Search results for: successful learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8985

Search results for: successful learning

6675 Language Services as a Means of Language Repository for Tuition Support and Facilitation of Learning in Institution of Higher Learning

Authors: Mzamani Aaron, Mabasa

Abstract:

The research study examines the reality that the Language Services Directorate can be considered a language repository hub. The study postulates that multilingual education guided by language policy implementation can improve student performance and pass rate. Various documents in the form of style guides, glossaries and tutorial letters may be used to enable students to understand complex words, sentences, phrases and paragraphs when technical vocabularies are used. This paper addresses the way in which quality assurance can transform South African official languages, including Sign Language, as mandated by the Language Policy for Higher Education. The paper further emphasizes that Language Services is unique in the sense that it involves all South African officials as tools for student support and facilitation of learning. This is in line with the Constitution of the Republic of South Africa (1996) and the Unisa Language Policy of 2023, which declares the status, parity and esteem of these official languages regarding usage in formal function domains, namely education, economy, social and politics. The aim of this paper is to ensure that quality assurance is ultimately accomplished in terms of teaching and learning standards. Eventually, all South African languages can be used for official domains to achieve functional multilingualism. This paper furthermore points out that content analysis as a research instrument as far as a qualitative approach is concerned may be used as a data collection technique.

Keywords: repository, multilingualism, policy, education

Procedia PDF Downloads 12
6674 Using Indigenous Knowledge Systems in Teaching Early Literacy: A Case Study of Zambian Public Preschools

Authors: Ronald L. Kaunda

Abstract:

The education system in Zambia still bears scars of colonialism in the area of policy, curriculum and implementation. This historical context resulted in the failure by the Government of the Republic of Zambia to achieve literacy goals expected among school going children. Specifically, research shows that the use of English for initial literacy and Western based teaching methods to engage learners in literacy activities at lower levels of education including preschool has exacerbated this situation. In 2014, the Government of the Republic of Zambia implemented a new curriculum that, among others things, required preschool teachers to use local and cultural materials and familiar languages for early literacy teaching from preschool to grade 4. This paper presents findings from a study that sought to establish ways in which preschool teachers use Zambian Indigenous knowledge systems and Indigenous teaching strategies to support literacy development among preschool children. The study used Indigenous research methodology for data collection and iterative feature of Constructivist Grounded Theory (CGT) in the data collection process and analysis. This study established that, as agents of education, preschool teachers represented community adult educators because of some roles which they played beyond their academic mandate. The study further found that classrooms as venues of learning were equipped with learning corners reflecting Indigenous literacy materials and Indigenous ways of learning. Additionally, the study found that learners were more responsive to literacy lessons because of the use of familiar languages and local contextualized environments that supported their own cultural ways of learning. The study recommended that if the education system in Zambia is to be fully inclusive of Indigenous knowledge systems and cultural ways of learning, the education policy and curriculum should include conscious steps on how this should be implemented at the classroom level. The study further recommended that more diverse local literacy materials and teaching aids should be produced for use in the classroom.

Keywords: agents of learning, early literacy, indigenous knowledge systems, venues of education

Procedia PDF Downloads 149
6673 The Clustering of Multiple Sclerosis Subgroups through L2 Norm Multifractal Denoising Technique

Authors: Yeliz Karaca, Rana Karabudak

Abstract:

Multifractal Denoising techniques are used in the identification of significant attributes by removing the noise of the dataset. Magnetic resonance (MR) image technique is the most sensitive method so as to identify chronic disorders of the nervous system such as Multiple Sclerosis. MRI and Expanded Disability Status Scale (EDSS) data belonging to 120 individuals who have one of the subgroups of MS (Relapsing Remitting MS (RRMS), Secondary Progressive MS (SPMS), Primary Progressive MS (PPMS)) as well as 19 healthy individuals in the control group have been used in this study. The study is comprised of the following stages: (i) L2 Norm Multifractal Denoising technique, one of the multifractal technique, has been used with the application on the MS data (MRI and EDSS). In this way, the new dataset has been obtained. (ii) The new MS dataset obtained from the MS dataset and L2 Multifractal Denoising technique has been applied to the K-Means and Fuzzy C Means clustering algorithms which are among the unsupervised methods. Thus, the clustering performances have been compared. (iii) In the identification of significant attributes in the MS dataset through the Multifractal denoising (L2 Norm) technique using K-Means and FCM algorithms on the MS subgroups and control group of healthy individuals, excellent performance outcome has been yielded. According to the clustering results based on the MS subgroups obtained in the study, successful clustering results have been obtained in the K-Means and FCM algorithms by applying the L2 norm of multifractal denoising technique for the MS dataset. Clustering performance has been more successful with the MS Dataset (L2_Norm MS Data Set) K-Means and FCM in which significant attributes are obtained by applying L2 Norm Denoising technique.

Keywords: clinical decision support, clustering algorithms, multiple sclerosis, multifractal techniques

Procedia PDF Downloads 152
6672 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles

Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi

Abstract:

Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.

Keywords: artificial neural networks, fuel consumption, friedman test, machine learning, statistical hypothesis testing

Procedia PDF Downloads 162
6671 EECS: Reimagining the Future of Technology Education through Electrical Engineering and Computer Science Integration

Authors: Yousef Sharrab, Dimah Al-Fraihat, Monther Tarawneh, Aysh Alhroob, Ala’ Khalifeh, Nabil Sarhan

Abstract:

This paper explores the evolution of Electrical Engineering (EE) and Computer Science (CS) education in higher learning, examining the feasibility of unifying them into Electrical Engineering and Computer Science (EECS) for the technology industry. It delves into the historical reasons for their separation and underscores the need for integration. Emerging technologies such as AI, Virtual Reality, IoT, Cloud Computing, and Cybersecurity demand an integrated EE and CS program to enhance students' understanding. The study evaluates curriculum integration models, drawing from prior research and case studies, demonstrating how integration can provide students with a comprehensive knowledge base for industry demands. Successful integration necessitates addressing administrative and pedagogical challenges. For academic institutions considering merging EE and CS programs, the paper offers guidance, advocating for a flexible curriculum encompassing foundational courses and specialized tracks in computer engineering, software engineering, bioinformatics, information systems, data science, AI, robotics, IoT, virtual reality, cybersecurity, and cloud computing. Elective courses are emphasized to keep pace with technological advancements. Implementing this integrated approach can prepare students for success in the technology industry, addressing the challenges of a technologically advanced society reliant on both EE and CS principles. Integrating EE and CS curricula is crucial for preparing students for the future.

Keywords: electrical engineering, computer science, EECS, curriculum integration of EE and CS

Procedia PDF Downloads 42
6670 Survey Study of Integrative and Instrumental Motivation in English Language Learning of First Year Students at Naresuan University International College (NUIC), Thailand

Authors: Don August G. Delgado

Abstract:

Foreign Language acquisition without enough motivation is tough because it is the force that drives students’ interest or enthusiasm to achieve learning. In addition, it also serves as the students’ beacon to achieve their goals, desires, dreams, and aspirations in life. Since it plays an integral factor in language learning acquisition, this study focuses on the integrative and instrumental motivation levels of all the first year students of Naresuan University International College. The identification of their motivation level and inclination in learning the English language will greatly help all NUIC lecturers and administrators to create a project or activities that they will truly enjoy and find worth doing. However, if the findings of this study will say otherwise, this study can also show to NUIC lecturers and administrators how they can help and transform NUIC freshmen on becoming motivated learners to enhance their English proficiency levels. All respondents in this study received an adopted and developed questionnaire from different researches in the same perspective. The questionnaire has 24 questions that were randomly arranged; 12 for integrative motivation and 12 for instrumental motivation. The questionnaire employed the five-point Likert scale. The tabulated data were analyzed according to its means and standard deviations using the Standard Deviation Calculator. In order to interpret the motivation level of the respondents, the Interpretation of Mean Scores was utilized. Thus, this study concludes that majority of the NUIC freshmen are neither integratively motivated nor instrumentally motivated students.

Keywords: motivation, integrative, foreign language acquisition, instrumental

Procedia PDF Downloads 216
6669 English Test Success among Syrian Refugee Girls Attending Language Courses in Lebanon

Authors: Nina Leila Mussa

Abstract:

Background: The devastating effects of the war on Syria’s educational infrastructure has been widely reported, with millions of children denied access. However, among those who resettled in Lebanon, the impact of receiving educational assistance on their abilities to pass the English entrance exam is not well described. The aim of this study was to identify predictors of success among Syrian refugees receiving English language courses in a Lebanese university. Methods: The database of Syrian refugee girls matriculated in English courses at the American University of Beirut (AUB) was reviewed. The study period was 7/2018-09/2020. Variables compared included: family size and income, welfare status, parents’ education, English proficiency, access to the internet, and need for external help with homework. Results: For the study period, there were 28 girls enrolled. The average family size was 6 (range 4-9), with eight having completed primary, 14 secondary education, and 6 graduated high school. Eighteen were single-income families. After 12 weeks of English courses, 16 passed the Test of English as Foreign Language (TOEFL) from the first attempt, and 12 failed. Out of the 12, 8 received external help, and 6 passed on the second attempt, which brings the total number of successful passing to 22. Conclusion: Despite the tragedy of war, girls receiving assistance in learning English in Lebanon are able to pass the basic language test. Investment in enhancing those educational experiences will be determinantal in achieving widespread progress among those at-risk children.

Keywords: refugee girls, TOEFL, education, success

Procedia PDF Downloads 112
6668 Performance Study of Classification Algorithms for Consumer Online Shopping Attitudes and Behavior Using Data Mining

Authors: Rana Alaa El-Deen Ahmed, M. Elemam Shehab, Shereen Morsy, Nermeen Mekawie

Abstract:

With the growing popularity and acceptance of e-commerce platforms, users face an ever increasing burden in actually choosing the right product from the large number of online offers. Thus, techniques for personalization and shopping guides are needed by users. For a pleasant and successful shopping experience, users need to know easily which products to buy with high confidence. Since selling a wide variety of products has become easier due to the popularity of online stores, online retailers are able to sell more products than a physical store. The disadvantage is that the customers might not find products they need. In this research the customer will be able to find the products he is searching for, because recommender systems are used in some ecommerce web sites. Recommender system learns from the information about customers and products and provides appropriate personalized recommendations to customers to find the needed product. In this paper eleven classification algorithms are comparatively tested to find the best classifier fit for consumer online shopping attitudes and behavior in the experimented dataset. The WEKA knowledge analysis tool, which is an open source data mining workbench software used in comparing conventional classifiers to get the best classifier was used in this research. In this research by using the data mining tool (WEKA) with the experimented classifiers the results show that decision table and filtered classifier gives the highest accuracy and the lowest accuracy classification via clustering and simple cart.

Keywords: classification, data mining, machine learning, online shopping, WEKA

Procedia PDF Downloads 340
6667 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs Based on Machine Learning Algorithms

Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios

Abstract:

Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity, and aflatoxinogenic capacity of the strains, topography, soil, and climate parameters of the fig orchards, are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive, and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), the concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P, and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques, i.e., dimensionality reduction on the original dataset (principal component analysis), metric learning (Mahalanobis metric for clustering), and k-nearest neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson correlation coefficient (PCC) between observed and predicted values.

Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction

Procedia PDF Downloads 167
6666 Indigenous Learning of Animal Metaphors: The ‘Big Five’ in King Shaka’s Praise-Poems

Authors: Ntandoni Gloria Biyela

Abstract:

During traditional times, there were no formal institutions of learning as they are today, where children attend classes to acquire or develop knowledge. This does not mean that there was no learning in indigenous African societies. Grandparents used to tell their grandchildren stories or teach them educational games around the fireplace, which this study refers to as a ‘traditional classroom’. A story recreated in symbolic or allegorical way, forms a base for a society’s beliefs, customs, accepted norms and language learning. Through folklore narratives, a society develops its own self awareness and education. So narrative characters, especially animals may be mythical products of the pre-literate folklore world and thus show the closeness that the Zulu society had with the wildlife. Oral cultures strive to create new facets of meaning by the use of animal metaphors to reflect the relationship of humans with the animal realm and to contribute to the language learning or literature in cross-cultural studies. Although animal metaphors are widespread in Zulu language because of the Zulu nation’s traditional closeness to wildlife, little field-research has been conducted on the social behavior of animals on the way in which their characteristics were transferred with precision to depictions of King Shaka’s behavior and activities during the amalgamation of Nguni clans into a Zulu kingdom. This study attempts to fill the gap by using first-hand interviews with local informants in areas traditionally linked to the king in KwaZulu-Natal province, South Africa. Departing from the conceptual metaphor theory, the study concentrates on King Shaka’s praise-poems in which the praise-poet describes his physical and dispositional characteristics through bold animal metaphors of the ‘Big Five’; namely, the lion, the leopard, the buffalo, the rhinoceros and the elephant, which are often referred to as Zulu royal favorites. These metaphors are still learnt by young and old in the 21st century because they reflect the responsibilities, status, and integrity of the king and the respect in which he is held by his people. They also project the crescendo growth of the Zulu nation, which, through the fulfillment of his ambitions, grew from a small clan to a mighty kingdom.

Keywords: animal, indigenous, learning, metaphor

Procedia PDF Downloads 252
6665 Identifying Degradation Patterns of LI-Ion Batteries from Impedance Spectroscopy Using Machine Learning

Authors: Yunwei Zhang, Qiaochu Tang, Yao Zhang, Jiabin Wang, Ulrich Stimming, Alpha Lee

Abstract:

Forecasting the state of health and remaining useful life of Li-ion batteries is an unsolved challenge that limits technologies such as consumer electronics and electric vehicles. Here we build an accurate battery forecasting system by combining electrochemical impedance spectroscopy (EIS) -- a real-time, non-invasive and information-rich measurement that is hitherto underused in battery diagnosis -- with Gaussian process machine learning. We collect over 20,000 EIS spectra of commercial Li-ion batteries at different states of health, states of charge and temperatures -- the largest dataset to our knowledge of its kind. Our Gaussian process model takes the entire spectrum as input, without further feature engineering, and automatically determines which spectral features predict degradation. Our model accurately predicts the remaining useful life, even without complete knowledge of past operating conditions of the battery. Our results demonstrate the value of EIS signals in battery management systems.

Keywords: battery degradation, machine learning method, electrochemical impedance spectroscopy, battery diagnosis

Procedia PDF Downloads 131
6664 Summer STEM Camp for Elementary Students: A Conduit to Pre-Service Teacher Training to Learn How to Include a Makerspace for an Inclusive Classroom

Authors: Jennifer Gallup, Beverly Ray, Esther Ntuli

Abstract:

Many students such as students from linguistically or culturally diverse backgrounds and those with a disability remain chronically underrepresented in higher level science and mathematics disciplines as well as many hands-on-lab-based activities due to the need for remedial reading and mathematics instruction. Makerspace labs can be a conduit for supporting inclusive learning for these students through hands-on active learning strategies that support equitable access to STEM disciplines. Makerspace is a physical space where individuals gather to create, invent, innovate, and learn while using hands-on materials such as 2D and 3D printers, software programs, electronics, and other tools and supplies. Makerspaces are emerging across many P-12 settings; however, many teachers enter the field not prepared to harness the power inherent in a makerspace, especially for those with disabilities and differing needs. This paper offers suggestions on teaching pre-service teachers and practicing teachers how to incorporate a makerspace into their professional practice through guided instruction and hands-on practice. Recommendations for interested stakeholders are included as well.

Keywords: STEM learning, technology, autism, students with disabilities, makerspace

Procedia PDF Downloads 76
6663 The Role of Art and Music in Enriching Adult Learning in Maltese as a Second Language

Authors: Jacqueline Zammit

Abstract:

Currently, a considerable number of individuals from different backgrounds are being drawn to Malta due to its favourable environment for business, investment, and employment. This influx has led to a growing interest among expats in learning Maltese as a second language (ML2) to enrich their experience of working and residing in Malta. However, the intricacies of Maltese grammar, particularly challenging for second language (L2) learners unfamiliar with Arabic, can pose difficulties in the learning process. Furthermore, it's worth noting that the teaching of ML2 is an emerging field with limited existing research on effective pedagogical strategies. The realm of second language acquisition (SLA) can be notably demanding for adults, requiring well-founded interventions to facilitate learning. Among these interventions, approaches grounded in empirical evidence have incorporated artistic and musical elements to augment SLA. Both art and music have proven roles in facilitating L2 communication, aiding vocabulary retention, and improving comprehension skills. This study aims to delve into the utilization of music and art as catalysts for enhancing the progress of adult learners in mastering ML2. The research employs a qualitative methodology, employing a sample selected through convenience sampling, which encompassed 37 adult learners of ML2. These participants engaged in individual interviews. The data derived from these interviews were subjected to thorough analysis. The outcomes of the study underscore the substantial positive influence exerted by art and music on the academic advancement of adult ML2 learners. Notably, it emerged from the participants' accounts that the current ML2 curricula lack the integration of art and music. Therefore, this study advocates for the incorporation of art and music components within both traditional classroom settings and online ML2 courses. The intention is to bolster the academic accomplishments of adult learners in the realm of Maltese as a second language, bridging the current gap between theory and practice.

Keywords: academic accomplishment, mature learners, visual art, learning Maltese as a second language, musical involvement, acquiring a second language

Procedia PDF Downloads 57
6662 R Data Science for Technology Management

Authors: Sunghae Jun

Abstract:

Technology management (TM) is important issue in a company improving the competitiveness. Among many activities of TM, technology analysis (TA) is important factor, because most decisions for management of technology are decided by the results of TA. TA is to analyze the developed results of target technology using statistics or Delphi. TA based on Delphi is depended on the experts’ domain knowledge, in comparison, TA by statistics and machine learning algorithms use objective data such as patent or paper instead of the experts’ knowledge. Many quantitative TA methods based on statistics and machine learning have been studied, and these have been used for technology forecasting, technological innovation, and management of technology. They applied diverse computing tools and many analytical methods case by case. It is not easy to select the suitable software and statistical method for given TA work. So, in this paper, we propose a methodology for quantitative TA using statistical computing software called R and data science to construct a general framework of TA. From the result of case study, we also show how our methodology is applied to real field. This research contributes to R&D planning and technology valuation in TM areas.

Keywords: technology management, R system, R data science, statistics, machine learning

Procedia PDF Downloads 444
6661 Potential of Ozonation and Phytoremediation to Reduce Hydrocarbon Levels Remaining after the Pilot Scale Microbial Based Bioremediation (Land-Farming) of a Heavily Polluted Soil

Authors: Hakima Althalb

Abstract:

Petroleum contamination of sandy soils is a severe environmental problem in Libya, but relatively little work has been carried out to optimize the bioremediation of such heavily contaminated soil, particularly at a pilot scale. The purpose of this research was to determine the potential for the microbial-based bioremediation of hydrocarbon-contaminated soil obtained from an oil refinery in Libya and to assess the potential of both ozonation and phytoremediation (both applied after initial bioremediation) to reduce residual hydrocarbon levels. Plots containing 500 kg soil (triplicates) (contaminated soil diluted with clean soil 50% volume) were set up, (designated as Land Treatment Units; LTUs) containing five different nutrient levels and mixtures (Urea + NPK (nitrogen; phosphor; potassium) mixtures) to obtain C:N:P ratios 100:10:1, and monitored for 90 days. Hydrocarbon levels, microbial numbers, and toxicity (EC50 using luminescent microbial based tests) were assessed. Hydrocarbon levels in non-diluted and diluted soil ranged from 20 733-22 366 mg/kg and from 16 000-17 000 mg/kg respectively. Although all the land treatment units revealed a significant hydrocarbon reduction over time, the highest reduction in hydrocarbon levels obtained was around 60%. For example, 63% hydrocarbon removal was observed using a mixture of urea and NPK with a C:N:P ratio of 100:10:1). Soil toxicity (as assessed using luminescence based toxicity assays) reduced in line with the reduction in total petroleum hydrocarbons observed. However, as relatively high residual TPH (total petroleum hydrocarbon) levels (ranging from 6033-14166mg/kg) were still present after initial bioremediation two ‘post-treatments’ (phytoremediation and ozonation) were attempted to remove residual hydrocarbons remaining. Five locally grown (agriculturally important) plant species were tested. The germination of all plants examined was strongly inhibited (80-100%) and seedlings failed to grow well in the contaminated soil, indicating that the previously bioremediated soils were still toxic to the plants. Subsequent ozonation followed by another bioremediation of soil was more successful than phytoremediation. But even the most promising successful treatment in this study (ozonation for 6 hours at 25ppm followed by bioremediation) still only removed approximately 31% of the residual hydrocarbons. Overall, this work showed that the bioremediation of such highly contaminated soils is difficult and that a combination of treatments would be required to achieve successful remediation. Even after initial dilution and bioremediation the soils remained toxic to plant growth and were therefore not suitable for phytoremediation.

Keywords: bioremediation, petroleum hydrocarbons, ozone, phytoremediation

Procedia PDF Downloads 160
6660 Songwriting in the Postdigital Age: Using TikTok and Instagram as Online Informal Learning Technologies

Authors: Matthias Haenisch, Marc Godau, Julia Barreiro, Dominik Maxelon

Abstract:

In times of ubiquitous digitalization and the increasing entanglement of humans and technologies in musical practices in the 21st century, it is to be asked, how popular musicians learn in the (post)digital Age. Against the backdrop of the increasing interest in transferring informal learning practices into formal settings of music education the interdisciplinary research association »MusCoDA – Musical Communities in the (Post)Digital Age« (University of Erfurt/University of Applied Sciences Clara Hoffbauer Potsdam, funded by the German Ministry of Education and Research, pursues the goal to derive an empirical model of collective songwriting practices from the study of informal lelearningf songwriters and bands that can be translated into pedagogical concepts for music education in schools. Drawing on concepts from Community of Musical Practice and Actor Network Theory, lelearnings considered not only as social practice and as participation in online and offline communities, but also as an effect of heterogeneous networks composed of human and non-human actors. Learning is not seen as an individual, cognitive process, but as the formation and transformation of actor networks, i.e., as a practice of assembling and mediating humans and technologies. Based on video stimulated recall interviews and videography of online and offline activities, songwriting practices are followed from the initial idea to different forms of performance and distribution. The data evaluation combines coding and mapping methods of Grounded Theory Methodology and Situational Analysis. This results in network maps in which both the temporality of creative practices and the material and spatial relations of human and technological actors are reconstructed. In addition, positional analyses document the power relations between the participants that structure the learning process of the field. In the area of online informal lelearninginitial key research findings reveal a transformation of the learning subject through the specific technological affordances of TikTok and Instagram and the accompanying changes in the learning practices of the corresponding online communities. Learning is explicitly shaped by the material agency of online tools and features and the social practices entangled with these technologies. Thus, any human online community member can be invited to directly intervene in creative decisions that contribute to the further compositional and structural development of songs. At the same time, participants can provide each other with intimate insights into songwriting processes in progress and have the opportunity to perform together with strangers and idols. Online Lelearnings characterized by an increase in social proximity, distribution of creative agency and informational exchange between participants. While it seems obvious that traditional notions not only of lelearningut also of the learning subject cannot be maintained, the question arises, how exactly the observed informal learning practices and the subject that emerges from the use of social media as online learning technologies can be transferred into contexts of formal learning

Keywords: informal learning, postdigitality, songwriting, actor-network theory, community of musical practice, social media, TikTok, Instagram, apps

Procedia PDF Downloads 109
6659 Improved Computational Efficiency of Machine Learning Algorithm Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK

Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick

Abstract:

The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning archetypal that could forecast COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organisation (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data is split into 8:2 ratio for training and testing purposes to forecast future new COVID cases. Support Vector Machines (SVM), Random Forests, and linear regression algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID cases is evaluated. Random Forest outperformed the other two Machine Learning algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n=30. The mean square error obtained for Random Forest is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis Random Forest algorithm can perform more effectively and efficiently in predicting the new COVID cases, which could help the health sector to take relevant control measures for the spread of the virus.

Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest

Procedia PDF Downloads 106
6658 An Image Segmentation Algorithm for Gradient Target Based on Mean-Shift and Dictionary Learning

Authors: Yanwen Li, Shuguo Xie

Abstract:

In electromagnetic imaging, because of the diffraction limited system, the pixel values could change slowly near the edge of the image targets and they also change with the location in the same target. Using traditional digital image segmentation methods to segment electromagnetic gradient images could result in lots of errors because of this change in pixel values. To address this issue, this paper proposes a novel image segmentation and extraction algorithm based on Mean-Shift and dictionary learning. Firstly, the preliminary segmentation results from adaptive bandwidth Mean-Shift algorithm are expanded, merged and extracted. Then the overlap rate of the extracted image block is detected before determining a segmentation region with a single complete target. Last, the gradient edge of the extracted targets is recovered and reconstructed by using a dictionary-learning algorithm, while the final segmentation results are obtained which are very close to the gradient target in the original image. Both the experimental results and the simulated results show that the segmentation results are very accurate. The Dice coefficients are improved by 70% to 80% compared with the Mean-Shift only method.

Keywords: gradient image, segmentation and extract, mean-shift algorithm, dictionary iearning

Procedia PDF Downloads 250
6657 Thermal Comfort Study of School Buildings in South Minahasa Regency Case Study: SMA Negeri 1 Amurang, Indonesia

Authors: Virgino Stephano Moniaga

Abstract:

Thermal comfort inside a building can affect students in their learning process. The learning process of students can be improved if the condition of the classrooms is comfortable. This study will be conducted in SMA Negeri 1 Amurang which is a senior high school building located in South Minahasa Regency. Based on preliminary survey, generally, students were not satisfied with the existing level of comfort, which subsequently affected the teaching and learning process in the classroom. The purpose of this study is to analyze the comfort level of classrooms occupants and recommend building design solutions that can improve the thermal comfort of classrooms. In this study, three classrooms will be selected for thermal comfort measurements. The thermal comfort measurements will be taken in naturally ventilated classrooms. The measured data comprise of personal data (clothing and students activity), air humidity, air temperature, mean radiant temperature and air flow velocity. Simultaneously, the students will be asked to fill out a questionnaire that asked about the level of comfort that was felt at the time. The results of field measurements and questionnaires will be analyzed based on the PMV and PPD indices. The results of the analysis will decide whether the classrooms are comfortable or not. This study can be continued to obtain a more optimal design solution to improve the thermal comfort of the classrooms. The expected results from this study can improve the quality of teaching and learning process between teachers and students which can further assist the government efforts to improve the quality of national education.

Keywords: classrooms, PMV, PPD, thermal comfort

Procedia PDF Downloads 297
6656 Biomedical Definition Extraction Using Machine Learning with Synonymous Feature

Authors: Jian Qu, Akira Shimazu

Abstract:

OOV (Out Of Vocabulary) terms are terms that cannot be found in many dictionaries. Although it is possible to translate such OOV terms, the translations do not provide any real information for a user. We present an OOV term definition extraction method by using information available from the Internet. We use features such as occurrence of the synonyms and location distances. We apply machine learning method to find the correct definitions for OOV terms. We tested our method on both biomedical type and name type OOV terms, our work outperforms existing work with an accuracy of 86.5%.

Keywords: information retrieval, definition retrieval, OOV (out of vocabulary), biomedical information retrieval

Procedia PDF Downloads 476
6655 Digital Transformation in Developing Countries, A Study into Building Information Modelling Adoption in Thai Design and Engineering Small- and Medium-Sizes Enterprises

Authors: Prompt Udomdech, Eleni Papadonikolaki, Andrew Davies

Abstract:

Building information modelling (BIM) is the major technological trend amongst built environment organisations. Digitalising businesses and operations, BIM brings forth a digital transformation in any built environment industry. The adoption of BIM presents challenges for organisations, especially small- and medium-sizes enterprises (SMEs). The main problem for built-environment SMEs is the lack of project actors with adequate BIM competences. The research highlights learning in projects as the key and explores into the learning of BIM in projects of designers and engineers within Thai design and engineering SMEs. The study uncovers three impeding attributes, which are: a) lack of English proficiency; b) unfamiliarity with digital technologies; and c) absence of public standards. This research expands on the literature on BIM competences and adoption.

Keywords: BIM competences and adoption, digital transformation, learning in projects, SMEs, and developing built environment industry

Procedia PDF Downloads 122
6654 Elements of Creativity and Innovation

Authors: Fadwa Al Bawardi

Abstract:

In March 2021, the Saudi Arabian Council of Ministers issued a decision to form a committee called the "Higher Committee for Research, Development and Innovation," a committee linked to the Council of Economic and Development Affairs, chaired by the Chairman of the Council of Economic and Development Affairs, and concerned with the development of the research, development and innovation sector in the Kingdom. In order to talk about the dimensions of this wonderful step, let us first try to answer the following questions. Is there a difference between creativity and innovation..? What are the factors of creativity in the individual. Are they mental genetic factors or are they factors that an individual acquires through learning..? The methodology included surveys that have been conducted on more than 500 individuals, males and females, between the ages of 18 till 60. And the answer is. "Creativity" is the creation of a new idea, while "Innovation" is the development of an already existing idea in a new, successful way. They are two sides of the same coin, as the "creative idea" needs to be developed and transformed into an "innovation" in order to achieve either strategic achievements at the level of countries and institutions to enhance organizational intelligence, or achievements at the level of individuals. For example, the beginning of smart phones was just a creative idea from IBM in 1994, but the actual successful innovation for the manufacture, development and marketing of these phones was through Apple later. Nor does creativity have to be hereditary. There are three basic factors for creativity: The first factor is "the presence of a challenge or an obstacle" that the individual faces and seeks thinking to find solutions to overcome, even if thinking requires a long time. The second factor is the "environment surrounding" of the individual, which includes science, training, experience gained, the ability to use techniques, as well as the ability to assess whether the idea is feasible or otherwise. To achieve this factor, the individual must be aware of own skills, strengths, hobbies, and aspects in which one can be creative, and the individual must also be self-confident and courageous enough to suggest those new ideas. The third factor is "Experience and the Ability to Accept Risk and Lack of Initial Success," and then learn from mistakes and try again tirelessly. There are some tools and techniques that help the individual to reach creative and innovative ideas, such as: Mind Maps tool, through which the available information is drawn by writing a short word for each piece of information and arranging all other relevant information through clear lines, which helps in logical thinking and correct vision. There is also a tool called "Flow Charts", which are graphics that show the sequence of data and expected results according to an ordered scenario of events and workflow steps, giving clarity to the ideas, their sequence, and what is expected of them. There are also other great tools such as the Six Hats tool, a useful tool to be applied by a group of people for effective planning and detailed logical thinking, and the Snowball tool. And all of them are tools that greatly help in organizing and arranging mental thoughts, and making the right decisions. It is also easy to learn, apply and use all those tools and techniques to reach creative and innovative solutions. The detailed figures and results of the conducted surveys are available upon request, with charts showing the %s based on gender, age groups, and job categories.

Keywords: innovation, creativity, factors, tools

Procedia PDF Downloads 42
6653 Role of Maternal Astaxanthin Supplementation on Brain Derived Neurotrophic Factor and Spatial Learning Behavior in Wistar Rat Offspring’s

Authors: K. M. Damodara Gowda

Abstract:

Background: Maternal health and nutrition are considered as the predominant factors influencing brain functional development. If the mother is free of illness and genetic defects, maternal nutrition would be one of the most critical factors affecting the brain development. Calorie restrictions cause significant impairment in spatial learning ability and the levels of Brain Derived Neurotrophic Factor (BDNF) in rats. But, the mechanism by which the prenatal under-nutrition leads to impairment in brain learning and memory function is still unclear. In the present study, prenatal Astaxanthin supplementation on BDNF level, spatial learning and memory performance in the offspring’s of normal, calorie restricted and Astaxanthin supplemented rats was investigated. Methodology: The rats were administered with 6mg and 12 mg of astaxanthin /kg bw for 21 days following which acquisition and retention of spatial memory was tested in a partially-baited eight arm radial maze. The BDNF level in different regions of the brain (cerebral cortex, hippocampus and cerebellum) was estimated by ELISA method. Results: Calorie restricted animals treated with astaxanthin made significantly more correct choices (P < 0.05), and fewer reference memory errors (P < 0.05) on the tenth day of training compared to offsprings of calorie restricted animals. Calorie restricted animals treated with astaxanthin also made significantly higher correct choices (P < 0.001) than untreated calorie restricted animals in a retention test 10 days after the training period. The mean BDNF level in cerebral cortex, Hippocampus and cerebellum in Calorie restricted animals treated with astaxanthin didnot show significant variation from that of control animals. Conclusion: Findings of the study indicated that memory and learning was impaired in the offspring’s of calorie restricted rats which was effectively modulated by astaxanthin at the dosage of 12 mg/kg body weight. In the same way the BDNF level at cerebral cortex, Hippocampus and Cerebellum was also declined in the offspring’s of calorie restricted animals, which was also found to be effectively normalized by astaxanthin.

Keywords: calorie restiction, learning, Memory, Cerebral cortex, Hippocampus, Cerebellum, BDNF, Astaxanthin

Procedia PDF Downloads 218
6652 The Development of Explicit Pragmatic Knowledge: An Exploratory Study

Authors: Aisha Siddiqa

Abstract:

The knowledge of pragmatic practices in a particular language is considered key to effective communication. Unlike one’s native language where this knowledge is acquired spontaneously, more conscious attention is required to learn second language pragmatics. Traditional foreign language (FL) classrooms generally focus on the acquisition of vocabulary and lexico-grammatical structures, neglecting pragmatic functions that are essential for effective communication in the multilingual networks of the modern world. In terms of effective communication, of particular importance is knowledge of what is perceived as polite or impolite in a certain language, an aspect of pragmatics which is not perceived as obligatory but is nonetheless indispensable for successful intercultural communication and integration. While learning a second language, the acquisition of politeness assumes more prominence as the politeness norms and practices vary according to language and culture. Therefore, along with focusing on the ‘use’ of politeness strategies, it is crucial to examine the ‘acquisition’ and the ‘acquisitional development’ of politeness strategies by second language learners, particularly, by lower proficiency leaners as the norms of politeness are usually focused in lower levels. Hence, there is an obvious need for a study that not only investigates the acquisition of pragmatics by young FL learners using innovative multiple methods; but also identifies the potential causes of the gaps in their development. The present research employs a cross sectional design to explore the acquisition of politeness by young English as a foreign language learners (EFL) in France; at three levels of secondary school learning. The methodology involves two phases. In the first phase a cartoon oral production task (COPT) is used to elicit samples of requests from young EFL learners in French schools. These data are then supplemented by a) role plays, b) an analysis of textbooks, and c) video recordings of classroom activities. This mixed method approach allows us to explore the repertoire of politeness strategies the learners possess and delve deeper into the opportunities available to learners in classrooms to learn politeness strategies in requests. The paper will provide the results of the analysis of COPT data for 250 learners at three different stages of English as foreign language development. Data analysis is based on categorization of requests developed in CCSARP project. The preliminary analysis of the COPT data shows that there is substantial evidence of pragmalinguistic development across all levels but the developmental process seems to gain momentum in the second half of the secondary school period as compared to the early period at school. However, there is very little evidence of sociopragmatic development. The study aims to document the current classroom practices in France by looking at the development of young EFL learner’s politeness strategies across three levels of secondary schools.

Keywords: acquisition, English, France, interlanguage pragmatics, politeness

Procedia PDF Downloads 409
6651 The Role of Androgens in Prediction of Success in Smoking Cessation in Women

Authors: Michaela Dušková, Kateřina Šimůnková, Martin Hill, Hana Hruškovičová, Hana Pospíšilová, Eva Králíková, Luboslav Stárka

Abstract:

Smoking represents the most widespread substance dependence in the world. Several studies show the nicotine's ability to alter women hormonal homeostasis. Women smokers have higher testosterone and lower estradiol levels throughout life compared to non-smoker women. We monitored the effect of smoking discontinuation on steroid spectrum with 40 premenopausal and 60 postmenopausal women smokers. These women had been examined before they discontinued smoking and also after 6, 12, 24, and 48 weeks of abstinence. At each examination, blood was collected to determine steroid spectrum (measured by GC-MS), LH, FSH, and SHBG (measured by IRMA). Repeated measures ANOVA model was used for evaluation of the data. The study has been approved by the local Ethics Committee. Given the small number of premenopausal women who endured not to smoke, only the first 6 week period data could be analyzed. A slight increase in androgens after the smoking discontinuation occurred. In postmenopausal women, an increase in testosterone, dihydrotestosterone, dehydroepiandrosterone, and other androgens occurred, too. Nicotine replacement therapy, weight changes, and age does not play any role in the androgen level increase. The higher androgens levels correlated with failure in smoking cessation. Women smokers have higher androgen levels, which might play a role in smoking dependence development. Women successful in smoking cessation, compared to the non-successful ones, have lower androgen levels initially and also after smoking discontinuation. The question is what androgen levels women have before they start smoking.

Keywords: addiction, smoking, cessation, androgens

Procedia PDF Downloads 368
6650 Realistic Simulation Methodology in Brazil’s New Medical Education Curriculum: Potentialities

Authors: Cleto J. Sauer Jr

Abstract:

Introduction: Brazil’s new national curriculum guidelines (NCG) for medical education were published in 2014, presenting active learning methodologies as a cornerstone. Simulation was initially applied for aviation pilots’ training and is currently applied in health sciences. The high-fidelity simulator replicates human body anatomy in detail, also reproducing physiological functions and its use is increasing in medical schools. Realistic Simulation (RS) has pedagogical aspects that are aligned with Brazil’s NCG teaching concepts. The main objective of this study is to carry on a narrative review on RS’s aspects that are aligned with Brazil’s new NCG teaching concepts. Methodology: A narrative review was conducted, with search in three databases (PubMed, Embase and BVS) of studies published between 2010 and 2020. Results: After systematized search, 49 studies were selected and divided into four thematic groups. RS is aligned with new Brazilian medical curriculum as it is an active learning methodology, providing greater patient safety, uniform teaching, and student's emotional skills enhancement. RS is based on reflective learning, a teaching concept developed for adult’s education. Conclusion: RS is a methodology aligned with NCG teaching concepts and has potential to assist in the implementation of new Brazilian medical school’s curriculum. It is an immersive and interactive methodology, which provides reflective learning in a safe environment for students and patients.

Keywords: curriculum, high-fidelity simulator, medical education, realistic simulation

Procedia PDF Downloads 142
6649 Lecturers Attitudes towards the Use of Information and Communication Technology

Authors: Sujata Gupta Kedar, Fasiha Fayaz

Abstract:

This paper presents various studies being carried out by various researchers globally on the attitude of lecturers towards the advent of information technology and e-learning. An effort has been made in this paper to study the various trends being presented by researchers and draw some general conclusions. These show the effect of the lecturer’s gender, age and educational background on their attitude towards the e-learning. Also the favorable attitude of teachers' towards using new technology in teaching will certainly make teachers use them in appropriate situations in teaching and thus measuring of teachers attitude towards using new technology in teaching is very much needed. The sample of 50 males and 50 females were studied from different colleges of Bangalore “Attitudes towards using new technology scale” by Dr. Rajasekar was used. It was seen that male and female had no significant difference in hardware and software use, whereas both had favorable attitude. And there was a significant difference at 1% level among female lecturers belonging to arts faculty. There is no significant difference between the gender and age, because higher the age lower the score is. Irrespective of teaching experience males had no significant difference, whereas females are significant at 1% level, which says that higher the teaching experience of lecturers less knowledge they have towards the use of ICT, as the younger generation is more expose to technology.

Keywords: e-learning, ICT, attitudes, lecturers, communication technology

Procedia PDF Downloads 449
6648 Virtual Reality for Chemical Engineering Unit Operations

Authors: Swee Kun Yap, Sachin Jangam, Suraj Vasudevan

Abstract:

Experiential learning is dubbed as a highly effective way to enhance learning. Virtual reality (VR) is thus a helpful tool in providing a safe, memorable, and interactive learning environment. A class of 49 fluid mechanics students participated in starting up a pump, one of the most used equipment in the chemical industry, in VR. They experience the process in VR to familiarize themselves with the safety training and the standard operating procedure (SOP) in guided mode. Students subsequently observe their peers (in groups of 4 to 5) complete the same training. The training first brings each user through the personal protection equipment (PPE) selection, before guiding the user through a series of steps for pump startup. One of the most common feedback given by industries include the weakness of our graduates in pump design and operation. Traditional fluid mechanics is a highly theoretical module loaded with engineering equations, providing limited opportunity for visualization and operation. With VR pump, students can now learn to startup, shutdown, troubleshoot and observe the intricacies of a centrifugal pump in a safe and controlled environment, thereby bridging the gap between theory and practical application. Following the completion of the guided mode operation, students then individually complete the VR assessment for pump startup on the same day, which requires students to complete the same series of steps, without any cues given in VR to test their recollection rate. While most students miss out a few minor steps such as the checking of lubrication oil and the closing of minor drain valves before pump priming, all the students scored full marks in the PPE selection, and over 80% of the students were able to complete all the critical steps that are required to startup a pump safely. The students were subsequently tested for their recollection rate by means of an online quiz 3 weeks later, and it is again found that over 80% of the students were able to complete the critical steps in the correct order. In the survey conducted, students reported that the VR experience has been enjoyable and enriching, and 79.5% of the students voted to include VR as a positive supplementary exercise in addition to traditional teaching methods. One of the more notable feedback is the higher ease of noticing and learning from mistakes as an observer rather than as a VR participant. Thus, the cycling between being a VR participant and an observer has helped tremendously in their knowledge retention. This reinforces the positive impact VR has on learning.

Keywords: experiential learning, learning by doing, pump, unit operations, virtual reality

Procedia PDF Downloads 124
6647 Project Design Deliverables Sequence (PDD)

Authors: Nahed Al-Hajeri

Abstract:

There are several reasons which lead to a delay in project completion, out of all, one main reason is the delay in deliverable processing, i.e. submission and review of documents. Most of the project cycles start with a list of deliverables but without a sequence of submission of the same, means without a direction to move, leading to overlapping of activities and more interdependencies. Hence Project Design Deliverables (PDD) is developed as a solution to Organize Transmittals (Documents/Drawings) received from contractors/consultants during different phases of an EPC (Engineering, Procurement, and Construction) projects, which gives proper direction to the stakeholders from the beginning, to reduce inter-discipline dependency, avoid overlapping of activities, provide a list of deliverables, sequence of activities, etc. PDD attempts to provide a list and sequencing of the engineering documents/drawings required during different phases of a Project which will benefit both client and Contractor in performing planned activities through timely submission and review of deliverables. This helps in ensuring improved quality and completion of Project in time. The successful implementation begins with a detailed understanding the specific challenges and requirements of the project. PDD will help to learn about vendor document submissions including general workflow, sequence and monitor the submission and review of the deliverables from the early stages of Project. This will provide an overview for the Submission of deliverables by the concerned during the projects in proper sequence. The goal of PDD is also to hold responsible and accountability of all stakeholders during complete project cycle. We believe that successful implementation of PDD with a detailed list of documents and their sequence will help organizations to achieve the project target.

Keywords: EPC (Engineering, Procurement, and Construction), project design deliverables (PDD), econometrics sciences, management sciences

Procedia PDF Downloads 385
6646 The Significance of Cultural Risks for Western Consultants Executing Gulf Cooperation Council Megaprojects

Authors: Alan Walsh, Peter Walker

Abstract:

Differences in commercial, professional and personal cultural traditions between western consultants and project sponsors in the Gulf Cooperation Council (GCC) region are potentially significant in the workplace, and this can impact on project outcomes. These cultural differences can, for example, result in conflict amongst senior managers, which can negatively impact the megaproject. New entrants to the GCC often experience ‘culture shock’ as they attempt to integrate into their unfamiliar environments. Megaprojects are unique ventures with individual project characteristics, which need to be considered when managing their associated risks. Megaproject research to date has mostly ignored the significance of the absence of cultural congruence in the GCC, which is surprising considering that there are large volumes of megaprojects in various stages of construction in the GCC. An initial step to dealing with cultural issues is to acknowledge culture as a significant risk factor (SRF). This paper seeks to understand the criticality for western consultants to address these risks. It considers the cultural barriers that exist between GCC sponsors and western consultants and examines the cultural distance between the key actors. Initial findings suggest the presence to a certain extent of ethnocentricity. Other cultural clashes arise out of a lack of appreciation of the customs, practices and traditions of ‘the Other’, such as the need for avoiding public humiliation and the hierarchal significance rankings. The concept and significance of cultural shock as part of the integration process for new arrivals are considered. Culture shock describes the state of anxiety and frustration resulting from the immersion in a culture distinctly different from one's own. There are potentially substantial project risks associated with underestimating the process of cultural integration. This paper examines two distinct but intertwined issues: the societal and professional culture differences associated with expatriate assignments. A case study examines the cultural congruences between GCC sponsors and American, British and German consultants, over a ten-year cycle. This provides indicators as to which nationalities encountered the most profound cultural issues and the nature of these. GCC megaprojects are typically intensive fast track demanding ventures, where consultant turnover is high. The study finds that building trust-filled relationships is key to successful project team integration and therefore, to successful megaproject execution. Findings indicate that both professional and social inclusion processes have steep learning curves. Traditional risk management practice is to approach any uncertainty in a structured way to mitigate the potential impact on project outcomes. This research highlights cultural risk as a significant factor in the management of GCC megaprojects. These risks arising from high staff turnover typically include loss of project knowledge, delays to the project, cost and disruption in replacing staff. This paper calls for cultural risk to be recognised as an SRF, as the first step to developing risk management strategies, and to reduce staff turnover for western consultants in GCC megaprojects.

Keywords: western consultants in megaprojects, national culture impacts on GCC megaprojects, significant risk factors in megaprojects, professional culture in megaprojects

Procedia PDF Downloads 120