diversity throughout the study compared to Kampung Jawa Darat. This evidence can be related to the high habitat preference such as types of shores which is rocky, sandy and having lagoon and bay. These can enhance the existence of the seaweeds community due to variations of the habitat. Eighteen seaweed species were selected and screened for the capability presence of fungal endophyte; Sargassum polycystum marked having the highest number of fungal endophyte compared to the other species. These evidence has proved the seaweed have capable of accommodating a lot of species of fungal endophytes. Thus, these evidence leads to positive consequences where further research should be employed.Keywords: diversity, fungal endophyte, macroalgae, screening, seaweed
Procedia PDF Downloads 2293656 Application of Lattice Boltzmann Method to Different Boundary Conditions in a Two Dimensional Enclosure
Authors: Jean Yves Trepanier, Sami Ammar, Sagnik Banik
Abstract:
Lattice Boltzmann Method has been advantageous in simulating complex boundary conditions and solving for fluid flow parameters by streaming and collision processes. This paper includes the study of three different test cases in a confined domain using the method of the Lattice Boltzmann model. 1. An SRT (Single Relaxation Time) approach in the Lattice Boltzmann model is used to simulate Lid Driven Cavity flow for different Reynolds Number (100, 400 and 1000) with a domain aspect ratio of 1, i.e., square cavity. A moment-based boundary condition is used for more accurate results. 2. A Thermal Lattice BGK (Bhatnagar-Gross-Krook) Model is developed for the Rayleigh Benard convection for both test cases - Horizontal and Vertical Temperature difference, considered separately for a Boussinesq incompressible fluid. The Rayleigh number is varied for both the test cases (10^3 ≤ Ra ≤ 10^6) keeping the Prandtl number at 0.71. A stability criteria with a precise forcing scheme is used for a greater level of accuracy. 3. The phase change problem governed by the heat-conduction equation is studied using the enthalpy based Lattice Boltzmann Model with a single iteration for each time step, thus reducing the computational time. A double distribution function approach with D2Q9 (density) model and D2Q5 (temperature) model are used for two different test cases-the conduction dominated melting and the convection dominated melting. The solidification process is also simulated using the enthalpy based method with a single distribution function using the D2Q5 model to provide a better understanding of the heat transport phenomenon. The domain for the test cases has an aspect ratio of 2 with some exceptions for a square cavity. An approximate velocity scale is chosen to ensure that the simulations are within the incompressible regime. Different parameters like velocities, temperature, Nusselt number, etc. are calculated for a comparative study with the existing works of literature. The simulated results demonstrate excellent agreement with the existing benchmark solution within an error limit of ± 0.05 implicates the viability of this method for complex fluid flow problems.Keywords: BGK, Nusselt, Prandtl, Rayleigh, SRT
Procedia PDF Downloads 1283655 An Improved Robust Algorithm Based on Cubature Kalman Filter for Single-Frequency Global Navigation Satellite System/Inertial Navigation Tightly Coupled System
Authors: Hao Wang, Shuguo Pan
Abstract:
The Global Navigation Satellite System (GNSS) signal received by the dynamic vehicle in the harsh environment will be frequently interfered with and blocked, which generates gross error affecting the positioning accuracy of the GNSS/Inertial Navigation System (INS) integrated navigation. Therefore, this paper put forward an improved robust Cubature Kalman filter (CKF) algorithm for single-frequency GNSS/INS tightly coupled system ambiguity resolution. Firstly, the dynamic model and measurement model of a single-frequency GNSS/INS tightly coupled system was established, and the method for GNSS integer ambiguity resolution with INS aided is studied. Then, we analyzed the influence of pseudo-range observation with gross error on GNSS/INS integrated positioning accuracy. To reduce the influence of outliers, this paper improved the CKF algorithm and realized an intelligent selection of robust strategies by judging the ill-conditioned matrix. Finally, a field navigation test was performed to demonstrate the effectiveness of the proposed algorithm based on the double-differenced solution mode. The experiment has proved the improved robust algorithm can greatly weaken the influence of separate, continuous, and hybrid observation anomalies for enhancing the reliability and accuracy of GNSS/INS tightly coupled navigation solutions.Keywords: GNSS/INS integrated navigation, ambiguity resolution, Cubature Kalman filter, Robust algorithm
Procedia PDF Downloads 1003654 Yawning Computing Using Bayesian Networks
Authors: Serge Tshibangu, Turgay Celik, Zenzo Ncube
Abstract:
Road crashes kill nearly over a million people every year, and leave millions more injured or permanently disabled. Various annual reports reveal that the percentage of fatal crashes due to fatigue/driver falling asleep comes directly after the percentage of fatal crashes due to intoxicated drivers. This percentage is higher than the combined percentage of fatal crashes due to illegal/Un-Safe U-turn and illegal/Un-Safe reversing. Although a relatively small percentage of police reports on road accidents highlights drowsiness and fatigue, the importance of these factors is greater than we might think, hidden by the undercounting of their events. Some scenarios show that these factors are significant in accidents with killed and injured people. Thus the need for an automatic drivers fatigue detection system in order to considerably reduce the number of accidents owing to fatigue.This research approaches the drivers fatigue detection problem in an innovative way by combining cues collected from both temporal analysis of drivers’ faces and environment. Monotony in driving environment is inter-related with visual symptoms of fatigue on drivers’ faces to achieve fatigue detection. Optical and infrared (IR) sensors are used to analyse the monotony in driving environment and to detect the visual symptoms of fatigue on human face. Internal cues from drivers faces and external cues from environment are combined together using machine learning algorithms to automatically detect fatigue.Keywords: intelligent transportation systems, bayesian networks, yawning computing, machine learning algorithms
Procedia PDF Downloads 4553653 Time Estimation of Return to Sports Based on Classification of Health Levels of Anterior Cruciate Ligament Using a Convolutional Neural Network after Reconstruction Surgery
Authors: Zeinab Jafari A., Ali Sharifnezhad B., Mohammad Razi C., Mohammad Haghpanahi D., Arash Maghsoudi
Abstract:
Background and Objective: Sports-related rupture of the anterior cruciate ligament (ACL) and following injuries have been associated with various disorders, such as long-lasting changes in muscle activation patterns in athletes, which might last after ACL reconstruction (ACLR). The rupture of the ACL might result in abnormal patterns of movement execution, extending the treatment period and delaying athletes’ return to sports (RTS). As ACL injury is especially prevalent among athletes, the lengthy treatment process and athletes’ absence from sports are of great concern to athletes and coaches. Thus, estimating safe time of RTS is of crucial importance. Therefore, using a deep neural network (DNN) to classify the health levels of ACL in injured athletes, this study aimed to estimate the safe time for athletes to return to competitions. Methods: Ten athletes with ACLR and fourteen healthy controls participated in this study. Three health levels of ACL were defined: healthy, six-month post-ACLR surgery and nine-month post-ACLR surgery. Athletes with ACLR were tested six and nine months after the ACLR surgery. During the course of this study, surface electromyography (sEMG) signals were recorded from five knee muscles, namely Rectus Femoris (RF), Vastus Lateralis (VL), Vastus Medialis (VM), Biceps Femoris (BF), Semitendinosus (ST), during single-leg drop landing (SLDL) and forward hopping (SLFH) tasks. The Pseudo-Wigner-Ville distribution (PWVD) was used to produce three-dimensional (3-D) images of the energy distribution patterns of sEMG signals. Then, these 3-D images were converted to two-dimensional (2-D) images implementing the heat mapping technique, which were then fed to a deep convolutional neural network (DCNN). Results: In this study, we estimated the safe time of RTS by designing a DCNN classifier with an accuracy of 90 %, which could classify ACL into three health levels. Discussion: The findings of this study demonstrate the potential of the DCNN classification technique using sEMG signals in estimating RTS time, which will assist in evaluating the recovery process of ACLR in athletes.Keywords: anterior cruciate ligament reconstruction, return to sports, surface electromyography, deep convolutional neural network
Procedia PDF Downloads 783652 A Framework for Supply Chain Efficiency Evaluation of Mass Customized Automobiles
Authors: Arshia Khan, Hans-Dietrich Haasis
Abstract:
Different tools of the supply chain should be managed very efficiently in mass customization. In the automobile industry, there are different strategies to manage these tools. We need to investigate which strategies among the different ones are successful and which are not. There is lack in literature regarding such analysis. Keeping this in view, the purpose of this paper is to construct a framework and model which can help to analyze the supply chain of mass customized automobiles quantitatively for future studies. Furthermore, we will also consider that which type of data can be used for the suggested model and where it can be taken from. Such framework can help to bring insight for future analysis.Keywords: mass customization, supply chain, inventory, distribution, automobile industry
Procedia PDF Downloads 3753651 A Generalisation of Pearson's Curve System and Explicit Representation of the Associated Density Function
Authors: S. B. Provost, Hossein Zareamoghaddam
Abstract:
A univariate density approximation technique whereby the derivative of the logarithm of a density function is assumed to be expressible as a rational function is introduced. This approach which extends Pearson’s curve system is solely based on the moments of a distribution up to a determinable order. Upon solving a system of linear equations, the coefficients of the polynomial ratio can readily be identified. An explicit solution to the integral representation of the resulting density approximant is then obtained. It will be explained that when utilised in conjunction with sample moments, this methodology lends itself to the modelling of ‘big data’. Applications to sets of univariate and bivariate observations will be presented.Keywords: density estimation, log-density, moments, Pearson's curve system
Procedia PDF Downloads 2813650 Diversity, Biochemical and Genomic Assessment of Selected Benthic Species of Two Tropical Lagoons, Southwest Nigeria
Authors: G. F. Okunade, M. O. Lawal, R. E. Uwadiae, D. Portnoy
Abstract:
The diversity, physico-chemical, biochemical and genomics assessment of Macrofauna species of Ologe and Badagry Lagoons were carried out between August 2016 and July 2018. The concentrations of Fe, Zn, Mn, Cd, Cr, and Pb in water were determined by Atomic Absorption Spectrophotometer (AAS). Particle size distribution was determined with wet-sieving and sedimentation using hydrometer method. Genomics analyses were carried using 25 P. fusca (quadriseriata) and 25 P.fusca from each lagoon due to abundance in both lagoons all through the two years of collection. DNA was isolated from each sample using the Mag-Bind Blood and Tissue DNA HD 96 kit; a method designed to isolate high quality. The biochemical characteristics were analysed in the dominanat species (P.aurita and T. fuscatus) using ELISA kits. Physico-chemical parameters such as pH, total dissolved solids, dissolved oxygen, conductivity and TDS were analysed using APHA standard protocols. The Physico-chemical parameters of the water quality recorded with mean values of 32.46 ± 0.66mg/L and 41.93 ± 0.65 for COD, 27.28 ± 0.97 and 34.82 ± 0.1 mg/L for BOD, 0.04 ± 4.71 mg/L for DO, 6.65 and 6.58 for pH in Ologe and Badagry lagoons with significant variations (p ≤ 0.05) across seasons. The mean and standard deviation of salinity for Ologe and Badagry Lagoons ranged from 0.43 ± 0.30 to 0.27 ± 0.09. A total of 4210 species belonging to a phylum, two classes, four families and a total of 2008 species in Ologe lagoon while a phylum, two classes, 5 families and a total of 2202 species in Badagry lagoon. The percentage composition of the classes at Ologe lagoon had 99% gastropod and 1% bivalve, while Gastropod contributed 98.91% and bivalve 1.09% in Badagry lagoon. Particle size was distributed in 0.002mm to 2.00mm, particle size distribution in Ologe lagoon recorded 0.83% gravels, 97.83% sand, and 1.33% silt particles while Badagry lagoon recorded 7.43% sand, 24.71% silt, and 67.86% clay particles hence, the excessive dredging activities going on in the lagoon. Maximum percentage of sand (100%) was seen in station 6 in Ologe lagoon while the minimum (96%) was found in station 1. P. aurita (Ologe Lagoon) and T. fuscastus (Badagry Lagoon) were the most abundant benthic species in which both contributed 61.05% and 64.35%, respectively. The enzymatic activities of P. aurita observed with mean values of 21.03 mg/dl for AST, 10.33 mg/dl for ALP, 82.16 mg/dl for ALT and 73.06 mg/dl for CHO in Ologe Lagoon While T. fuscatus observed mean values of Badagry Lagoon) recorded mean values 29.76 mg/dl, ALP with 11.69mg/L, ALT with 140.58 mg/dl and CHO with 45.98 mg/dl. There were significant variations (P < 0.05) in AST and CHO levels of activities in the muscles of the species.Keywords: benthos, biochemical responses, genomics, metals, particle size
Procedia PDF Downloads 1263649 Problems Encountered in Teaching English as a Second Language in Asia
Authors: Geraldine Agbor Ojong
Abstract:
This paper conveys some of the problems teachers of ESL face in classroom settings in Thailand. The results of this paper is achieved through close and open ended questionaires administered to a group of English language teachers of three prominent schools in Kaengkhoi, saraburi Province, Thailand.(Saengvithaya school, kaengkhoi school and Pytoon withaya school). Face to face interview of some foreign teachers and students selected randomly And general observation. The data was analysed by frequency distribution and percentage: The result of the study may be generalized so that the conference committee can suggest possible solutions or give contributing ideas on how to handle some of these problems.Keywords: Asian, colonize, ESL, foreign country
Procedia PDF Downloads 4423648 Succession and Rural vs. Urban Habitat Differences of Coleoptera Species Attracted to Pig Carrions in Eskişehir Province, Turkey
Authors: Cansu Kılıç, Ferhat Altunsoy
Abstract:
In this study, a total of 82 species belonging to the families Staphylinidae, Histeridae, Dermestidae, Silphidae and Cleridae within Coleptera were detected which are collected from 24 pig carrion for a duration of one year. While 12 of the carrions have been placed in rural areas, other 12 have been placed in urban areas in Eskişehir province. The distribution of these species according to months and the period that they exist on different stages of decomposition were determined. Furthermore, Coleoptera species attracted to the pig carrions both in rural and urban areas were detected and their similarities and differences were presented.Keywords: forensic entomology, Coleoptera, succession, Turkey, rural, urban
Procedia PDF Downloads 3123647 Predictive Analytics in Oil and Gas Industry
Authors: Suchitra Chnadrashekhar
Abstract:
Earlier looked as a support function in an organization information technology has now become a critical utility to manage their daily operations. Organizations are processing huge amount of data which was unimaginable few decades before. This has opened the opportunity for IT sector to help industries across domains to handle the data in the most intelligent manner. Presence of IT has been a leverage for the Oil & Gas industry to store, manage and process the data in most efficient way possible thus deriving the economic value in their day-to-day operations. Proper synchronization between Operational data system and Information Technology system is the need of the hour. Predictive analytics supports oil and gas companies by addressing the challenge of critical equipment performance, life cycle, integrity, security, and increase their utilization. Predictive analytics go beyond early warning by providing insights into the roots of problems. To reach their full potential, oil and gas companies need to take a holistic or systems approach towards asset optimization and thus have the functional information at all levels of the organization in order to make the right decisions. This paper discusses how the use of predictive analysis in oil and gas industry is redefining the dynamics of this sector. Also, the paper will be supported by real time data and evaluation of the data for a given oil production asset on an application tool, SAS. The reason for using SAS as an application for our analysis is that SAS provides an analytics-based framework to improve uptimes, performance and availability of crucial assets while reducing the amount of unscheduled maintenance, thus minimizing maintenance-related costs and operation disruptions. With state-of-the-art analytics and reporting, we can predict maintenance problems before they happen and determine root causes in order to update processes for future prevention.Keywords: hydrocarbon, information technology, SAS, predictive analytics
Procedia PDF Downloads 3603646 Review of Cable Fault Locating Methods and Usage of VLF for Real Cases of High Resistance Fault Locating
Authors: Saadat Ali, Rashid Abdulla Ahmed Alshehhi
Abstract:
Cable faults are always probable and common during or after commissioning, causing significant delays and disrupting power distribution or transmission network, which is intolerable for the utilities&service providers being their reliability and business continuity measures. Therefore, the adoption of rapid localization & rectification methodology is the main concern for them. This paper explores the present techniques available for high voltage cable localization & rectification and which is preferable with regards to easier, faster, and also less harmful to cables. It also provides insight experience of high resistance fault locating by utilization of the Very Low Frequency (VLF) method.Keywords: faults, VLF, real cases, cables
Procedia PDF Downloads 1123645 Different Receptions of Hygienic Architecture in Two Mexican Cities: Cuernavaca and Mexico
Authors: Marcela Dávalos López
Abstract:
In Mexico, the distribution of hygienistarchitecture during the 20th century had different rhythms. The culmination of the urban hygiene system (from sewers to showers, passing through garbage collection) forced neighbors and citizens to participate in the common welfare. This turned the urban references and dissociated the ways of living and led to comfort and health. However, the contrast between two Mexicancities, Cuernavaca and Mexico City shows us very different cultural practices regarding the use of hygienicarchitectures: in the first, thenature of its deepravines marked the destiny of residential architecture, while in Mexico City, state participation alteredthelandscape and homogenized the architectural models of domestic and intímate spaces.Keywords: Cultural Practices, Dissociated Ways To Comfort, Hygiene Architecture , Mexico
Procedia PDF Downloads 1883644 Synthetic Data-Driven Prediction Using GANs and LSTMs for Smart Traffic Management
Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad
Abstract:
Smart cities and intelligent transportation systems rely heavily on effective traffic management and infrastructure planning. This research tackles the data scarcity challenge by generating realistically synthetic traffic data from the PeMS-Bay dataset, enhancing predictive modeling accuracy and reliability. Advanced techniques like TimeGAN and GaussianCopula are utilized to create synthetic data that mimics the statistical and structural characteristics of real-world traffic. The future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is anticipated to capture both spatial and temporal correlations, further improving data quality and realism. Each synthetic data generation model's performance is evaluated against real-world data to identify the most effective models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are employed to model and predict complex temporal dependencies within traffic patterns. This holistic approach aims to identify areas with low vehicle counts, reveal underlying traffic issues, and guide targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study facilitates data-driven decision-making that improves urban mobility, safety, and the overall efficiency of city planning initiatives.Keywords: GAN, long short-term memory (LSTM), synthetic data generation, traffic management
Procedia PDF Downloads 143643 Hydrogen Storage Systems for Enhanced Grid Balancing Services in Wind Energy Conversion Systems
Authors: Nezmin Kayedpour, Arash E. Samani, Siavash Asiaban, Jeroen M. De Kooning, Lieven Vandevelde, Guillaume Crevecoeur
Abstract:
The growing adoption of renewable energy sources, such as wind power, in electricity generation is a significant step towards a sustainable and decarbonized future. However, the inherent intermittency and uncertainty of wind resources pose challenges to the reliable and stable operation of power grids. To address this, hydrogen storage systems have emerged as a promising and versatile technology to support grid balancing services in wind energy conversion systems. In this study, we propose a supplementary control design that enhances the performance of the hydrogen storage system by integrating wind turbine (WT) pitch and torque control systems. These control strategies aim to optimize the hydrogen production process, ensuring efficient utilization of wind energy while complying with grid requirements. The wind turbine pitch control system plays a crucial role in managing the turbine's aerodynamic performance. By adjusting the blade pitch angle, the turbine's rotational speed and power output can be regulated. Our proposed control design dynamically coordinates the pitch angle to match the wind turbine's power output with the optimal hydrogen production rate. This ensures that the electrolyzer receives a steady and optimal power supply, avoiding unnecessary strain on the system during high wind speeds and maximizing hydrogen production during low wind speeds. Moreover, the wind turbine torque control system is incorporated to facilitate efficient operation at varying wind speeds. The torque control system optimizes the energy capture from the wind while limiting mechanical stress on the turbine components. By harmonizing the torque control with hydrogen production requirements, the system maintains stable wind turbine operation, thereby enhancing the overall energy-to-hydrogen conversion efficiency. To enable grid-friendly operation, we introduce a cascaded controller that regulates the electrolyzer's electrical power-current in accordance with grid requirements. This controller ensures that the hydrogen production rate can be dynamically adjusted based on real-time grid demands, supporting grid balancing services effectively. By maintaining a close relationship between the wind turbine's power output and the electrolyzer's current, the hydrogen storage system can respond rapidly to grid fluctuations and contribute to enhanced grid stability. In this paper, we present a comprehensive analysis of the proposed supplementary control design's impact on the overall performance of the hydrogen storage system in wind energy conversion systems. Through detailed simulations and case studies, we assess the system's ability to provide grid balancing services, maximize wind energy utilization, and reduce greenhouse gas emissions.Keywords: active power control, electrolyzer, grid balancing services, wind energy conversion systems
Procedia PDF Downloads 843642 Understanding Patterns of Hard Coral Demographics in Kenyan Reefs to Inform Restoration
Authors: Swaleh Aboud, Mishal Gudka, David Obura
Abstract:
Background: Coral reefs are becoming increasingly vulnerable due to several threats ranging from climate change to overfishing. This has resulted in increased management and conservation efforts to protect reefs from degradation and facilitate recovery. Recruitmentof new individuals are isimportant in the recovery process and critical for the persistence of coral reef ecosystems. Local coral community structure can be influenced by successful recruit settlement, survival, and growth Understanding coral recruitment patterns can help quantify reef resilience and connectivity, establish baselines and track changes and evaluate the effectiveness of reef restoration and conservation efforts. This study will examine the abundance and spatial pattern of coral recruits and how this relates to adult community structure, including the distribution of thermal resistance and sensitive genera and their distribution in different management regimes. Methods: Coral recruit and demography surveys were conducted from 2020 to 2022, covering 35 sites in 19coral reef locations along the Kenyan coast. These included marine parks, reserves, community conservation areas (CMAs), and open access areas from the north (Marereni) to the south (Kisite) coast of Kenya and across different reef habitats. The data was collected through the underwater visual census (UVC) technique. We counted adult corals (>10 cm diameter)of23 selected genera using belt transects (25 by 1 m) and sampling of 1 m2 quadrat (at an interval of 5m) for all coloniesless than 10 cm diameter. The benthic cover was collected using photo quadrats. The surveys were only done during the northeast monsoon season. The data wereanalyzed using the R program to see the distribution patterns and the Kruskal Wallis test to see whether there was a significant difference. Spearman correlation was also applied to assess the relationship between the distribution of coral genera in recruits and adults. Results: A total of 44 different coral genera were recorded for recruits, ranging from 3at Marereni to 30at Watamu Marine Reserve. Recruit densities ranged from 1.2±1.5recruit m-2 (mean±SD) at Likoni to 10.3± 8.4 recruit m-2 at Kisite Marine Park. The overall densityof recruitssignificantly differed between reef locations, with Kisite Marine Park and Reserve and Likonihaving significantly large differences from all the other locations, while Vuma, Watamu, Malindi, and Kilifi had significantly lower differences from all the other locations. The recruit generadensity along the Kenya coastwas divided into two clusters, one of which only included sites inKisite Marine Park. Adult colonies were dominated by Porites massive, Acropora, Platygyra, and Favites, whereas recruits were dominated by Porites branching, Porites massive, Galaxea, and Acropora. However, correlation analysis revealed a statistically significant positive correlation (r=0.81, p<0.05) between recruit and adult coral densities across the 23 coral genera. Marereni, which had the lowest densityof recruits, has only thermallyresistant coral genera, while Kisite Marine Park, with the highest recruit densities, has over 90% thermal sensitive coral genera. A weak positive correlation was found between recruit density and coralline algae, dead standing corals, and turf algae, whereas a weak negative correlation was found between recruit density and bare substrate and macroalgae. Between management regimes, marine reserves were found to have more recruits than no-take zones (marine parks and CMAs) and open access areas, although the difference was not significant. Conclusion: There was a statistically significant difference in the density of recruits between different reef locations along the Kenyan coast. Although the dominating genera of adults and recruits were different, there was a strong positive correlation between their coral communities, which could indicate self-recruitment processes or consistent distance seedings (of the same recruit genera). Sites such as Kisite Marine Park, with high recruit densities but dominated by thermally sensitive genera, will, on the other hand, be adversely affected by future thermal stress. This could imply that reducing the threats to coral reefs such as overfishingcould allow for their natural regeneration and recovery.Keywords: coral recruits, coral adult size-class, cora demography, resilience
Procedia PDF Downloads 1243641 Development of a Spatial Data for Renal Registry in Nigeria Health Sector
Authors: Adekunle Kolawole Ojo, Idowu Peter Adebayo, Egwuche Sylvester O.
Abstract:
Chronic Kidney Disease (CKD) is a significant cause of morbidity and mortality across developed and developing nations and is associated with increased risk. There are no existing electronic means of capturing and monitoring CKD in Nigeria. The work is aimed at developing a spatial data model that can be used to implement renal registries required for tracking and monitoring the spatial distribution of renal diseases by public health officers and patients. In this study, we have developed a spatial data model for a functional renal registry.Keywords: renal registry, health informatics, chronic kidney disease, interface
Procedia PDF Downloads 2143640 Cancer Burden and Policy Needs in the Democratic Republic of the Congo: A Descriptive Study
Authors: Jean Paul Muambangu Milambo, Peter Nyasulu, John Akudugu, Leonidas Ndayisaba, Joyce Tsoka-Gwegweni, Lebwaze Massamba Bienvenu, Mitshindo Mwambangu Chiro
Abstract:
In 2018, non-communicable diseases (NCDs) were responsible for 48% of deaths in the Democratic Republic of Congo (DRC), with cancer contributing to 5% of these deaths. There is a notable absence of cancer registries, capacity-building activities, budgets, and treatment roadmaps in the DRC. Current cancer estimates are primarily based on mathematical modeling with limited data from neighboring countries. This study aimed to assess cancer subtype prevalence in Kinshasa hospitals and compare these findings with WHO model estimates. Methods: A retrospective observational study was conducted from 2018 to 2020 at HJ Hospitals in Kinshasa. Data were collected using American Cancer Society (ACS) questionnaires and physician logs. Descriptive analysis was performed using STATA version 16 to estimate cancer burden and provide evidence-based recommendations. Results: The results from the chart review at HJ Hospitals in Kinshasa (2018-2020) indicate that out of 6,852 samples, approximately 11.16% were diagnosed with cancer. The distribution of cancer subtypes in this cohort was as follows: breast cancer (33.6%), prostate cancer (21.8%), colorectal cancer (9.6%), lymphoma (4.6%), and cervical cancer (4.4%). These figures are based on histopathological confirmation at the facility and may not fully represent the broader population due to potential selection biases related to geographic and financial accessibility to the hospital. In contrast, the World Health Organization (WHO) model estimates for cancer prevalence in the DRC show different proportions. According to WHO data, the distribution of cancer types is as follows: cervical cancer (15.9%), prostate cancer (15.3%), breast cancer (14.9%), liver cancer (6.8%), colorectal cancer (5.9%), and other cancers (41.2%) (WHO, 2020). Conclusion: The data indicate a rising cancer prevalence in DRC but highlight significant gaps in clinical, biomedical, and genetic cancer data. The establishment of a population-based cancer registry (PBCR) and a defined cancer management pathway is crucial. The current estimates are limited due to data scarcity and inconsistencies in clinical practices. There is an urgent need for multidisciplinary cancer management, integration of palliative care, and improvement in care quality based on evidence-based measures.Keywords: cancer, risk factors, DRC, gene-environment interactions, survivors
Procedia PDF Downloads 223639 Automatic Detection and Filtering of Negative Emotion-Bearing Contents from Social Media in Amharic Using Sentiment Analysis and Deep Learning Methods
Authors: Derejaw Lake Melie, Alemu Kumlachew Tegegne
Abstract:
The increasing prevalence of social media in Ethiopia has exacerbated societal challenges by fostering the proliferation of negative emotional posts and comments. Illicit use of social media has further exacerbated divisions among the population. Addressing these issues through manual identification and aggregation of emotions from millions of users for swift decision-making poses significant challenges, particularly given the rapid growth of Amharic language usage on social platforms. Consequently, there is a critical need to develop an intelligent system capable of automatically detecting and categorizing negative emotional content into social, religious, and political categories while also filtering out toxic online content. This paper aims to leverage sentiment analysis techniques to achieve automatic detection and filtering of negative emotional content from Amharic social media texts, employing a comparative study of deep learning algorithms. The study utilized a dataset comprising 29,962 comments collected from social media platforms using comment exporter software. Data pre-processing techniques were applied to enhance data quality, followed by the implementation of deep learning methods for training, testing, and evaluation. The results showed that CNN, GRU, LSTM, and Bi-LSTM classification models achieved accuracies of 83%, 50%, 84%, and 86%, respectively. Among these models, Bi-LSTM demonstrated the highest accuracy of 86% in the experiment.Keywords: negative emotion, emotion detection, social media filtering sentiment analysis, deep learning.
Procedia PDF Downloads 263638 Texture Observation of Bending by XRD and EBSD Method
Authors: Takashi Sakai, Yuri Shimomura
Abstract:
The crystal orientation is a factor that affects the microscopic material properties. Crystal orientation determines the anisotropy of the polycrystalline material. And it is closely related to the mechanical properties of the material. In this paper, for pure copper polycrystalline material, two different methods; X-Ray Diffraction (XRD) and Electron Backscatter Diffraction (EBSD); and the crystal orientation were analyzed. In the latter method, it is possible that the X-ray beam diameter is thicker as compared to the former, to measure the crystal orientation macroscopically relatively. By measurement of the above, we investigated the change in crystal orientation and internal tissues of pure copper.Keywords: bending, electron backscatter diffraction, X-ray diffraction, microstructure, IPF map, orientation distribution function
Procedia PDF Downloads 3303637 RFID Logistic Management with Cold Chain Monitoring: Cold Store Case Study
Authors: Mira Trebar
Abstract:
Logistics processes of perishable food in the supply chain include the distribution activities and the real time temperature monitoring to fulfil the cold chain requirements. The paper presents the use of RFID (Radio Frequency Identification) technology as an identification tool of receiving and shipping activities in the cold store. At the same time, the use of RFID data loggers with temperature sensors is presented to observe and store the temperatures for the purpose of analyzing the processes and having the history data available for traceability purposes and efficient recall management.Keywords: logistics, warehouse, RFID device, cold chain
Procedia PDF Downloads 6313636 Computationally Efficient Electrochemical-Thermal Li-Ion Cell Model for Battery Management System
Authors: Sangwoo Han, Saeed Khaleghi Rahimian, Ying Liu
Abstract:
Vehicle electrification is gaining momentum, and many car manufacturers promise to deliver more electric vehicle (EV) models to consumers in the coming years. In controlling the battery pack, the battery management system (BMS) must maintain optimal battery performance while ensuring the safety of a battery pack. Tasks related to battery performance include determining state-of-charge (SOC), state-of-power (SOP), state-of-health (SOH), cell balancing, and battery charging. Safety related functions include making sure cells operate within specified, static and dynamic voltage window and temperature range, derating power, detecting faulty cells, and warning the user if necessary. The BMS often utilizes an RC circuit model to model a Li-ion cell because of its robustness and low computation cost among other benefits. Because an equivalent circuit model such as the RC model is not a physics-based model, it can never be a prognostic model to predict battery state-of-health and avoid any safety risk even before it occurs. A physics-based Li-ion cell model, on the other hand, is more capable at the expense of computation cost. To avoid the high computation cost associated with a full-order model, many researchers have demonstrated the use of a single particle model (SPM) for BMS applications. One drawback associated with the single particle modeling approach is that it forces to use the average current density in the calculation. The SPM would be appropriate for simulating drive cycles where there is insufficient time to develop a significant current distribution within an electrode. However, under a continuous or high-pulse electrical load, the model may fail to predict cell voltage or Li⁺ plating potential. To overcome this issue, a multi-particle reduced-order model is proposed here. The use of multiple particles combined with either linear or nonlinear charge-transfer reaction kinetics enables to capture current density distribution within an electrode under any type of electrical load. To maintain computational complexity like that of an SPM, governing equations are solved sequentially to minimize iterative solving processes. Furthermore, the model is validated against a full-order model implemented in COMSOL Multiphysics.Keywords: battery management system, physics-based li-ion cell model, reduced-order model, single-particle and multi-particle model
Procedia PDF Downloads 1113635 Exploring Influence Range of Tainan City Using Electronic Toll Collection Big Data
Authors: Chen Chou, Feng-Tyan Lin
Abstract:
Big Data has been attracted a lot of attentions in many fields for analyzing research issues based on a large number of maternal data. Electronic Toll Collection (ETC) is one of Intelligent Transportation System (ITS) applications in Taiwan, used to record starting point, end point, distance and travel time of vehicle on the national freeway. This study, taking advantage of ETC big data, combined with urban planning theory, attempts to explore various phenomena of inter-city transportation activities. ETC, one of government's open data, is numerous, complete and quick-update. One may recall that living area has been delimited with location, population, area and subjective consciousness. However, these factors cannot appropriately reflect what people’s movement path is in daily life. In this study, the concept of "Living Area" is replaced by "Influence Range" to show dynamic and variation with time and purposes of activities. This study uses data mining with Python and Excel, and visualizes the number of trips with GIS to explore influence range of Tainan city and the purpose of trips, and discuss living area delimited in current. It dialogues between the concepts of "Central Place Theory" and "Living Area", presents the new point of view, integrates the application of big data, urban planning and transportation. The finding will be valuable for resource allocation and land apportionment of spatial planning.Keywords: Big Data, ITS, influence range, living area, central place theory, visualization
Procedia PDF Downloads 2793634 Strategic Risk Issues for Film Distributors of Hindi Film Industry in Mumbai: A Grounded Theory Approach
Authors: Rashmi Dyondi, Shishir K. Jha
Abstract:
The purpose of the paper is to address the strategic risk issues surrounding Hindi film distribution in Mumbai for a film distributor, who acts as an entrepreneur when launching a product (movie) in the market (film territory).The paper undertakes a fundamental review of films and risk in the Hindi film industry and applies Grounded Theory technique to understand the complex phenomena of risk taking behavior of the film distributors (both independent and studios) in Mumbai. Rich in-depth interviews with distributors are coded to develop core categories through constant comparison leading to conceptualization of the phenomena of interest. This paper is a first-of-its-kind-attempt to understand risk behavior of a distributor, which is akin to entrepreneurial risk behavior under conditions of uncertainty. Unlike extensive scholarly work on dynamics of Hollywood motion picture industry, Hindi film industry is an under-researched area till now. Especially how do film distributors perceive risk is an unexplored study for the Hindi film industry. Films are unique experience products and the film distributor acts as an entrepreneur assuming high risks given the uncertainty in the motion picture business. With the entry of mighty corporate studios and astronomical film budgets posing serious business threats to the independent distributors, there is a need for an in-depth qualitative enquiry (applying grounded theory technique) for unraveling the definition of risk for the independent distributors in Mumbai vis-à-vis the corporate studios. Need for good content was a common challenge to both the groups in the present state of the industry, however corporate studios with their distinct ideologies, focus on own productions and financial power faced different set of challenges than the independents (like achieving sustainability in business). Softer issues like market goodwill and relations with producers, honesty in business dealings and transparency came out to be clear markers for success of independents in long run. The findings from the qualitative analysis stress on different elements of risk and challenges as perceived by the two groups of distributors in the Hindi film industry and provide a future research agenda for empirical investigation of determinants of box-office success of Hindi films distributed in Mumbai.Keywords: entrepreneurial risk behavior, film distribution strategy, Hindi film industry, risk
Procedia PDF Downloads 3133633 Detection Characteristics of the Random and Deterministic Signals in Antenna Arrays
Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev
Abstract:
In this paper approach to incoherent signal detection in multi-element antenna array are researched and modeled. Two types of useful signals with unknown wavefront were considered. First one is deterministic (Barker code), the second one is random (Gaussian distribution). The derivation of the sufficient statistics took into account the linearity of the antenna array. The performance characteristics and detecting curves are modeled and compared for different useful signals parameters and for different number of elements of the antenna array. Results of researches in case of some additional conditions can be applied to a digital communications systems.Keywords: antenna array, detection curves, performance characteristics, quadrature processing, signal detection
Procedia PDF Downloads 4063632 The Structure and Development of a Wing Tip Vortex under the Effect of Synthetic Jet Actuation
Authors: Marouen Dghim, Mohsen Ferchichi
Abstract:
The effect of synthetic jet actuation on the roll-up and the development of a wing tip vortex downstream a square-tipped rectangular wing was investigated experimentally using hotwire anemometry. The wing is equipped with a hallow cavity designed to generate a high aspect ratio synthetic jets blowing at an angles with respect to the spanwise direction. The structure of the wing tip vortex under the effect of fluidic actuation was examined at a chord Reynolds number Re_c=8×10^4. An extensive qualitative study on the effect of actuation on the spanwise pressure distribution at c⁄4 was achieved using pressure scanner measurements in order to determine the optimal actuation parameters namely, the blowing momentum coefficient, Cμ, and the non-dimensionalized actuation frequency, F^+. A qualitative study on the effect of actuation parameters on the spanwise pressure distribution showed that optimal actuation frequencies of the synthetic jet were found within the range amplified by both long and short wave instabilities where spanwise pressure coefficients exhibited a considerable decrease by up to 60%. The vortex appeared larger and more diffuse than that of the natural vortex case. Operating the synthetic jet seemed to introduce unsteadiness and turbulence into the vortex core. Based on the ‘a priori’ optimal selected parameters, results of the hotwire wake survey indicated that the actuation achieved a reduction and broadening of the axial velocity deficit. A decrease in the peak tangential velocity associated with an increase in the vortex core radius was reported as a result of the accelerated radial transport of angular momentum. Peak vorticity level near the core was also found to be largely diffused as a direct result of the increased turbulent mixing within the vortex. The wing tip vortex a exhibited a reduced strength and a diffused core as a direct result of increased turbulent mixing due to the presence of turbulent small scale vortices within its core. It is believed that the increased turbulence within the vortex due to the synthetic jet control was the main mechanism associated with the decreased strength and increased size of the wing tip vortex as it evolves downstream. A comparison with a ‘non-optimal’ case was included to demonstrate the effectiveness of selecting the appropriate control parameters. The Synthetic Jet will be operated at various actuation configurations and an extensive parametric study is projected to determine the optimal actuation parameters.Keywords: flow control, hotwire anemometry, synthetic jet, wing tip vortex
Procedia PDF Downloads 4363631 Mobile and Hot Spot Measurement with Optical Particle Counting Based Dust Monitor EDM264
Authors: V. Ziegler, F. Schneider, M. Pesch
Abstract:
With the EDM264, GRIMM offers a solution for mobile short- and long-term measurements in outdoor areas and at production sites. For research as well as permanent areal observations on a near reference quality base. The model EDM264 features a powerful and robust measuring cell based on optical particle counting (OPC) principle with all the advantages that users of GRIMM's portable aerosol spectrometers are used to. The system is embedded in a compact weather-protection housing with all-weather sampling, heated inlet system, data logger, and meteorological sensor. With TSP, PM10, PM4, PM2.5, PM1, and PMcoarse, the EDM264 provides all fine dust fractions real-time, valid for outdoor applications and calculated with the proven GRIMM enviro-algorithm, as well as six additional dust mass fractions pm10, pm2.5, pm1, inhalable, thoracic and respirable for IAQ and workplace measurements. This highly versatile instrument performs real-time monitoring of particle number, particle size and provides information on particle surface distribution as well as dust mass distribution. GRIMM's EDM264 has 31 equidistant size channels, which are PSL traceable. A high-end data logger enables data acquisition and wireless communication via LTE, WLAN, or wired via Ethernet. Backup copies of the measurement data are stored in the device directly. The rinsing air function, which protects the laser and detector in the optical cell, further increases the reliability and long term stability of the EDM264 under different environmental and climatic conditions. The entire sample volume flow of 1.2 L/min is analyzed by 100% in the optical cell, which assures excellent counting efficiency at low and high concentrations and complies with the ISO 21501-1standard for OPCs. With all these features, the EDM264 is a world-leading dust monitor for precise monitoring of particulate matter and particle number concentration. This highly reliable instrument is an indispensable tool for many users who need to measure aerosol levels and air quality outdoors, on construction sites, or at production facilities.Keywords: aerosol research, aerial observation, fence line monitoring, wild fire detection
Procedia PDF Downloads 1513630 Characterisation of Meteorological Drought at Sub-Catchment Scale in Afghanistan Using Time-Series Climate Data
Authors: Yun Chen, David Penton, Fazlul Karim, Santosh Aryal, Shahriar Wahid, Peter Taylor, Susan M. Cuddy
Abstract:
Droughts have severely affected Afghanistan over the last four decades, leading to critical food shortages where two-thirds of the country’s population are in a food crisis. Long years of conflict have lowered the country’s ability to deal with hazards such as drought, which can rapidly escalate into disasters. Understanding the spatial and temporal distribution of droughts is needed to be able to respond effectively to disasters and plan for future occurrences. This study used Standardized Precipitation Evapotranspiration Index (SPEI) at monthly, seasonal, and annual temporal scales to map the spatiotemporal change dynamics of drought characteristics (distribution, frequency, duration, and severity) in Afghanistan. SPEI indices were mapped for river basins, disaggregated into 189 sub-catchments, using monthly precipitation and potential evapotranspiration derived from temperature station observations from 1980 to 2017. The results show these multi-dimensional drought characteristics vary along different years, change among sub-catchments, and differ across temporal scales. During the 38 years, the driest decade and period are the 2000s and 1999–2022, respectively. The 2000–01 water year is the driest, with the whole country experiencing ‘severe’ to ‘extreme’ drought, more than 53% (87 sub-catchments) suffering the worst drought in history, and about 58% (94 sub-catchments) having ‘very frequent’ drought (7 to 8 months) or ‘extremely frequent’ drought (9 to 10 months). The estimated seasonal duration and severity present significant variations across the study area and throughout the study period. The nation also suffered from recurring droughts with varying length and intensity in 2004, 2006, 2008, and, most recently, 2011. There is a trend towards increasing drought with longer duration and higher severity extending all over sub-catchments from southeast to north and central regions. These datasets and maps help to fill the knowledge gap on detailed sub-catchment scale meteorological drought characteristics in Afghanistan. The study findings improve our understanding of the influences of climate change on drought dynamics and can guide catchment planning for reliable adaptation to and mitigation against future droughts.Keywords: SPEI, precipitation, evapotranspiration, climate extremes
Procedia PDF Downloads 92