Search results for: developed CNN model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24339

Search results for: developed CNN model

969 Exploring the Intersection Between the General Data Protection Regulation and the Artificial Intelligence Act

Authors: Maria Jędrzejczak, Patryk Pieniążek

Abstract:

The European legal reality is on the eve of significant change. In European Union law, there is talk of a “fourth industrial revolution”, which is driven by massive data resources linked to powerful algorithms and powerful computing capacity. The above is closely linked to technological developments in the area of artificial intelligence, which has prompted an analysis covering both the legal environment as well as the economic and social impact, also from an ethical perspective. The discussion on the regulation of artificial intelligence is one of the most serious yet widely held at both European Union and Member State level. The literature expects legal solutions to guarantee security for fundamental rights, including privacy, in artificial intelligence systems. There is no doubt that personal data have been increasingly processed in recent years. It would be impossible for artificial intelligence to function without processing large amounts of data (both personal and non-personal). The main driving force behind the current development of artificial intelligence is advances in computing, but also the increasing availability of data. High-quality data are crucial to the effectiveness of many artificial intelligence systems, particularly when using techniques involving model training. The use of computers and artificial intelligence technology allows for an increase in the speed and efficiency of the actions taken, but also creates security risks for the data processed of an unprecedented magnitude. The proposed regulation in the field of artificial intelligence requires analysis in terms of its impact on the regulation on personal data protection. It is necessary to determine what the mutual relationship between these regulations is and what areas are particularly important in the personal data protection regulation for processing personal data in artificial intelligence systems. The adopted axis of considerations is a preliminary assessment of two issues: 1) what principles of data protection should be applied in particular during processing personal data in artificial intelligence systems, 2) what regulation on liability for personal data breaches is in such systems. The need to change the regulations regarding the rights and obligations of data subjects and entities processing personal data cannot be excluded. It is possible that changes will be required in the provisions regarding the assignment of liability for a breach of personal data protection processed in artificial intelligence systems. The research process in this case concerns the identification of areas in the field of personal data protection that are particularly important (and may require re-regulation) due to the introduction of the proposed legal regulation regarding artificial intelligence. The main question that the authors want to answer is how the European Union regulation against data protection breaches in artificial intelligence systems is shaping up. The answer to this question will include examples to illustrate the practical implications of these legal regulations.

Keywords: data protection law, personal data, AI law, personal data breach

Procedia PDF Downloads 63
968 Pathway Linking Early Use of Electronic Device and Psychosocial Wellbeing in Early Childhood

Authors: Rosa S. Wong, Keith T.S. Tung, Winnie W. Y. Tso, King-Wa Fu, Nirmala Rao, Patrick Ip

Abstract:

Electronic devices have become an essential part of our lives. Various reports have highlighted the alarming usage of electronic devices at early ages and its long-term developmental consequences. More sedentary screen time was associated with increased adiposity, worse cognitive and motor development, and psychosocial health. Apart from the problems caused by children’s own screen time, parents today are often paying less attention to their children due to hand-held device. Some anecdotes suggest that distracted parenting has negative impact on parent-child relationship. This study examined whether distracted parenting detrimentally affected parent-child activities which may, in turn, impair children’s psychosocial health. In 2018/19, we recruited a cohort of preschoolers from 32 local kindergartens in Tin Shui Wai and Sham Shui Po for a 5-year programme aiming to build stronger foundations for children from disadvantaged backgrounds through an integrated support model involving medical, education and social service sectors. A comprehensive set of questionnaires were used to survey parents on their frequency of being distracted while parenting and their frequency of learning and recreational activities with children. Furthermore, they were asked to report children’s screen time amount and their psychosocial problems. Mediation analyses were performed to test the direct and indirect effects of electronic device-distracted parenting on children’s psychosocial problems. This study recruited 873 children (448 females and 425 males, average age: 3.42±0.35). Longer screen time was associated with more psychosocial difficulties (Adjusted B=0.37, 95%CI: 0.12 to 0.62, p=0.004). Children’s screen time positively correlated with electronic device-distracted parenting (r=0.369, p < 01). We also found that electronic device-distracted parenting was associated with more hyperactive/inattentive problems (Adjusted B=0.66, p < 0.01), fewer prosocial behavior (Adjusted B=-0.74, p < 0.01), and more emotional symptoms (Adjusted B=0.61, p < 0.001) in children. Further analyses showed that electronic device-distracted parenting exerted influences both directly and indirectly through parent-child interactions but to different extent depending upon the outcome under investigation (38.8% for hyperactivity/inattention, 31.3% for prosocial behavior, and 15.6% for emotional symptoms). We found that parents’ use of devices and children’s own screen time both have negative effects on children’s psychosocial health. It is important for parents to set “device-free times” each day so as to ensure enough relaxed downtime for connecting with children and responding to their needs.

Keywords: early childhood, electronic device, psychosocial wellbeing, parenting

Procedia PDF Downloads 163
967 Investigate the Competencies Required for Sustainable Entrepreneurship Development in Agricultural Higher Education

Authors: Ehsan Moradi, Parisa Paikhaste, Amir Alam Beigi, Seyedeh Somayeh Bathaei

Abstract:

The need for entrepreneurial sustainability is as important as the entrepreneurship category itself. By transferring competencies in a sustainable entrepreneurship framework, entrepreneurship education can make a significant contribution to the effectiveness of businesses, especially for start-up entrepreneurs. This study analyzes the essential competencies of students in the development of sustainable entrepreneurship. It is an applied causal study in terms of nature and field in terms of data collection. The main purpose of this research project is to study and explain the dimensions of sustainability entrepreneurship competencies among agricultural students. The statistical population consists of 730 junior and senior undergraduate students of the Campus of Agriculture and Natural Resources, University of Tehran. The sample size was determined to be 120 using the Cochran's formula, and the convenience sampling method was used. Face validity, structure validity, and diagnostic methods were used to evaluate the validity of the research tool and Cronbach's alpha and composite reliability to evaluate its reliability. Structural equation modeling (SEM) was used by the confirmatory factor analysis (CFA) method to prepare a measurement model for data processing. The results showed that seven key dimensions play a role in shaping sustainable entrepreneurial development competencies: systems thinking competence (STC), embracing diversity and interdisciplinary (EDI), foresighted thinking (FTC), normative competence (NC), action competence (AC), interpersonal competence (IC), and strategic management competence (SMC). It was found that acquiring skills in SMC by creating the ability to plan to achieve sustainable entrepreneurship in students through the relevant mechanisms can improve entrepreneurship in students by adopting a sustainability attitude. While increasing students' analytical ability in the field of social and environmental needs and challenges and emphasizing curriculum updates, AC should pay more attention to the relationship between the curriculum and its content in the form of entrepreneurship culture promotion programs. In the field of EDI, it was found that the success of entrepreneurs in terms of sustainability and business sustainability of start-up entrepreneurs depends on their interdisciplinary thinking. It was also found that STC plays an important role in explaining the relationship between sustainability and entrepreneurship. Therefore, focusing on these competencies in agricultural education to train start-up entrepreneurs can lead to sustainable entrepreneurship in the agricultural higher education system.

Keywords: sustainable entrepreneurship, entrepreneurship education, competency, agricultural higher education

Procedia PDF Downloads 143
966 Optimization of Mechanical Properties of Alginate Hydrogel for 3D Bio-Printing Self-Standing Scaffold Architecture for Tissue Engineering Applications

Authors: Ibtisam A. Abbas Al-Darkazly

Abstract:

In this study, the mechanical properties of alginate hydrogel material for self-standing 3D scaffold architecture with proper shape fidelity are investigated. In-lab built 3D bio-printer extrusion-based technology is utilized to fabricate 3D alginate scaffold constructs. The pressure, needle speed and stage speed are varied using a computer-controlled system. The experimental result indicates that the concentration of alginate solution, calcium chloride (CaCl2) cross-linking concentration and cross-linking ratios lead to the formation of alginate hydrogel with various gelation states. Besides, the gelling conditions, such as cross-linking reaction time and temperature also have a significant effect on the mechanical properties of alginate hydrogel. Various experimental tests such as the material gelation, the material spreading and the printability test for filament collapse as well as the swelling test were conducted to evaluate the fabricated 3D scaffold constructs. The result indicates that the fabricated 3D scaffold from composition of 3.5% wt alginate solution, that is prepared in DI water and 1% wt CaCl2 solution with cross-linking ratios of 7:3 show good printability and sustain good shape fidelity for more than 20 days, compared to alginate hydrogel that is prepared in a phosphate buffered saline (PBS). The fabricated self-standing 3D scaffold constructs measured 30 mm × 30 mm and consisted of 4 layers (n = 4) show good pore geometry and clear grid structure after printing. In addition, the percentage change of swelling degree exhibits high swelling capability with respect to time. The swelling test shows that the geometry of 3D alginate-scaffold construct and of the macro-pore are rarely changed, which indicates the capability of holding the shape fidelity during the incubation period. This study demonstrated that the mechanical and physical properties of alginate hydrogel could be tuned for a 3D bio-printing extrusion-based system to fabricate self-standing 3D scaffold soft structures. This 3D bioengineered scaffold provides a natural microenvironment present in the extracellular matrix of the tissue, which could be seeded with the biological cells to generate the desired 3D live tissue model for in vitro and in vivo tissue engineering applications.

Keywords: biomaterial, calcium chloride, 3D bio-printing, extrusion, scaffold, sodium alginate, tissue engineering

Procedia PDF Downloads 110
965 Automatic and High Precise Modeling for System Optimization

Authors: Stephanie Chen, Mitja Echim, Christof Büskens

Abstract:

To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.

Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization

Procedia PDF Downloads 408
964 Refractory T-Cell Prolymphocytic Leukemia with JAK3 Mutation: In Vitro and Clinical Synergy of Tofacitinib and Ruxolitinib

Authors: Mike Wei, Nebu Koshy, Koen van Besien, Giorgio Inghirami, Steven M. Horwitz

Abstract:

T-cell prolymphocytic leukemia (T-PLL) is a rare hematologic disease characterized by a T-cell phenotype, rapid progression, and poor prognosis with median survival of less than a year. Alemtuzumab-based chemotherapy has increased the rate of complete remissions but these are often short-lived, and allogeneic transplant is considered the only curative therapy. In recent studies, JAK3 activating mutations have been identified in T-cell cancers, with T-PLL having the highest rate of JAK3 mutations (30 – 42%). As such, T-PLL is a model disease for evaluating the utility of JAK3 inhibitors. We present a case of a 64-year-old man with relapsed-refractory T-PLL. He was initially treated with alemtuzumab and obtained complete response and was consolidated with matched unrelated donor stem cell transplant. His disease stayed in remission for approximately 1.5 years before relapse, which was then treated with a clinical trial of romidepsin-lenalidomide (partial responses then progression at 6 months) and later alemtuzumab. Due to complications of myelosuppression and CMV reactivation, his treatment was interrupted leading to disease progression. The doubling time of lymphocyte count was approximately 20 days and over a span of 60 days the lymphocyte count rose from 8 x 109/L to 68 x 109/L. Exon sequencing showed a JAK3 mutation. The patient consented to and was treated with FDA-approved tofacitinib (initially 5 mg BID, increased to 10 mg BID after 15 days of treatment). An initial decrease in lymphocyte count was followed by progression. In vitro treatment of the patient’s cells showed modest effects of tofacitinib and ruxolitinib as single agents, in the range of doxorubicin, but synergy between the agents. After 40 days of treatment with tofacitinib and with a lymphocyte count of 150 x 109/L, ruxolitinib (5mg BID) was added. Over the 60 days since dual inhibition was started, the lymphocyte count has stabilized. The patient has remained completely asymptomatic during treatment with tofacitinib and ruxolitinib. Neutrophil count has remained normal. Platelet count and hemoglobin have however declined from ~50 x109/L to ~30 x109/L and from 11 g/dL to 8.1 g/dL respectively, since the introduction of ruxolitinib. The stabilization in lymphocyte count confirms the clinical activity of JAK inhibitors in T-PLL as suggested by the presence of JAK3 mutations and by in-vitro assays. It also suggests clinical synergy between ruxolitinib and tofacitinib in this setting. Prospective studies of JAK inhibitors in PLL patients with formal dose-finding studies are needed.

Keywords: tofacitinib, ruxolitinib, T-cell prolymphocytic leukemia, JAK3

Procedia PDF Downloads 309
963 Separation of Lanthanides Ions from Mineral Waste with Functionalized Pillar[5]Arenes: Synthesis, Physicochemical Characterization and Molecular Dynamics Studies

Authors: Ariesny Vera, Rodrigo Montecinos

Abstract:

The rare-earth elements (REEs) or rare-earth metals (REMs), correspond to seventeen chemical elements composed by the fifteen lanthanoids, as well as scandium and yttrium. Lanthanoids corresponds to lanthanum and the f-block elements, from cerium to lutetium. Scandium and yttrium are considered rare-earth elements because they have ionic radii similar to the lighter f-block elements. These elements were called rare earths because they are simply more difficult to extract and separate individually than the most metals and, generally, they do not accumulate in minerals, they are rarely found in easily mined ores and are often unfavorably distributed in common ores/minerals. REEs show unique chemical and physical properties, in comparison to the other metals in the periodic table. Nowadays, these physicochemical properties are utilized in a wide range of synthetic, catalytic, electronic, medicinal, and military applications. Because of their applications, the global demand for rare earth metals is becoming progressively more important in the transition to a self-sustaining society and greener economy. However, due to the difficult separation between lanthanoid ions, the high cost and pollution of these processes, the scientists search the development of a method that combines selectivity and quantitative separation of lanthanoids from the leaching liquor, while being more economical and environmentally friendly processes. This motivation has favored the design and development of more efficient and environmentally friendly cation extractors with the incorporation of compounds as ionic liquids, membrane inclusion polymers (PIM) and supramolecular systems. Supramolecular chemistry focuses on the development of host-guest systems, in which a host molecule can recognize and bind a certain guest molecule or ion. Normally, the formation of a host-guest complex involves non-covalent interactions Additionally, host-guest interactions can be influenced among others effects by the structural nature of host and guests. The different macrocyclic hosts for lanthanoid species that have been studied are crown ethers, cyclodextrins, cucurbituryls, calixarenes and pillararenes.Among all the factors that can influence and affect lanthanoid (III) coordination, perhaps the most basic of them is the systematic control using macrocyclic substituents that promote a selective coordination. In this sense, macrocycles pillar[n]arenes (P[n]As) present a relatively easy functionalization and they have more π-rich cavity than other host molecules. This gives to P[n]As a negative electrostatic potential in the cavity which would be responsible for the selectivity of these compounds towards cations. Furthermore, the cavity size, the linker, and the functional groups of the polar headgroups could be modified in order to control the association of lanthanoid cations. In this sense, different P[n]As systems, specifically derivatives of the pentamer P[5]A functionalized with amide, amine, phosphate and sulfate derivatives, have been designed in terms of experimental synthesis and molecular dynamics, and the interaction between these P[5]As and some lanthanoid ions such as La³+, Eu³+ and Lu³+ has been studied by physicochemical characterization by 1H-NMR, ITC and fluorescence in the case of Eu³+ systems. The molecular dynamics study of these systems was developed in hexane as solvent, also taking into account the lanthanoid ions mentioned above, and the respective comparison studies between the different ions.

Keywords: lanthanoids, macrocycles, pillar[n]arenes, rare-earth metal extraction, supramolecular chemistry, supramolecular complexes.

Procedia PDF Downloads 74
962 Global Modeling of Drill String Dragging and Buckling in 3D Curvilinear Bore-Holes

Authors: Valery Gulyayev, Sergey Glazunov, Elena Andrusenko, Nataliya Shlyun

Abstract:

Enhancement of technology and techniques for drilling deep directed oil and gas bore-wells are of essential industrial significance because these wells make it possible to increase their productivity and output. Generally, they are used for drilling in hard and shale formations, that is why their drivage processes are followed by the emergency and failure effects. As is corroborated by practice, the principal drilling drawback occurring in drivage of long curvilinear bore-wells is conditioned by the need to obviate essential force hindrances caused by simultaneous action of the gravity, contact and friction forces. Primarily, these forces depend on the type of the technological regime, drill string stiffness, bore-hole tortuosity and its length. They can lead to the Eulerian buckling of the drill string and its sticking. To predict and exclude these states, special mathematic models and methods of computer simulation should play a dominant role. At the same time, one might note that these mechanical phenomena are very complex and only simplified approaches (‘soft string drag and torque models’) are used for their analysis. Taking into consideration that now the cost of directed wells increases essentially with complication of their geometry and enlargement of their lengths, it can be concluded that the price of mistakes of the drill string behavior simulation through the use of simplified approaches can be very high and so the problem of correct software elaboration is very urgent. This paper deals with the problem of simulating the regimes of drilling deep curvilinear bore-wells with prescribed imperfect geometrical trajectories of their axial lines. On the basis of the theory of curvilinear flexible elastic rods, methods of differential geometry, and numerical analysis methods, the 3D ‘stiff-string drag and torque model’ of the drill string bending and the appropriate software are elaborated for the simulation of the tripping in and out regimes and drilling operations. It is shown by the computer calculations that the contact and friction forces can be calculated and regulated, providing predesigned trouble-free modes of operation. The elaborated mathematic models and software can be used for the emergency situations prognostication and their exclusion at the stages of the drilling process design and realization.

Keywords: curvilinear drilling, drill string tripping in and out, contact forces, resistance forces

Procedia PDF Downloads 145
961 Optimization for Autonomous Robotic Construction by Visual Guidance through Machine Learning

Authors: Yangzhi Li

Abstract:

Network transfer of information and performance customization is now a viable method of digital industrial production in the era of Industry 4.0. Robot platforms and network platforms have grown more important in digital design and construction. The pressing need for novel building techniques is driven by the growing labor scarcity problem and increased awareness of construction safety. Robotic approaches in construction research are regarded as an extension of operational and production tools. Several technological theories related to robot autonomous recognition, which include high-performance computing, physical system modeling, extensive sensor coordination, and dataset deep learning, have not been explored using intelligent construction. Relevant transdisciplinary theory and practice research still has specific gaps. Optimizing high-performance computing and autonomous recognition visual guidance technologies improves the robot's grasp of the scene and capacity for autonomous operation. Intelligent vision guidance technology for industrial robots has a serious issue with camera calibration, and the use of intelligent visual guiding and identification technologies for industrial robots in industrial production has strict accuracy requirements. It can be considered that visual recognition systems have challenges with precision issues. In such a situation, it will directly impact the effectiveness and standard of industrial production, necessitating a strengthening of the visual guiding study on positioning precision in recognition technology. To best facilitate the handling of complicated components, an approach for the visual recognition of parts utilizing machine learning algorithms is proposed. This study will identify the position of target components by detecting the information at the boundary and corner of a dense point cloud and determining the aspect ratio in accordance with the guidelines for the modularization of building components. To collect and use components, operational processing systems assign them to the same coordinate system based on their locations and postures. The RGB image's inclination detection and the depth image's verification will be used to determine the component's present posture. Finally, a virtual environment model for the robot's obstacle-avoidance route will be constructed using the point cloud information.

Keywords: robotic construction, robotic assembly, visual guidance, machine learning

Procedia PDF Downloads 86
960 Effect of Enzymatic Hydrolysis and Ultrasounds Pretreatments on Biogas Production from Corn Cob

Authors: N. Pérez-Rodríguez, D. García-Bernet, A. Torrado-Agrasar, J. M. Cruz, A. B. Moldes, J. M. Domínguez

Abstract:

World economy is based on non-renewable, fossil fuels such as petroleum and natural gas, which entails its rapid depletion and environmental problems. In EU countries, the objective is that at least 20% of the total energy supplies in 2020 should be derived from renewable resources. Biogas, a product of anaerobic degradation of organic substrates, represents an attractive green alternative for meeting partial energy needs. Nowadays, trend to circular economy model involves efficiently use of residues by its transformation from waste to a new resource. In this sense, characteristics of agricultural residues (that are available in plenty, renewable, as well as eco-friendly) propitiate their valorisation as substrates for biogas production. Corn cob is a by-product obtained from maize processing representing 18 % of total maize mass. Corn cob importance lies in the high production of this cereal (more than 1 x 109 tons in 2014). Due to its lignocellulosic nature, corn cob contains three main polymers: cellulose, hemicellulose and lignin. Crystalline, highly ordered structures of cellulose and lignin hinders microbial attack and subsequent biogas production. For the optimal lignocellulose utilization and to enhance gas production in anaerobic digestion, materials are usually submitted to different pretreatment technologies. In the present work, enzymatic hydrolysis, ultrasounds and combination of both technologies were assayed as pretreatments of corn cob for biogas production. Enzymatic hydrolysis pretreatment was started by adding 0.044 U of Ultraflo® L feruloyl esterase per gram of dry corncob. Hydrolyses were carried out in 50 mM sodium-phosphate buffer pH 6.0 with a solid:liquid proportion of 1:10 (w/v), at 150 rpm, 40 ºC and darkness for 3 hours. Ultrasounds pretreatment was performed subjecting corn cob, in 50 mM sodium-phosphate buffer pH 6.0 with a solid: liquid proportion of 1:10 (w/v), at a power of 750W for 1 minute. In order to observe the effect of the combination of both pretreatments, some samples were initially sonicated and then they were enzymatically hydrolysed. In terms of methane production, anaerobic digestion of the corn cob pretreated by enzymatic hydrolysis was positive achieving 290 L CH4 kg MV-1 (compared with 267 L CH4 kg MV-1 obtained with untreated corn cob). Although the use of ultrasound as the only pretreatment resulted detrimentally (since gas production decreased to 244 L CH4 kg MV-1 after 44 days of anaerobic digestion), its combination with enzymatic hydrolysis was beneficial, reaching the highest value (300.9 L CH4 kg MV-1). Consequently, the combination of both pretreatments improved biogas production from corn cob.

Keywords: biogas, corn cob, enzymatic hydrolysis, ultrasound

Procedia PDF Downloads 266
959 Functional Performance of Unpaved Roads Reinforced with Treated Coir Geotextiles

Authors: Priya Jaswal, Vivek, S. K. Sinha

Abstract:

One of the most important and complicated factors influencing the functional performance of unpaved roads is traffic loading. The complexity of traffic loading is caused by the variable magnitude and frequency of load, which causes unpaved roads to fail prematurely. Unpaved roads are low-volume roads, and as peri-urbanization increases, unpaved roads act as a means to boost the rural economy. This has also increased traffic on unpaved roads, intensifying the issue of settlement, rutting, and fatigue failure. This is a major concern for unpaved roads built on poor subgrade soil, as excessive rutting caused by heavy loads can cause driver discomfort, vehicle damage, and an increase in maintenance costs. Some researchers discovered that when a consistent static load is exerted as opposed to a rapidly changing load, the rate of deformation of unpaved roads increases. Previously, some of the most common methods for overcoming the problem of rutting and fatigue failure included chemical stabilisation, fibre reinforcement, and so on. However, due to their high cost, engineers' attention has shifted to geotextiles which are used as reinforcement in unpaved roads. Geotextiles perform the function of filtration, lateral confinement of base material, vertical restraint of subgrade soil, and the tension membrane effect. The use of geotextiles in unpaved roads increases the strength of unpaved roads and is an economically viable method because it reduces the required aggregate thickness, which would need less earthwork, and is thus recommended for unpaved road applications. The majority of geotextiles used previously were polymeric, but with a growing awareness of sustainable development to preserve the environment, researchers' focus has shifted to natural fibres. Coir is one such natural fibre that possesses the advantage of having a higher tensile strength than other bast fibres, being eco-friendly, low in cost, and biodegradable. However, various researchers have discovered that the surface of coir fibre is covered with various impurities, voids, and cracks, which act as a plane of weakness and limit the potential application of coir geotextiles. To overcome this limitation, chemical surface modification of coir geotextiles is widely accepted by researchers because it improves the mechanical properties of coir geotextiles. The current paper reviews the effect of using treated coir geotextiles as reinforcement on the load-deformation behaviour of a two-layered unpaved road model.

Keywords: coir, geotextile, treated, unpaved

Procedia PDF Downloads 91
958 Neurocognitive and Executive Function in Cocaine Addicted Females

Authors: Gwendolyn Royal-Smith

Abstract:

Cocaine ranks as one of the world’s most addictive and commonly abused stimulant drugs. Recent evidence indicates that the abuse of cocaine has risen so quickly among females that this group now accounts for about 40 percent of all users in the United States. Neuropsychological studies have demonstrated that specific neural activation patterns carry higher risks for neurocognitive and executive function in cocaine addicted females thereby increasing their vulnerability for poorer treatment outcomes and more frequent post-treatment relapse when compared to males. This study examined secondary data with a convenience sample of 164 cocaine addicted male and females to assess neurocognitive and executive function. The principal objective of this study was to assess whether individual performance on the Stroop Word Color Task is predictive of treatment success by gender. A second objective of the study evaluated whether individual performance employing neurocognitive measures including the Stroop Word-Color task, the Rey Auditory Verbal Learning Test (RALVT), the Iowa Gambling Task, the Wisconsin Card Sorting Task (WISCT), the total score from the Barratte Impulsiveness Scale (Version 11) (BIS-11) and the total score from the Frontal Systems Behavioral Scale (FrSBE) test demonstrated differences in neurocognitive and executive function performance by gender. Logistic regression models were employed utilizing a covariate adjusted model application. Initial analyses of the Stroop Word color tasks indicated significant differences in the performance of males and females, with females experiencing more challenges in derived interference reaction time and associate recall ability. In early testing including the Rey Auditory Verbal Learning Test (RALVT), the number of advantageous vs disadvantageous cards from the Iowa Gambling Task, the number of perseverance errors from the Wisconsin Card Sorting Task (WISCT), the total score from the Barratte Impulsiveness Scale (Version 11) (BIS-11) and the total score from the Frontal Systems Behavioral Scale, results were mixed with women scoring lower in multiple indicators in both neurocognitive and executive function.

Keywords: cocaine addiction, gender, neuropsychology, neurocognitive, executive function

Procedia PDF Downloads 399
957 Department of Social Development/Japan International Cooperation Agency's Journey from South African Community to Southern African Region

Authors: Daisuke Sagiya, Ren Kamioka

Abstract:

South Africa has ratified the United Nations Convention on the Rights of Persons with Disabilities (UNCRPD) on 30th November 2007. In line with this, the Department of Social Development (DSD) revised the White Paper on the Rights of Persons with Disabilities (WPRPD), and the Cabinet approved it on 9th December 2015. The South African government is striving towards the elimination of poverty and inequality in line with UNCRPD and WPRPD. However, there are minimal programmes and services that have been provided to persons with disabilities in the rural community. In order to address current discriminative practices, disunity and limited self-representation in rural community, DSD in cooperation with the Japan International Cooperation Agency (JICA) is implementing the 'Project for the Promotion of Empowerment of Persons with Disabilities and Disability Mainstreaming' from May 2016 to May 2020. The project is targeting rural community as the project sites, namely 1) Collins Chabane municipality, Vhembe district, Limpopo and 2) Maluti-a-Phofung municipality, Thabo Mofutsanyana district, Free State. The project aims at developing good practices on Community-Based Inclusive Development (CBID) at the project sites which will be documented as a guideline and applied in other provinces in South Africa and neighbouring countries (Lesotho, Swaziland, Botswana, Namibia, Zimbabwe, and Mozambique). In cooperation with provincial and district DSD and local government, the project is currently implementing various community activities, for example: Establishment of Self-Help Group (SHG) of persons with disabilities and Peer Counselling in the villages, and will conduct Disability Equality Training (DET) and accessibility workshop in order to enhance the CBID in the project sites. In order to universalise good practices on CBID, the authors will explain lessons learned from the project by utilising the theories of disability and development studies and community psychology such as social model of disability, twin-track approach, empowerment theory, sense of community, helper therapy principle, etc. And the authors conclude that in order to realise social participation of persons with disabilities in rural community, CBID is a strong tool and persons with disabilities must play central roles in all spheres of CBID activities.

Keywords: community-based inclusive development, disability mainstreaming, empowerment of persons with disabilities, self-help group

Procedia PDF Downloads 239
956 Study of Bis(Trifluoromethylsulfonyl)Imide Based Ionic Liquids by Gas Chromatography

Authors: F. Mutelet, L. Cesari

Abstract:

Development of safer and environmentally friendly processes and products is needed to achieve sustainable production and consumption patterns. Ionic liquids, which are of great interest to the chemical and related industries because of their attractive properties as solvents, should be considered. Ionic liquids are comprised of an asymmetric, bulky organic cation and a weakly coordinating organic or inorganic anion. A large number of possible combinations allows for the ability to ‘fine tune’ the solvent properties for a specific purpose. Physical and chemical properties of ionic liquids are not only influenced by the nature of the cation and the nature of cation substituents but also by the polarity and the size of the anion. These features infer to ionic liquids numerous applications, in organic synthesis, separation processes, and electrochemistry. Separation processes required a good knowledge of the behavior of organic compounds with ionic liquids. Gas chromatography is a useful tool to estimate the interactions between organic compounds and ionic liquids. Indeed, retention data may be used to determine infinite dilution thermodynamic properties of volatile organic compounds in ionic liquids. Among others, the activity coefficient at infinite dilution is a direct measure of solute-ionic liquid interaction. In this work, infinite dilution thermodynamic properties of volatile organic compounds in specific bis(trifluoromethylsulfonyl)imide based ionic liquids measured by gas chromatography is presented. It was found that apolar compounds are not miscible in this family of ionic liquids. As expected, the solubility of organic compounds is related to their polarity and hydrogen-bond. Through activity coefficients data, the performance of these ionic liquids was evaluated for different separation processes (benzene/heptane, thiophene/heptane and pyridine/heptane). Results indicate that ionic liquids may be used for the extraction of polar compounds (aromatics, alcohols, pyridine, thiophene, tetrahydrofuran) from aliphatic media. For example, 1-benzylpyridinium bis(trifluoromethylsulfonyl) imide and 1-cyclohexylmethyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide are more efficient for the extraction of aromatics or pyridine from aliphatics than classical solvents. Ionic liquids with long alkyl chain length present important capacity values but their selectivity values are low. In conclusion, we have demonstrated that specific bis(trifluoromethylsulfonyl)imide based ILs containing polar chain grafted on the cation (for example benzyl or cyclohexyl) increases considerably their performance in separation processes.

Keywords: interaction organic solvent-ionic liquid, gas chromatography, solvation model, COSMO-RS

Procedia PDF Downloads 107
955 Tiebout and Crime: How Crime Affect the Income Tax Capacity

Authors: Nik Smits, Stijn Goeminne

Abstract:

Despite the extensive literature on the relation between crime and migration, not much is known about how crime affects the tax capacity of local communities. This paper empirically investigates whether the Flemish local income tax base yield is sensitive to changes in the local crime level. The underlying assumptions are threefold. In a Tiebout world, rational voters holding the local government accountable for the safety of its citizens, move out when the local level of security gets too much alienated from what they want it to be (first assumption). If migration is due to crime, then the more wealthy citizens are expected to move first (second assumption). Looking for a place elsewhere implies transaction costs, which the more wealthy citizens are more likely to be able to pay. As a consequence, the average income per capita and so the income distribution will be affected, which in turn, will influence the local income tax base yield (third assumption). The decreasing average income per capita, if not compensated by increasing earnings by the citizens that are staying or by the new citizens entering the locality, must result in a decreasing local income tax base yield. In the absence of a higher level governments’ compensation, decreasing local tax revenues could prove to be disastrous for a crime-ridden municipality. When communities do not succeed in forcing back the number of offences, this can be the onset of a cumulative process of urban deterioration. A spatial panel data model containing several proxies for the local level of crime in 306 Flemish municipalities covering the period 2000-2014 is used to test the relation between crime and the local income tax base yield. In addition to this direct relation, the underlying assumptions are investigated as well. Preliminary results show a modest, but positive relation between local violent crime rates and the efflux of citizens, persistent up until a 2 year lag. This positive effect is dampened by possible increasing crime rates in neighboring municipalities. The change in violent crimes -and to a lesser extent- thefts and extortions reduce the influx of citizens with a one year lag. Again this effect is diminished by external effects from neighboring municipalities, meaning that increasing crime rates in neighboring municipalities (especially violent crimes) have a positive effect on the local influx of citizens. Crime also has a depressing effect on the average income per capita within a municipality, whereas increasing crime rates in neighboring municipalities increase it. Notwithstanding the previous results, crime does not seem to significantly affect the local tax base yield. The results suggest that the depressing effect of crime on the income basis has to be compensated by a limited, but a wealthier influx of new citizens.

Keywords: crime, local taxes, migration, Tiebout mobility

Procedia PDF Downloads 304
954 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: cost prediction, machine learning, project management, random forest, neural networks

Procedia PDF Downloads 51
953 Computational Fluid Dynamics Design and Analysis of Aerodynamic Drag Reduction Devices for a Mazda T3500 Truck

Authors: Basil Nkosilathi Dube, Wilson R. Nyemba, Panashe Mandevu

Abstract:

In highway driving, over 50 percent of the power produced by the engine is used to overcome aerodynamic drag, which is a force that opposes a body’s motion through the air. Aerodynamic drag and thus fuel consumption increase rapidly at speeds above 90kph. It is desirable to minimize fuel consumption. Aerodynamic drag reduction in highway driving is the best approach to minimize fuel consumption and to reduce the negative impacts of greenhouse gas emissions on the natural environment. Fuel economy is the ultimate concern of automotive development. This study aims to design and analyze drag-reducing devices for a Mazda T3500 truck, namely, the cab roof and rear (trailer tail) fairings. The aerodynamic effects of adding these append devices were subsequently investigated. To accomplish this, two 3D CAD models of the Mazda truck were designed using the Design Modeler. One, with these, append devices and the other without. The models were exported to ANSYS Fluent for computational fluid dynamics analysis, no wind tunnel tests were performed. A fine mesh with more than 10 million cells was applied in the discretization of the models. The realizable k-ε turbulence model with enhanced wall treatment was used to solve the Reynold’s Averaged Navier-Stokes (RANS) equation. In order to simulate the highway driving conditions, the tests were simulated with a speed of 100 km/h. The effects of these devices were also investigated for low-speed driving. The drag coefficients for both models were obtained from the numerical calculations. By adding the cab roof and rear (trailer tail) fairings, the simulations show a significant reduction in aerodynamic drag at a higher speed. The results show that the greatest drag reduction is obtained when both devices are used. Visuals from post-processing show that the rear fairing minimized the low-pressure region at the rear of the trailer when moving at highway speed. The rear fairing achieved this by streamlining the turbulent airflow, thereby delaying airflow separation. For lower speeds, there were no significant differences in drag coefficients for both models (original and modified). The results show that these devices can be adopted for improving the aerodynamic efficiency of the Mazda T3500 truck at highway speeds.

Keywords: aerodynamic drag, computation fluid dynamics, fluent, fuel consumption

Procedia PDF Downloads 136
952 Challenging Airway Management for Tracheal Compression Due to a Rhabdomyosarcoma

Authors: Elena Parmentier, Henrik Endeman

Abstract:

Introduction: Large mediastinal masses often present with diagnostic and clinical challenges due to compression of the respiratory and hemodynamic system. We present a case of a mediastinal mass with symptomatic mechanical compression of the trachea, resulting in challenging airway management. Methods: We present a case of 66-year-old male, complaining of progressive dysphagia. Initial esophagogastroscopy revealed a stenosis secondary to external compression, biopsies were inconclusive. Additional CT scan showed a large mediastinal mass of unknown origin, situated between the vertebrae and esophagus. Symptoms progressed and patient developed dyspnea and stridor. A new CT showed quick growth of the mass with compression of the trachea, subglottic to just above the carina. A tracheal covered stent was successfully placed. Endobronchial ultrasound revealed a large irregular mass without tracheal invasion, biopsies were taken. 4 days after stent placement, the patients’ condition deteriorated with worsening of stridor, dyspnea and desaturation. Migration of the tracheal stent into the right main bronchus was seen on chest X ray, with obstruction of the left main bronchus and secondary atelectasis. Different methods have been described in the literature for tracheobronchial stent removal (surgical, endoscopic, fluoroscopyguided), our first choice in this case was flexible bronchoscopy. However, this revealed tracheal compression above the migrated stent and passage of the scope occurred impossible. Patient was admitted to the ICU, high-flow nasal oxygen therapy was started and the situation stabilized, giving time for extensive assessment and preparation of the airway management approach. Close cooperation between the intensivist, pulmonologist, anesthesiologist and otorhinolaryngologist was essential. Results: In case of sudden deterioration, a protocol for emergency situations was made. Given the increased risk of additional tracheal compression after administration of neuromuscular blocking agents, an approach with awake fiberoptic intubation maintaining spontaneous ventilation was proposed. However, intubation without retrieval of the tracheal stent was found undesirable due to expected massive shunting over the left atelectatic lung. As rescue option, assistance of extracorporeal circulation was considered and perfusionist was kept on standby. The patient stayed stable and was transferred to the operating theatre. High frequency jet ventilation under general anesthesia resulted in desaturations up to 50%, making rigid bronchoscopy impossible. Subsequently an endotracheal tube size 8 could be placed successfully and the stent could be retrieved via bronchoscopy over (and with) the tube, after which the patient was reintubated. Finally, a tracheostomy (Shiley™ Tracheostomy Tube With Cuff, size 8) was placed, fiberoptic control showed a patent airway. Patient was readmitted to the ICU and could be quickly weaned of the ventilator. Pathology was positive for rhabdomyosarcoma, without indication for systemic therapy. Extensive surgery (laryngectomy, esophagectomy) was suggested, but patient refused and palliative care was started. Conclusion: Due to meticulous planning in an interdisciplinary team, we showed a successful airway management approach in this complicated case of critical airway compression secondary to a rare rhabdomyosarcoma, complicated by tracheal stent migration. Besides presenting our thoughts and considerations, we support exploring other possible approaches of this specific clinical problem.

Keywords: airway management, rhabdomyosarcoma, stent displacement, tracheal stenosis

Procedia PDF Downloads 103
951 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose

Authors: Kumar Shashvat, Amol P. Bhondekar

Abstract:

In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.

Keywords: odor classification, generative models, naive bayes, linear discriminant analysis

Procedia PDF Downloads 387
950 Using GIS and AHP Model to Explore the Parking Problem in Khomeinishahr

Authors: Davood Vatankhah, Reza Mokhtari Malekabadi, Mohsen Saghaei

Abstract:

Function of urban transportation systems depends on the existence of the required infrastructures, appropriate placement of different components, and the cooperation of these components with each other. Establishing various neighboring parking spaces in city neighborhood in order to prevent long-term and inappropriate parking of cars in the allies is one of the most effective operations in reducing the crowding and density of the neighborhoods. Every place with a certain application attracts a number of daily travels which happen throughout the city. A large percentage of the people visiting these places go to these travels by their own cars; therefore, they need a space to park their cars. The amount of this need depends on the usage function and travel demand of the place. The study aims at investigating the spatial distribution of the public parking spaces, determining the effective factors in locating, and their combination in GIS environment in Khomeinishahr of Isfahan city. Ultimately, the study intends to create an appropriate pattern for locating parking spaces, determining the request for parking spaces of the traffic areas, choosing the proper places for providing the required public parking spaces, and also proposing new spots in order to promote quality and quantity aspects of the city in terms of enjoying public parking spaces. Regarding the method, the study is based on applied purpose and regarding nature, it is analytic-descriptive. The population of the study includes people of the center of Khomeinishahr which is located on Northwest of Isfahan having about 5000 hectares of geographic area and the population of 241318 people are in the center of Komeinishahr. In order to determine the sample size, Cochran formula was used and according to the population of 26483 people of the studied area, 231 questionnaires were used. Data analysis was carried out by usage of SPSS software and after estimating the required space for parking spaces, initially, the effective criteria in locating the public parking spaces are weighted by the usage of Analytic Hierarchical Process in the Arc GIS software. Then, appropriate places for establishing parking spaces were determined by fuzzy method of Order Weighted Average (OWA). The results indicated that locating of parking spaces in Khomeinishahr have not been carried out appropriately and per capita of the parking spaces is not desirable in relation to the population and request; therefore, in addition to the present parking lots, 1434 parking lots are needed in the area of the study for each day; therefore, there is not a logical proportion between parking request and the number of parking lots in Khomeinishahr.

Keywords: GIS, locating, parking, khomeinishahr

Procedia PDF Downloads 307
949 Modelling High Strain Rate Tear Open Behavior of a Bilaminate Consisting of Foam and Plastic Skin Considering Tensile Failure and Compression

Authors: Laura Pytel, Georg Baumann, Gregor Gstrein, Corina Klug

Abstract:

Premium cars often coat the instrument panels with a bilaminate consisting of a soft foam and a plastic skin. The coating is torn open during the passenger airbag deployment under high strain rates. Characterizing and simulating the top coat layer is crucial for predicting the attenuation that delays the airbag deployment, effecting the design of the restrain system and to reduce the demand of simulation adjustments through expensive physical component testing.Up to now, bilaminates used within cars either have been modelled by using a two-dimensional shell formulation for the whole coating system as one which misses out the interaction of the two layers or by combining a three-dimensional formulation foam layer with a two-dimensional skin layer but omitting the foam in the significant parts like the expected tear line area and the hinge where high compression is expected. In both cases, the properties of the coating causing the attenuation are not considered. Further, at present, the availability of material information, as there are failure dependencies of the two layers, as well as the strain rate of up to 200 1/s, are insufficient. The velocity of the passenger airbag flap during an airbag shot has been measured with about 11.5 m/s during first ripping; the digital image correlation evaluation showed resulting strain rates of above 1500 1/s. This paper provides a high strain rate material characterization of a bilaminate consisting of a thin polypropylene foam and a thermoplasctic olefins (TPO) skin and the creation of validated material models. With the help of a Split Hopkinson tension bar, strain rates of 1500 1/s were within reach. The experimental data was used to calibrate and validate a more physical modelling approach of the forced ripping of the bilaminate. In the presented model, the three-dimensional foam layer is continuously tied to the two-dimensional skin layer, allowing failure in both layers at any possible position. The simulation results show a higher agreement in terms of the trajectory of the flaps and its velocity during ripping. The resulting attenuation of the airbag deployment measured by the contact force between airbag and flaps increases and serves usable data for dimensioning modules of an airbag system.

Keywords: bilaminate ripping behavior, High strain rate material characterization and modelling, induced material failure, TPO and foam

Procedia PDF Downloads 67
948 Assessing Online Learning Paths in an Learning Management Systems Using a Data Mining and Machine Learning Approach

Authors: Alvaro Figueira, Bruno Cabral

Abstract:

Nowadays, students are used to be assessed through an online platform. Educators have stepped up from a period in which they endured the transition from paper to digital. The use of a diversified set of question types that range from quizzes to open questions is currently common in most university courses. In many courses, today, the evaluation methodology also fosters the students’ online participation in forums, the download, and upload of modified files, or even the participation in group activities. At the same time, new pedagogy theories that promote the active participation of students in the learning process, and the systematic use of problem-based learning, are being adopted using an eLearning system for that purpose. However, although there can be a lot of feedback from these activities to student’s, usually it is restricted to the assessments of online well-defined tasks. In this article, we propose an automatic system that informs students of abnormal deviations of a 'correct' learning path in the course. Our approach is based on the fact that by obtaining this information earlier in the semester, may provide students and educators an opportunity to resolve an eventual problem regarding the student’s current online actions towards the course. Our goal is to prevent situations that have a significant probability to lead to a poor grade and, eventually, to failing. In the major learning management systems (LMS) currently available, the interaction between the students and the system itself is registered in log files in the form of registers that mark beginning of actions performed by the user. Our proposed system uses that logged information to derive new one: the time each student spends on each activity, the time and order of the resources used by the student and, finally, the online resource usage pattern. Then, using the grades assigned to the students in previous years, we built a learning dataset that is used to feed a machine learning meta classifier. The produced classification model is then used to predict the grades a learning path is heading to, in the current year. Not only this approach serves the teacher, but also the student to receive automatic feedback on her current situation, having past years as a perspective. Our system can be applied to online courses that integrate the use of an online platform that stores user actions in a log file, and that has access to other student’s evaluations. The system is based on a data mining process on the log files and on a self-feedback machine learning algorithm that works paired with the Moodle LMS.

Keywords: data mining, e-learning, grade prediction, machine learning, student learning path

Procedia PDF Downloads 121
947 Winkler Springs for Embedded Beams Subjected to S-Waves

Authors: Franco Primo Soffietti, Diego Fernando Turello, Federico Pinto

Abstract:

Shear waves that propagate through the ground impose deformations that must be taken into account in the design and assessment of buried longitudinal structures such as tunnels, pipelines, and piles. Conventional engineering approaches for seismic evaluation often rely on a Euler-Bernoulli beam models supported by a Winkler foundation. This approach, however, falls short in capturing the distortions induced when the structure is subjected to shear waves. To overcome these limitations, in the present work an analytical solution is proposed considering a Timoshenko beam and including transverse and rotational springs. The present research proposes ground springs derived as closed-form analytical solutions of the equations of elasticity including the seismic wavelength. These proposed springs extend the applicability of previous plane-strain models. By considering variations in displacements along the longitudinal direction, the presented approach ensures the springs do not approach zero at low frequencies. This characteristic makes them suitable for assessing pseudo-static cases, which typically govern structural forces in kinematic interaction analyses. The results obtained, validated against existing literature and a 3D Finite Element model, reveal several key insights: i) the cutoff frequency significantly influences transverse and rotational springs; ii) neglecting displacement variations along the structure axis (i.e., assuming plane-strain deformation) results in unrealistically low transverse springs, particularly for wavelengths shorter than the structure length; iii) disregarding lateral displacement components in rotational springs and neglecting variations along the structure axis leads to inaccurately low spring values, misrepresenting interaction phenomena; iv) transverse springs exhibit a notable drop in resonance frequency, followed by increasing damping as frequency rises; v) rotational springs show minor frequency-dependent variations, with radiation damping occurring beyond resonance frequencies, starting from negative values. This comprehensive analysis sheds light on the complex behavior of embedded longitudinal structures when subjected to shear waves and provides valuable insights for the seismic assessment.

Keywords: shear waves, Timoshenko beams, Winkler springs, sol-structure interaction

Procedia PDF Downloads 60
946 Creating a Critical Digital Pedagogy Context: Challenges and Potential of Designing and Implementing a Blended Learning Intervention for Adult Refugees in Greece

Authors: Roula Kitsiou, Sofia Tsioli, Eleni Gana

Abstract:

The current sociopolitical realities (displacement, encampment, and resettlement) refugees experience in Greece are a quite complex issue. Their educational and social ‘integration’ is characterized by transition, insecurity, and constantly changing needs. Based on the current research data, technology and more specifically mobile phones are one of the most important resources for refugees, regardless of their levels of conventional literacy. The proposed paper discusses the challenges encountered during the design and implementation of the educational Action 16 ‘Language Education for Adult Refugees’. Action 16 is one of the 24 Actions of the Project PRESS (Provision of Refugee Education and Support Scheme), funded by the Hellenic Open University (2016-2017). Project PRESS had two main objectives: a) to address the educational and integration needs of refugees in transit, who currently reside in Greece, and b) implement research-based educational interventions in online and offline sites. In the present paper, the focus is on reflection and discussion about the challenges and the potential of integrating technology in language learning for a target-group with many specific needs, which have been recorded in field notes among other research tools (ethnographic data) used in the context of PRESS. Action 16, explores if and how technology enhanced language activities in real-time and place mediated through teachers, as well as an autonomous computer-mediated learning space (moodle platform and application) builds on and expands the linguistic, cultural and digital resources and repertoires of the students by creating collaborative face-to-face and digital learning spaces. A broader view on language as a dynamic puzzle of semiotic resources and processes based on the concept of translanguaging is adopted. Specifically, designing the blended learning environment we draw on the construct of translanguaging a) as a symbolic means to valorize students’ repertoires and practices, b) as a method to reach to specific applications of a target-language that the context brings forward (Greek useful to them), and c) as a means to expand refugees’ repertoires. This has led to the creation of a learning space where students' linguistic and cultural resources can find paths to expression. In this context, communication and learning are realized by mutually investing multiple aspects of the team members' identities as educational material designers, teachers, and students on the teaching and learning processes. Therefore, creativity, humour, code-switching, translation, transference etc. are all possible means that can be employed in order to promote multilingual communication and language learning towards raising intercultural awareness in a critical digital pedagogy context. The qualitative analysis includes critical reflection on the developed educational material, team-based reflexive discussions, teachers’ reports data, and photographs from the interventions. The endeavor to involve women and men with a refugee background into a blended learning experience was quite innovative especially for the Greek context. It reflects a pragmatist ethos of the choices made in order to respond to the here-and-now needs of the refugees, and finally it was a very challenging task that has led all actors involved into Action 16 to (re)negotiations of subjectivities and products in a creative and hopeful way.

Keywords: blended learning, integration, language education, refugees

Procedia PDF Downloads 127
945 Postfeminism, Femvertising and Inclusion: An Analysis of Changing Women's Representation in Contemporary Media

Authors: Saveria Capecchi

Abstract:

In this paper, the results of qualitative content research on postfeminist female representation in contemporary Western media (advertising, television series, films, social media) are presented. Female role models spectacularized in media culture are an important part of the development of social identities and could inspire new generations. Postfeminist cultural texts have given rise to heated debate between gender and media studies scholars. There are those who claim they are commercial products seeking to sell feminism to women, a feminism whose political and subversive role is completely distorted and linked to the commercial interests of the cosmetics, fashion, fitness and cosmetic surgery industries, in which women’s ‘power’ lies mainly in their power to seduce. There are those who consider them feminist manifestos because they represent independent ‘modern women’ free from male control who aspire to achieve professionally and overcome gender stereotypes like that of the ‘housewife-mother’. Major findings of the research show that feminist principles have been gradually absorbed by the cultural industry and adapted to its commercial needs, resulting in the dissemination of contradictory values. On the one hand, in line with feminist arguments, patriarchal ideology is condemned and the concepts of equality and equal opportunity between men and women are promoted. On the other hand, feminist principles and demands are ascribed to individualism, which translates into the slogan: women are free to decide for themselves, even to objectify their own bodies. In particular, it is observed that femvertising trend in media industry is changing female representation moving away from classic stereotypes: the feminine beauty ideal of slenderness, emphasized in the media since the seventies, is ultimately challenged by the ‘curvy’ body model, which is considered to be more inclusive and based on the concept of ‘natural beauty’. Another aspect of change is the ‘anti-romantic’ revolution performed by some heroines, who are not in search of Prince Charming, in television drama and in the film industry. In conclusion, although femvertising tends to simplify and trivialize the concepts characterizing fourth-wave feminism (‘intersectionality’ and ‘inclusion’), it is also a tendency that enables the challenging of media imagery largely based on male viewpoints, interests and desires.

Keywords: feminine beauty ideal, femvertising, gender and media, postfeminism

Procedia PDF Downloads 149
944 Health State Utility Values Related to COVID-19 Pandemic Using EQ-5D: A Systematic Review and Meta-Analysis

Authors: Xu Feifei

Abstract:

The prevalence of COVID-19 currently is the biggest challenge to improving people's quality of life. Its impact on the health-related quality of life (HRQoL) is highly uncertain and has not been summarized so far. The aim of the present systematic review was to assess and provide an up-to-date analysis of the impact of the COVID-19 pandemic on the HRQoL of participants who have been infected, have not been infected but isolated, frontline, with different diseases, and the general population. Therefore, an electronic search of the literature in PubMed databases was performed from 2019 to July 2022 (without date restriction). PRISMA guideline methodology was employed, and data regarding the HRQoL were extracted from eligible studies. Articles were included if they met the following inclusion criteria: (a) reports on the data collection of the health state utility values (HSUVs) related to COVID-19 from 2019 to 2021; (b) English language and peer-reviewed journals; and (c) original HSUV data; (d) using EQ-5D tool to quantify the HRQoL. To identify studies that reported the effects on COVID-19, data on the proportion of overall HSUVs of participants who had the outcome were collected and analyzed using a one-group meta-analysis. As a result, thirty-two studies fulfilled the inclusion criteria and, therefore, were included in the systematic review. A total of 45295 participants and provided 219 means of HSUVs during COVID-19 were included in this systematic review. The range of utility is from 0.224 to 1. The study included participants from Europe (n=16), North America (n=4), Asia (n=10), South America (n=1), and Africa (n=1). Twelve articles showed that the HRQoL of the participants who have been infected with COVID-19 (range of overall HSUVs from 0.6125 to 0.863). Two studies reported the population of frontline workers (the range of overall HSUVs from 0.82 to 0.93). Seven of the articles researched the participants who had not been infected with COVID-19 but suffered from morbidities during the pandemic (range of overall HSUVs from 0.5 to 0.96). Thirteen studies showed that the HRQoL of the respondents who have not been infected with COVID-19 and without any morbidities (range of overall HSUVs from 0.64 to 0.964). Moreover, eighteen articles reported the outcomes of overall HSUVs during the COVID-19 pandemic in different population groups. The estimate of overall HSUVs of direct COVID-19 experience population (n=1333) was 0.751 (95% CI 0.670 - 0.832, I2 = 98.64%); the estimate of frontline population (n=610) was 0.906 ((95% CI 0.854 – 0.957, I2 = 98.61%); participants with different disease (n=132) were 0.768 (95% CI 0.515 - 1.021, I2= 99.26%); general population without infection history (n=29,892) was 0.825 (95% CI 0.766 - 0.885, I2 =99.69%). Conclusively, taking into account these results, this systematic review might confirm that COVID-19 has a negative impact on the HRQoL of the infected population and illness population. It provides practical value for cost-effectiveness model analysis of health states related to COVID-19.

Keywords: COVID-19, health-related quality of life, meta-analysis, systematic review, utility value

Procedia PDF Downloads 81
943 A Machine Learning Approach for Efficient Resource Management in Construction Projects

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management

Procedia PDF Downloads 36
942 The Effect of Swirl on the Flow Distribution in Automotive Exhaust Catalysts

Authors: Piotr J. Skusiewicz, Johnathan Saul, Ijhar Rusli, Svetlana Aleksandrova, Stephen. F. Benjamin, Miroslaw Gall, Steve Pierson, Carol A. Roberts

Abstract:

The application of turbocharging in automotive engines leads to swirling flow entering the catalyst. The behaviour of this type of flow within the catalyst has yet to be adequately documented. This work discusses the effect of swirling flow on the flow distribution in automotive exhaust catalysts. Compressed air supplied to a moving-block swirl generator allowed for swirling flow with variable intensities to be generated. Swirl intensities were measured at the swirl generator outlet using single-sensor hot-wire probes. The swirling flow was fed into diffusers with total angles of 10°, 30° and 180°. Downstream of the diffusers, a wash-coated diesel oxidation catalyst (DOC) of length 143.8 mm, diameter 76.2 mm and nominal cell density of 400 cpsi was fitted. Velocity profiles were measured at the outlet sleeve about 30 mm downstream of the monolith outlet using single-sensor hot-wire probes. Wall static pressure was recorded using a multi-tube manometer connected to pressure taps positioned along the diffuser walls. The results show that as swirl is increased, more of the flow is directed towards the diffuser walls. The velocity decreases around the centre-line and maximum velocities are observed close to the outer radius of the monolith for all flow rates. At the maximum swirl intensity, reversed flow was recorded near the centre of the monolith. Wall static pressure measurements in the 180° diffuser indicated no pressure recovery as the flow enters the diffuser. This is indicative of flow separation at the inlet to the diffuser. To gain insight into the flow structure, CFD simulations have been performed for the 180° diffuser for a flow rate of 63 g/s. The geometry of the model consists of the complete assembly from the upstream swirl generator to the outlet sleeve. Modelling of the flow in the monolith was achieved using the porous medium approach, where the monolith with parallel flow channels is modelled as a porous medium that resists the flow. A reasonably good agreement was achieved between the experimental and CFD results downstream of the monolith. The CFD simulations allowed visualisation of the separation zones and central toroidal recirculation zones that occur within the expansion region at certain swirl intensities which are highlighted.

Keywords: catalyst, computational fluid dynamics, diffuser, hot-wire anemometry, swirling flow

Procedia PDF Downloads 303
941 Integrating Data Mining with Case-Based Reasoning for Diagnosing Sorghum Anthracnose

Authors: Mariamawit T. Belete

Abstract:

Cereal production and marketing are the means of livelihood for millions of households in Ethiopia. However, cereal production is constrained by technical and socio-economic factors. Among the technical factors, cereal crop diseases are the major contributing factors to the low yield. The aim of this research is to develop an integration of data mining and knowledge based system for sorghum anthracnose disease diagnosis that assists agriculture experts and development agents to make timely decisions. Anthracnose diagnosing systems gather information from Melkassa agricultural research center and attempt to score anthracnose severity scale. Empirical research is designed for data exploration, modeling, and confirmatory procedures for testing hypothesis and prediction to draw a sound conclusion. WEKA (Waikato Environment for Knowledge Analysis) was employed for the modeling. Knowledge based system has come across a variety of approaches based on the knowledge representation method; case-based reasoning (CBR) is one of the popular approaches used in knowledge-based system. CBR is a problem solving strategy that uses previous cases to solve new problems. The system utilizes hidden knowledge extracted by employing clustering algorithms, specifically K-means clustering from sampled anthracnose dataset. Clustered cases with centroid value are mapped to jCOLIBRI, and then the integrator application is created using NetBeans with JDK 8.0.2. The important part of a case based reasoning model includes case retrieval; the similarity measuring stage, reuse; which allows domain expert to transfer retrieval case solution to suit for the current case, revise; to test the solution, and retain to store the confirmed solution to the case base for future use. Evaluation of the system was done for both system performance and user acceptance. For testing the prototype, seven test cases were used. Experimental result shows that the system achieves an average precision and recall values of 70% and 83%, respectively. User acceptance testing also performed by involving five domain experts, and an average of 83% acceptance is achieved. Although the result of this study is promising, however, further study should be done an investigation on hybrid approach such as rule based reasoning, and pictorial retrieval process are recommended.

Keywords: sorghum anthracnose, data mining, case based reasoning, integration

Procedia PDF Downloads 77
940 Biocellulose as Platform for the Development of Multifunctional Materials

Authors: Junkal Gutierrez, Hernane S. Barud, Sidney J. L. Ribeiro, Agnieszka Tercjak

Abstract:

Nowadays the interest on green nanocomposites and on the development of more environmental friendly products has been increased. Bacterial cellulose has been recently investigated as an attractive environmentally friendly material for the preparation of low-cost nanocomposites. The formation of cellulose by laboratory bacterial cultures is an interesting and attractive biomimetic access to obtain pure cellulose with excellent properties. Additionally, properties as molar mass, molar mass distribution, and the supramolecular structure could be control using different bacterial strain, culture mediums and conditions, including the incorporation of different additives. This kind of cellulose is a natural nanomaterial, and therefore, it has a high surface-to-volume ratio which is highly advantageous in composites production. Such property combined with good biocompatibility, high tensile strength, and high crystallinity makes bacterial cellulose a potential material for applications in different fields. The aim of this investigation work was the fabrication of novel hybrid inorganic-organic composites based on bacterial cellulose, cultivated in our laboratory, as a template. This kind of biohybrid nanocomposites gathers together excellent properties of bacterial cellulose with the ones displayed by typical inorganic nanoparticles like optical, magnetic and electrical properties, luminescence, ionic conductivity and selectivity, as well as chemical or biochemical activity. In addition, the functionalization of cellulose with inorganic materials opens new pathways for the fabrication of novel multifunctional hybrid materials with promising properties for a wide range of applications namely electronic paper, flexible displays, solar cells, sensors, among others. In this work, different pathways for fabrication of multifunctional biohybrid nanopapers with tunable properties based on BC modified with amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (EPE) block copolymer, sol-gel synthesized nanoparticles (titanium, vanadium and a mixture of both oxides) and functionalized iron oxide nanoparticles will be presented. In situ (biosynthesized) and ex situ (at post-production level) approaches were successfully used to modify BC membranes. Bacterial cellulose based biocomposites modified with different EPE block copolymer contents were developed by in situ technique. Thus, BC growth conditions were manipulated to fabricate EPE/BC nanocomposite during the biosynthesis. Additionally, hybrid inorganic/organic nanocomposites based on BC membranes and inorganic nanoparticles were designed via ex-situ method, by immersion of never-dried BC membranes into different nanoparticle solutions. On the one hand, sol-gel synthesized nanoparticles (titanium, vanadium and a mixture of both oxides) and on the other hand superparamagnetic iron oxide nanoparticles (SPION), Fe2O3-PEO solution. The morphology of designed novel bionanocomposites hybrid materials was investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). In order to characterized obtained materials from the point of view of future applications different techniques were employed. On the one hand, optical properties were analyzed by UV-vis spectroscopy and spectrofluorimetry and on the other hand electrical properties were studied at nano and macroscale using electric force microscopy (EFM), tunneling atomic force microscopy (TUNA) and Keithley semiconductor analyzer, respectively. Magnetic properties were measured by means of magnetic force microscopy (MFM). Additionally, mechanical properties were also analyzed.

Keywords: bacterial cellulose, block copolymer, advanced characterization techniques, nanoparticles

Procedia PDF Downloads 228